mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
274 lines
8.5 KiB
C++
274 lines
8.5 KiB
C++
#include "caffe2/operators/pack_segments.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool PackSegmentsOp<CPUContext>::DoRunWithType() {
|
|
return DispatchHelper<
|
|
TensorTypes2<char, int32_t, int64_t, float, std::string>,
|
|
T>::call(this, Input(DATA));
|
|
}
|
|
|
|
template <>
|
|
template <typename T, typename Data_T>
|
|
bool PackSegmentsOp<CPUContext>::DoRunWithType2() {
|
|
const auto& data = Input(DATA);
|
|
const auto& lengths = Input(LENGTHS);
|
|
|
|
Tensor* presence_mask = nullptr;
|
|
if (return_presence_mask_) {
|
|
presence_mask = Output(1);
|
|
}
|
|
|
|
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
|
|
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
|
|
|
|
// Find the length of the longest sequence.
|
|
const T* l = lengths.template data<T>();
|
|
T max_length = 0;
|
|
int64_t total_length = 0;
|
|
for (T i = 0; i < lengths.size(0); ++i) {
|
|
max_length = std::max(max_length, l[i]);
|
|
total_length += l[i];
|
|
}
|
|
if (max_length_ != -1) {
|
|
max_length = max_length_;
|
|
}
|
|
|
|
// Total lengths must be the same as data.dims(0)
|
|
CAFFE_ENFORCE_EQ(
|
|
data.size(0),
|
|
total_length,
|
|
" PackSegments requires that the sum of the lengths ",
|
|
total_length,
|
|
" is equal to the first data dimension ",
|
|
data.size(0));
|
|
|
|
auto shape =
|
|
data.sizes().vec(); // Shape of output is batch_size x max_len x ...
|
|
shape[0] = max_length;
|
|
shape.insert(shape.begin(), lengths.numel());
|
|
auto* output = Output(0, shape, at::dtype(data.dtype()));
|
|
|
|
// create output tensor
|
|
auto* out = static_cast<char*>(output->raw_mutable_data(data.dtype()));
|
|
|
|
bool* presence_mask_data = nullptr;
|
|
if (return_presence_mask_) {
|
|
// Shape of presence is batch_size x max_len
|
|
std::vector<int64_t> presence_shape{lengths.numel(), max_length};
|
|
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
|
|
presence_mask->Resize(presence_shape);
|
|
presence_mask_data = presence_mask->template mutable_data<bool>();
|
|
}
|
|
|
|
if (!data.size(0)) {
|
|
// Return empty output (with the proper shape)
|
|
return true;
|
|
}
|
|
|
|
// Do padding
|
|
// Ignore string since math::Set does not support string.
|
|
// For all other cases, the behavior should mimic the GPU version where the
|
|
// padding is always zero for types other than float.
|
|
// TODO(xinyizhang): potentially restructure to clean up the logic here.
|
|
if (output->template IsType<float>()) {
|
|
math::Set<float, CPUContext>(
|
|
output->numel(),
|
|
padding_,
|
|
output->template mutable_data<float>(),
|
|
&context_);
|
|
} else if (output->template IsType<int32_t>()) {
|
|
math::Set<int32_t, CPUContext>(
|
|
output->numel(),
|
|
0,
|
|
output->template mutable_data<int32_t>(),
|
|
&context_);
|
|
} else if (output->template IsType<int64_t>()) {
|
|
math::Set<int64_t, CPUContext>(
|
|
output->numel(),
|
|
0,
|
|
output->template mutable_data<int64_t>(),
|
|
&context_);
|
|
} else if (output->template IsType<char>()) {
|
|
math::Set<char, CPUContext>(
|
|
output->numel(), 0, output->template mutable_data<char>(), &context_);
|
|
}
|
|
if (return_presence_mask_) {
|
|
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
|
|
memset(presence_mask_data, (int)false, presence_mask->numel());
|
|
}
|
|
|
|
auto block_size = data.size_from_dim(1);
|
|
auto block_bytesize = data.itemsize() * block_size;
|
|
const auto* d = static_cast<const char*>(data.raw_data());
|
|
int64_t start = 0;
|
|
for (int64_t i = 0; i < lengths.size(0); ++i) {
|
|
auto len = l[i] <= max_length ? l[i] : max_length;
|
|
context_.CopyItemsSameDevice(
|
|
data.dtype(),
|
|
len * block_size,
|
|
d + block_bytesize * start,
|
|
out + block_bytesize * max_length * i);
|
|
if (return_presence_mask_) {
|
|
// NOLINTNEXTLINE(clang-analyzer-unix.cstring.NullArg)
|
|
memset(presence_mask_data + max_length * i, (int)true, len);
|
|
}
|
|
start += l[i];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
template <typename T>
|
|
bool UnpackSegmentsOp<CPUContext>::DoRunWithType() {
|
|
return DispatchHelper<
|
|
TensorTypes2<char, int32_t, int64_t, float, std::string>,
|
|
T>::call(this, Input(DATA));
|
|
}
|
|
|
|
template <>
|
|
template <typename T, typename Data_T>
|
|
bool UnpackSegmentsOp<CPUContext>::DoRunWithType2() {
|
|
const auto& data = Input(DATA);
|
|
const auto& lengths = Input(LENGTHS);
|
|
auto* output = Output(0);
|
|
|
|
CAFFE_ENFORCE_GE(data.dim(), 2, "DATA should be at least 2-D");
|
|
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
|
|
if (max_length_ != -1) {
|
|
CAFFE_ENFORCE_EQ(
|
|
max_length_,
|
|
data.size(1),
|
|
"max_length should be equal to the second dimension of the packed segments");
|
|
}
|
|
const T* l = lengths.template data<T>();
|
|
|
|
int64_t total_l = 0;
|
|
if (max_length_ != -1) {
|
|
for (int64_t i = 0; i < lengths.size(0); ++i) {
|
|
total_l += (int64_t)(l[i] <= max_length_ ? l[i] : max_length_);
|
|
}
|
|
} else {
|
|
total_l = std::accumulate(l, l + lengths.size(0), (int64_t)0);
|
|
}
|
|
|
|
auto shape = data.sizes().vec();
|
|
CAFFE_ENFORCE_EQ(
|
|
shape[0], lengths.size(0), "LENGTH should match DATA in dimension 0");
|
|
shape.erase(shape.begin());
|
|
shape[0] = total_l;
|
|
output->Resize(shape);
|
|
// create output tensor
|
|
auto* out = static_cast<char*>(output->raw_mutable_data(data.dtype()));
|
|
if (!(data.size(0) && data.size(1))) {
|
|
return true;
|
|
}
|
|
auto block_size = data.size_from_dim(2);
|
|
auto block_bytesize = data.itemsize() * block_size;
|
|
const auto* d = static_cast<const char*>(data.raw_data());
|
|
int64_t start = 0;
|
|
for (int64_t i = 0; i < lengths.size(0); ++i) {
|
|
auto len = l[i];
|
|
if (max_length_ != -1 && l[i] > max_length_) {
|
|
len = max_length_;
|
|
}
|
|
context_.CopyItemsSameDevice(
|
|
data.dtype(),
|
|
len * block_size,
|
|
d + block_bytesize * data.size(1) * i,
|
|
out + block_bytesize * start);
|
|
start += len;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(PackSegments, PackSegmentsOp<CPUContext>);
|
|
REGISTER_CPU_OPERATOR(UnpackSegments, UnpackSegmentsOp<CPUContext>);
|
|
|
|
OPERATOR_SCHEMA(PackSegments)
|
|
.NumInputs(2)
|
|
.NumOutputs(1, 2)
|
|
.SetDoc(
|
|
"Map N dim tensor to N+1 dim based on length blob. Sequences that \
|
|
are shorter than the longest sequence are padded with zeros.")
|
|
.Input(
|
|
0,
|
|
"lengths",
|
|
"1-d int/long tensor contains the length in each of the output.")
|
|
.Input(1, "tensor", "N dim Tensor.")
|
|
.Output(
|
|
0,
|
|
"packed_tensor",
|
|
"N + 1 dim Tensor"
|
|
"where dim(1) is the max length"
|
|
", dim(0) is the batch size.")
|
|
.Output(
|
|
1,
|
|
"presence_mask",
|
|
"2 dim boolean tensor"
|
|
", false where packed_tensor is padded, true otherwise.")
|
|
.Arg("max_length", "The pre-defined max_length for the packed segments")
|
|
.Arg(
|
|
"pad_minf",
|
|
"Padding number in the packed segments. Use true to pad \
|
|
-infinity, otherwise pad zeros")
|
|
.Arg(
|
|
"return_presence_mask",
|
|
"bool whether to return presence mask, false by default");
|
|
OPERATOR_SCHEMA(UnpackSegments)
|
|
.NumInputs(2)
|
|
.NumOutputs(1)
|
|
.SetDoc("Map N+1 dim tensor to N dim based on length blob")
|
|
.Input(
|
|
0,
|
|
"lengths",
|
|
"1-d int/long tensor contains the length in each of the input.")
|
|
.Input(1, "tensor", "N+1 dim Tensor.")
|
|
.Output(0, "packed_tensor", "N dim Tensor")
|
|
.Arg("max_length", "The pre-defined max_length for the packed segments");
|
|
|
|
class GetPackSegmentsGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
return SingleGradientDef(
|
|
"UnpackSegments",
|
|
"",
|
|
vector<string>{I(0), GO(0)},
|
|
vector<string>{GI(1)});
|
|
}
|
|
};
|
|
REGISTER_GRADIENT(PackSegments, GetPackSegmentsGradient);
|
|
|
|
class GetUnpackSegmentsGradient : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
return SingleGradientDef(
|
|
"PackSegments", "", vector<string>{I(0), GO(0)}, vector<string>{GI(1)});
|
|
}
|
|
};
|
|
REGISTER_GRADIENT(UnpackSegments, GetUnpackSegmentsGradient);
|
|
} // namespace caffe2
|
|
|
|
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
|
|
PackSegments,
|
|
"_caffe2::PackSegments("
|
|
"Tensor lengths, "
|
|
"Tensor tensor, "
|
|
"int max_length = -1, "
|
|
"bool pad_minf = False, "
|
|
"bool return_presence_mask = False"
|
|
") -> (Tensor packed_tensor, Tensor presence_mask)",
|
|
caffe2::PackSegmentsOp<caffe2::CPUContext>);
|
|
|
|
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
|
|
UnpackSegments,
|
|
"_caffe2::UnpackSegments("
|
|
"Tensor lengths, "
|
|
"Tensor tensor, "
|
|
"int max_length = -1"
|
|
") -> (Tensor packed_tensor)",
|
|
caffe2::UnpackSegmentsOp<caffe2::CPUContext>);
|