mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
67 lines
2.0 KiB
C++
67 lines
2.0 KiB
C++
#include "caffe2/operators/normalize_op.h"
|
|
|
|
#include "caffe2/core/tensor.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <typename T, class Context>
|
|
void NormalizeGradientOp<T, Context>::DoNormalize(
|
|
const T* xData,
|
|
const T* gOutData,
|
|
T* gInData,
|
|
const int m,
|
|
const int n,
|
|
const int sf) {
|
|
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
|
|
using StridedVec =
|
|
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
|
|
using ConstStridedVec =
|
|
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
auto base = (i / sf) * sf * m + (i % sf);
|
|
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
|
|
ConstStridedVec gOutVec(gOutData + base, 1, m, InnerStride(sf));
|
|
|
|
auto row_sum = xVec.dot(gOutVec);
|
|
auto row_norm = xVec.template lpNorm<2>();
|
|
row_norm = std::max(row_norm, kEps_);
|
|
auto row_norm_3 = pow(row_norm, 3);
|
|
StridedVec gInVec(gInData + base, 1, m, InnerStride(sf));
|
|
gInVec = (gOutVec / row_norm) - ((xVec / row_norm_3) * row_sum);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OPERATOR(Normalize, NormalizeOp<float, CPUContext>);
|
|
OPERATOR_SCHEMA(Normalize)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.Arg("axis", "axis to normalize")
|
|
.SetDoc(R"DOC(
|
|
Given a matrix, apply L2-normalization along the specified dimension.
|
|
)DOC")
|
|
.IdenticalTypeAndShape();
|
|
|
|
REGISTER_CPU_GRADIENT_OPERATOR(
|
|
NormalizeGradient,
|
|
NormalizeGradientOp<float, CPUContext>);
|
|
GRADIENT_OPERATOR_SCHEMA(NormalizeGradient)
|
|
.NumInputs(2)
|
|
.NumOutputs(1)
|
|
.Arg("axis", "axis to normalize");
|
|
|
|
class GetNormalizeGradient final : public GradientMakerBase {
|
|
using GradientMakerBase::GradientMakerBase;
|
|
vector<OperatorDef> GetGradientDefs() override {
|
|
CAFFE_ENFORCE_EQ(def_.input_size(), 1);
|
|
return SingleGradientDef(
|
|
"NormalizeGradient",
|
|
"",
|
|
vector<string>{I(0), GO(0)},
|
|
vector<string>{GI(0)});
|
|
}
|
|
};
|
|
REGISTER_GRADIENT(Normalize, GetNormalizeGradient);
|
|
|
|
} // namespace caffe2
|