mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66742 Modified loops in files under fbsource/fbcode/caffe2/ from the format `for(TYPE var=x0;var<x_max;x++)` to the format `for(const auto var: irange(xmax))` This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand. Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D31705366 fbshipit-source-id: be58222426c192406a7f93c21582c3f6f2082401
93 lines
2.9 KiB
C++
93 lines
2.9 KiB
C++
#pragma once
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/operators/filler_op.h"
|
|
#include "caffe2/utils/cast.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <typename T, class Context>
|
|
class GivenTensorFillOp final : public FillerOp<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
explicit GivenTensorFillOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: FillerOp<Context>(operator_def, ws) {
|
|
const ArgumentHelper helper(operator_def);
|
|
// GivenTensorFillOp can be provided with a "dtype" arg if float is
|
|
// is specified as T. Otherwise, "dtype" is ignored.
|
|
// In the ideal world, we would get rid of templating of T at all, but we
|
|
// need to provide backwards compatibility.
|
|
if (!std::is_same<T, float>::value || !helper.HasArgument("dtype")) {
|
|
ExtractValues<T>();
|
|
} else {
|
|
auto dtype = cast::GetCastDataType(helper, "dtype");
|
|
switch (dtype) {
|
|
case TensorProto_DataType_FLOAT:
|
|
ExtractValues<float>();
|
|
break;
|
|
case TensorProto_DataType_DOUBLE:
|
|
ExtractValues<double>();
|
|
break;
|
|
case TensorProto_DataType_BOOL:
|
|
ExtractValues<bool>();
|
|
break;
|
|
case TensorProto_DataType_INT16:
|
|
ExtractValues<int16_t>();
|
|
break;
|
|
case TensorProto_DataType_INT32:
|
|
ExtractValues<int>();
|
|
break;
|
|
case TensorProto_DataType_INT64:
|
|
ExtractValues<int64_t>();
|
|
break;
|
|
case TensorProto_DataType_STRING:
|
|
ExtractValues<std::string>();
|
|
break;
|
|
case TensorProto_DataType_UNDEFINED:
|
|
CAFFE_THROW("Cannot have undefined 'dtype' argument");
|
|
default:
|
|
CAFFE_THROW("Unexpected 'dtype' argument value: ", dtype);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Fill(Tensor* output) override {
|
|
return (this->*body_)(output);
|
|
}
|
|
|
|
private:
|
|
template <typename Type>
|
|
void ExtractValues() {
|
|
auto source_values = this->template GetRepeatedArgument<Type>("values");
|
|
ReinitializeTensor(
|
|
&values_,
|
|
{static_cast<int64_t>(source_values.size())},
|
|
at::dtype<Type>().device(CPU));
|
|
Type* values_data = values_.template mutable_data<Type>();
|
|
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
|
|
for (const auto i : c10::irange(source_values.size())) {
|
|
values_data[i] = static_cast<Type>(source_values[i]);
|
|
}
|
|
body_ = &GivenTensorFillOp::FillWithType<Type>;
|
|
}
|
|
|
|
template <typename Type>
|
|
bool FillWithType(Tensor* output) {
|
|
CAFFE_ENFORCE_EQ(output->numel(), values_.numel());
|
|
auto* data = output->template mutable_data<Type>();
|
|
const Type* values_data = values_.template data<Type>();
|
|
if (output->numel()) {
|
|
context_.CopyItemsFromCPU(
|
|
TypeMeta::Make<Type>(), output->numel(), values_data, data);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool (GivenTensorFillOp::*body_)(Tensor* output);
|
|
Tensor values_;
|
|
};
|
|
} // namespace caffe2
|