Files
pytorch/caffe2/operators/generate_proposals_op_util_nms.h
Linbin Yu bc72add504 [2] remove caffe2 math.h from maskrcnn ops
Summary:
caffe2/utils/math.h depends on protobuf which is not needed for pytorch, so we want to get rid of it.
It turns out maskrcnn ops only need the StorageOrder enum from math.h, so just copy it.

Test Plan:
buck build //xplat/caffe2/fb/custom_ops/maskrcnn:maskrcnnAndroid#android-armv7,shared
buck build //xplat/caffe2/fb/custom_ops/maskrcnn:maskrcnn_aabbAndroid#android-armv7,shared
buck build //xplat/caffe2/fb/custom_ops/maskrcnn:maskrcnn_int8Android#android-armv7,shared

Differential Revision: D35624743

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75760
Approved by: https://github.com/malfet
2022-04-15 20:22:55 +00:00

795 lines
26 KiB
C++

#ifndef CAFFE2_OPERATORS_UTILS_NMS_H_
#define CAFFE2_OPERATORS_UTILS_NMS_H_
#include <vector>
#include "caffe2/core/logging.h"
#include "caffe2/core/macros.h"
#include "caffe2/utils/eigen_utils.h"
#include <c10/util/irange.h>
namespace caffe2 {
namespace utils {
// Greedy non-maximum suppression for proposed bounding boxes
// Reject a bounding box if its region has an intersection-overunion (IoU)
// overlap with a higher scoring selected bounding box larger than a
// threshold.
// Reference: facebookresearch/Detectron/detectron/utils/cython_nms.pyx
// proposals: pixel coordinates of proposed bounding boxes,
// size: (M, 4), format: [x1; y1; x2; y2]
// scores: scores for each bounding box, size: (M, 1)
// sorted_indices: indices that sorts the scores from high to low
// return: row indices of the selected proposals
template <class Derived1, class Derived2>
std::vector<int> nms_cpu_upright(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& sorted_indices,
float thresh,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 4);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
CAFFE_ENFORCE_LE(sorted_indices.size(), proposals.rows());
using EArrX = EArrXt<typename Derived1::Scalar>;
auto x1 = proposals.col(0);
auto y1 = proposals.col(1);
auto x2 = proposals.col(2);
auto y2 = proposals.col(3);
EArrX areas =
(x2 - x1 + int(legacy_plus_one)) * (y2 - y1 + int(legacy_plus_one));
EArrXi order = AsEArrXt(sorted_indices);
std::vector<int> keep;
while (order.size() > 0) {
// exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<size_t>(topN)) {
break;
}
int i = order[0];
keep.push_back(i);
ConstEigenVectorArrayMap<int> rest_indices(
order.data() + 1, order.size() - 1);
EArrX xx1 = GetSubArray(x1, rest_indices).cwiseMax(x1[i]);
EArrX yy1 = GetSubArray(y1, rest_indices).cwiseMax(y1[i]);
EArrX xx2 = GetSubArray(x2, rest_indices).cwiseMin(x2[i]);
EArrX yy2 = GetSubArray(y2, rest_indices).cwiseMin(y2[i]);
EArrX w = (xx2 - xx1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX h = (yy2 - yy1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX inter = w * h;
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// indices for sub array order[1:n]
auto inds = GetArrayIndices(ovr <= thresh);
order = GetSubArray(order, AsEArrXt(inds) + 1);
}
return keep;
}
/**
* Soft-NMS implementation as outlined in https://arxiv.org/abs/1704.04503.
* Reference: facebookresearch/Detectron/detectron/utils/cython_nms.pyx
* out_scores: Output updated scores after applying Soft-NMS
* proposals: pixel coordinates of proposed bounding boxes,
* size: (M, 4), format: [x1; y1; x2; y2]
* size: (M, 5), format: [ctr_x; ctr_y; w; h; angle (degrees)] for RRPN
* scores: scores for each bounding box, size: (M, 1)
* indices: Indices to consider within proposals and scores. Can be used
* to pre-filter proposals/scores based on some threshold.
* sigma: Standard deviation for Gaussian
* overlap_thresh: Similar to original NMS
* score_thresh: If updated score falls below this thresh, discard proposal
* method: 0 - Hard (original) NMS, 1 - Linear, 2 - Gaussian
* return: row indices of the selected proposals
*/
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu_upright(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& indices,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 4);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
using EArrX = EArrXt<typename Derived1::Scalar>;
const auto& x1 = proposals.col(0);
const auto& y1 = proposals.col(1);
const auto& x2 = proposals.col(2);
const auto& y2 = proposals.col(3);
EArrX areas =
(x2 - x1 + int(legacy_plus_one)) * (y2 - y1 + int(legacy_plus_one));
// Initialize out_scores with original scores. Will be iteratively updated
// as Soft-NMS is applied.
*out_scores = scores;
std::vector<int> keep;
EArrXi pending = AsEArrXt(indices);
while (pending.size() > 0) {
// Exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<unsigned>(topN)) {
break;
}
// Find proposal with max score among remaining proposals
int max_pos;
GetSubArray(*out_scores, pending).maxCoeff(&max_pos);
int i = pending[max_pos];
keep.push_back(i);
// Compute IoU of the remaining boxes with the identified max box
std::swap(pending(0), pending(max_pos));
const auto& rest_indices = pending.tail(pending.size() - 1);
EArrX xx1 = GetSubArray(x1, rest_indices).cwiseMax(x1[i]);
EArrX yy1 = GetSubArray(y1, rest_indices).cwiseMax(y1[i]);
EArrX xx2 = GetSubArray(x2, rest_indices).cwiseMin(x2[i]);
EArrX yy2 = GetSubArray(y2, rest_indices).cwiseMin(y2[i]);
EArrX w = (xx2 - xx1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX h = (yy2 - yy1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX inter = w * h;
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// Update scores based on computed IoU, overlap threshold and NMS method
for (const auto j : c10::irange(rest_indices.size())) {
typename Derived2::Scalar weight;
switch (method) {
case 1: // Linear
weight = (ovr(j) > overlap_thresh) ? (1.0 - ovr(j)) : 1.0;
break;
case 2: // Gaussian
weight = std::exp(-1.0 * ovr(j) * ovr(j) / sigma);
break;
default: // Original NMS
weight = (ovr(j) > overlap_thresh) ? 0.0 : 1.0;
}
(*out_scores)(rest_indices[j]) *= weight;
}
// Discard boxes with new scores below min threshold and update pending
// indices
const auto& rest_scores = GetSubArray(*out_scores, rest_indices);
const auto& inds = GetArrayIndices(rest_scores >= score_thresh);
pending = GetSubArray(rest_indices, AsEArrXt(inds));
}
return keep;
}
namespace {
const int INTERSECT_NONE = 0;
const int INTERSECT_PARTIAL = 1;
const int INTERSECT_FULL = 2;
class RotatedRect {
public:
RotatedRect() {}
RotatedRect(
const Eigen::Vector2f& p_center,
const Eigen::Vector2f& p_size,
float p_angle)
: center(p_center), size(p_size), angle(p_angle) {}
void get_vertices(Eigen::Vector2f* pt) const {
// M_PI / 180. == 0.01745329251
double _angle = angle * 0.01745329251;
float b = (float)cos(_angle) * 0.5f;
float a = (float)sin(_angle) * 0.5f;
pt[0].x() = center.x() - a * size.y() - b * size.x();
pt[0].y() = center.y() + b * size.y() - a * size.x();
pt[1].x() = center.x() + a * size.y() - b * size.x();
pt[1].y() = center.y() - b * size.y() - a * size.x();
pt[2] = 2 * center - pt[0];
pt[3] = 2 * center - pt[1];
}
Eigen::Vector2f center;
Eigen::Vector2f size;
float angle;
};
template <class Derived>
RotatedRect bbox_to_rotated_rect(const Eigen::ArrayBase<Derived>& box) {
CAFFE_ENFORCE_EQ(box.size(), 5);
// cv::RotatedRect takes angle to mean clockwise rotation, but RRPN bbox
// representation means counter-clockwise rotation.
return RotatedRect(
Eigen::Vector2f(box[0], box[1]),
Eigen::Vector2f(box[2], box[3]),
-box[4]);
}
// Eigen doesn't seem to support 2d cross product, so we make one here
float cross_2d(const Eigen::Vector2f& A, const Eigen::Vector2f& B) {
return A.x() * B.y() - B.x() * A.y();
}
// rotated_rect_intersection_pts is a replacement function for
// cv::rotatedRectangleIntersection, which has a bug due to float underflow
// For anyone interested, here're the PRs on OpenCV:
// https://github.com/opencv/opencv/issues/12221
// https://github.com/opencv/opencv/pull/12222
// Note that we do not check if the number of intersections is <= 8 in this case
int rotated_rect_intersection_pts(
const RotatedRect& rect1,
const RotatedRect& rect2,
Eigen::Vector2f* intersections,
int& num) {
// Used to test if two points are the same
const float samePointEps = 0.00001f;
const float EPS = 1e-14;
num = 0; // number of intersections
Eigen::Vector2f vec1[4], vec2[4], pts1[4], pts2[4];
rect1.get_vertices(pts1);
rect2.get_vertices(pts2);
// Specical case of rect1 == rect2
bool same = true;
for (const auto i : c10::irange(4)) {
if (fabs(pts1[i].x() - pts2[i].x()) > samePointEps ||
(fabs(pts1[i].y() - pts2[i].y()) > samePointEps)) {
same = false;
break;
}
}
if (same) {
for (const auto i : c10::irange(4)) {
intersections[i] = pts1[i];
}
num = 4;
return INTERSECT_FULL;
}
// Line vector
// A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
for (const auto i : c10::irange(4)) {
vec1[i] = pts1[(i + 1) % 4] - pts1[i];
vec2[i] = pts2[(i + 1) % 4] - pts2[i];
}
// Line test - test all line combos for intersection
for (const auto i : c10::irange(4)) {
for (const auto j : c10::irange(4)) {
// Solve for 2x2 Ax=b
// This takes care of parallel lines
float det = cross_2d(vec2[j], vec1[i]);
if (std::fabs(det) <= EPS) {
continue;
}
auto vec12 = pts2[j] - pts1[i];
float t1 = cross_2d(vec2[j], vec12) / det;
float t2 = cross_2d(vec1[i], vec12) / det;
if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
intersections[num++] = pts1[i] + t1 * vec1[i];
}
}
}
// Check for vertices from rect1 inside rect2
{
const auto& AB = vec2[0];
const auto& DA = vec2[3];
auto ABdotAB = AB.squaredNorm();
auto ADdotAD = DA.squaredNorm();
for (const auto i : c10::irange(4)) {
// assume ABCD is the rectangle, and P is the point to be judged
// P is inside ABCD iff. P's projection on AB lies within AB
// and P's projection on AD lies within AD
auto AP = pts1[i] - pts2[0];
auto APdotAB = AP.dot(AB);
auto APdotAD = -AP.dot(DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
(APdotAD <= ADdotAD)) {
intersections[num++] = pts1[i];
}
}
}
// Reverse the check - check for vertices from rect2 inside rect1
{
const auto& AB = vec1[0];
const auto& DA = vec1[3];
auto ABdotAB = AB.squaredNorm();
auto ADdotAD = DA.squaredNorm();
for (const auto i : c10::irange(4)) {
auto AP = pts2[i] - pts1[0];
auto APdotAB = AP.dot(AB);
auto APdotAD = -AP.dot(DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
(APdotAD <= ADdotAD)) {
intersections[num++] = pts2[i];
}
}
}
return num ? INTERSECT_PARTIAL : INTERSECT_NONE;
}
// Compute convex hull using Graham scan algorithm
int convex_hull_graham(
const Eigen::Vector2f* p,
const int& num_in,
Eigen::Vector2f* q,
bool shift_to_zero = false) {
CAFFE_ENFORCE(num_in >= 2);
// Step 1:
// Find point with minimum y
// if more than 1 points have the same minimum y,
// pick the one with the mimimum x.
int t = 0;
for (const auto i : c10::irange(1, num_in)) {
if (p[i].y() < p[t].y() || (p[i].y() == p[t].y() && p[i].x() < p[t].x())) {
t = i;
}
}
auto& s = p[t]; // starting point
// Step 2:
// Subtract starting point from every points (for sorting in the next step)
for (const auto i : c10::irange(num_in)) {
q[i] = p[i] - s;
}
// Swap the starting point to position 0
std::swap(q[0], q[t]);
// Step 3:
// Sort point 1 ~ num_in according to their relative cross-product values
// (essentially sorting according to angles)
std::stable_sort(
q + 1,
q + num_in,
[](const Eigen::Vector2f& A, const Eigen::Vector2f& B) -> bool {
float temp = cross_2d(A, B);
if (fabs(temp) < 1e-6) {
return A.squaredNorm() < B.squaredNorm();
} else {
return temp > 0;
}
});
// Step 4:
// Make sure there are at least 2 points (that don't overlap with each other)
// in the stack
int k; // index of the non-overlapped second point
for (k = 1; k < num_in; k++) {
if (q[k].squaredNorm() > 1e-8)
break;
}
if (k == num_in) {
// We reach the end, which means the convex hull is just one point
q[0] = p[t];
return 1;
}
q[1] = q[k];
int m = 2; // 2 elements in the stack
// Step 5:
// Finally we can start the scanning process.
// If we find a non-convex relationship between the 3 points,
// we pop the previous point from the stack until the stack only has two
// points, or the 3-point relationship is convex again
for (int i = k + 1; i < num_in; i++) {
while (m > 1 && cross_2d(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
m--;
}
q[m++] = q[i];
}
// Step 6 (Optional):
// In general sense we need the original coordinates, so we
// need to shift the points back (reverting Step 2)
// But if we're only interested in getting the area/perimeter of the shape
// We can simply return.
if (!shift_to_zero) {
for (const auto i : c10::irange(m))q[i] += s;
}
return m;
}
double polygon_area(const Eigen::Vector2f* q, const int& m) {
if (m <= 2)
return 0;
double area = 0;
for (int i = 1; i < m - 1; i++)
area += fabs(cross_2d(q[i] - q[0], q[i + 1] - q[0]));
return area / 2.0;
}
/**
* Returns the intersection area of two rotated rectangles.
*/
double rotated_rect_intersection(
const RotatedRect& rect1,
const RotatedRect& rect2) {
// There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
// from rotated_rect_intersection_pts
Eigen::Vector2f intersectPts[24], orderedPts[24];
int num = 0; // number of intersections
// Find points of intersection
// TODO: rotated_rect_intersection_pts is a replacement function for
// cv::rotatedRectangleIntersection, which has a bug due to float underflow
// For anyone interested, here're the PRs on OpenCV:
// https://github.com/opencv/opencv/issues/12221
// https://github.com/opencv/opencv/pull/12222
// Note: it doesn't matter if #intersections is greater than 8 here
auto ret = rotated_rect_intersection_pts(rect1, rect2, intersectPts, num);
if (num > 24) {
// should never happen
string msg = "";
msg += "num_intersections = " + to_string(num);
msg += "; rect1.center = (" + to_string(rect1.center.x()) + ", " +
to_string(rect1.center.y()) + "), ";
msg += "rect1.size = (" + to_string(rect1.size.x()) + ", " +
to_string(rect1.size.y()) + "), ";
msg += "rect1.angle = " + to_string(rect1.angle);
msg += "; rect2.center = (" + to_string(rect2.center.x()) + ", " +
to_string(rect2.center.y()) + "), ";
msg += "rect2.size = (" + to_string(rect2.size.x()) + ", " +
to_string(rect2.size.y()) + "), ";
msg += "rect2.angle = " + to_string(rect2.angle);
CAFFE_ENFORCE(num <= 24, msg);
}
if (num <= 2)
return 0.0;
// If one rectangle is fully enclosed within another, return the area
// of the smaller one early.
if (ret == INTERSECT_FULL) {
return std::min(
rect1.size.x() * rect1.size.y(), rect2.size.x() * rect2.size.y());
}
// Convex Hull to order the intersection points in clockwise or
// counter-clockwise order and find the countour area.
int num_convex = convex_hull_graham(intersectPts, num, orderedPts, true);
return polygon_area(orderedPts, num_convex);
}
} // namespace
/**
* Find the intersection area of two rotated boxes represented in format
* [ctr_x, ctr_y, width, height, angle].
* `angle` represents counter-clockwise rotation in degrees.
*/
template <class Derived1, class Derived2>
double bbox_intersection_rotated(
const Eigen::ArrayBase<Derived1>& box1,
const Eigen::ArrayBase<Derived2>& box2) {
CAFFE_ENFORCE(box1.size() == 5 && box2.size() == 5);
const auto& rect1 = bbox_to_rotated_rect(box1);
const auto& rect2 = bbox_to_rotated_rect(box2);
return rotated_rect_intersection(rect1, rect2);
}
/**
* Similar to `bbox_overlaps()` in detectron/utils/cython_bbox.pyx,
* but handles rotated boxes represented in format
* [ctr_x, ctr_y, width, height, angle].
* `angle` represents counter-clockwise rotation in degrees.
*/
template <class Derived1, class Derived2>
Eigen::ArrayXXf bbox_overlaps_rotated(
const Eigen::ArrayBase<Derived1>& boxes,
const Eigen::ArrayBase<Derived2>& query_boxes) {
CAFFE_ENFORCE(boxes.cols() == 5 && query_boxes.cols() == 5);
const auto& boxes_areas = boxes.col(2) * boxes.col(3);
const auto& query_boxes_areas = query_boxes.col(2) * query_boxes.col(3);
Eigen::ArrayXXf overlaps(boxes.rows(), query_boxes.rows());
for (const auto i : c10::irange(boxes.rows())) {
for (const auto j : c10::irange(query_boxes.rows())) {
auto inter = bbox_intersection_rotated(boxes.row(i), query_boxes.row(j));
overlaps(i, j) = (inter == 0.0)
? 0.0
: inter / (boxes_areas[i] + query_boxes_areas[j] - inter);
}
}
return overlaps;
}
// Similar to nms_cpu_upright, but handles rotated proposal boxes
// in the format:
// size (M, 5), format [ctr_x; ctr_y; width; height; angle (in degrees)].
//
// For now, we only consider IoU as the metric for suppression. No angle info
// is used yet.
template <class Derived1, class Derived2>
std::vector<int> nms_cpu_rotated(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& sorted_indices,
float thresh,
int topN = -1) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 5);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
CAFFE_ENFORCE_LE(sorted_indices.size(), proposals.rows());
using EArrX = EArrXt<typename Derived1::Scalar>;
auto widths = proposals.col(2);
auto heights = proposals.col(3);
EArrX areas = widths * heights;
std::vector<RotatedRect> rotated_rects(proposals.rows());
for (const auto i : c10::irange(proposals.rows())) {
rotated_rects[i] = bbox_to_rotated_rect(proposals.row(i));
}
EArrXi order = AsEArrXt(sorted_indices);
std::vector<int> keep;
while (order.size() > 0) {
// exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<size_t>(topN)) {
break;
}
int i = order[0];
keep.push_back(i);
ConstEigenVectorArrayMap<int> rest_indices(
order.data() + 1, order.size() - 1);
EArrX inter(rest_indices.size());
for (const auto j : c10::irange(rest_indices.size())) {
inter[j] = rotated_rect_intersection(
rotated_rects[i], rotated_rects[rest_indices[j]]);
}
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// indices for sub array order[1:n].
// TODO (viswanath): Should angle info be included as well while filtering?
auto inds = GetArrayIndices(ovr <= thresh);
order = GetSubArray(order, AsEArrXt(inds) + 1);
}
return keep;
}
// Similar to soft_nms_cpu_upright, but handles rotated proposal boxes
// in the format:
// size (M, 5), format [ctr_x; ctr_y; width; height; angle (in degrees)].
//
// For now, we only consider IoU as the metric for suppression. No angle info
// is used yet.
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu_rotated(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& indices,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 5);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
using EArrX = EArrXt<typename Derived1::Scalar>;
auto widths = proposals.col(2);
auto heights = proposals.col(3);
EArrX areas = widths * heights;
std::vector<RotatedRect> rotated_rects(proposals.rows());
for (const auto i : c10::irange(proposals.rows())) {
rotated_rects[i] = bbox_to_rotated_rect(proposals.row(i));
}
// Initialize out_scores with original scores. Will be iteratively updated
// as Soft-NMS is applied.
*out_scores = scores;
std::vector<int> keep;
EArrXi pending = AsEArrXt(indices);
while (pending.size() > 0) {
// Exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<size_t>(topN)) {
break;
}
// Find proposal with max score among remaining proposals
int max_pos;
GetSubArray(*out_scores, pending).maxCoeff(&max_pos);
int i = pending[max_pos];
keep.push_back(i);
// Compute IoU of the remaining boxes with the identified max box
std::swap(pending(0), pending(max_pos));
const auto& rest_indices = pending.tail(pending.size() - 1);
EArrX inter(rest_indices.size());
for (const auto j : c10::irange(rest_indices.size())) {
inter[j] = rotated_rect_intersection(
rotated_rects[i], rotated_rects[rest_indices[j]]);
}
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// Update scores based on computed IoU, overlap threshold and NMS method
// TODO (viswanath): Should angle info be included as well while filtering?
for (const auto j : c10::irange(rest_indices.size())) {
typename Derived2::Scalar weight;
switch (method) {
case 1: // Linear
weight = (ovr(j) > overlap_thresh) ? (1.0 - ovr(j)) : 1.0;
break;
case 2: // Gaussian
weight = std::exp(-1.0 * ovr(j) * ovr(j) / sigma);
break;
default: // Original NMS
weight = (ovr(j) > overlap_thresh) ? 0.0 : 1.0;
}
(*out_scores)(rest_indices[j]) *= weight;
}
// Discard boxes with new scores below min threshold and update pending
// indices
const auto& rest_scores = GetSubArray(*out_scores, rest_indices);
const auto& inds = GetArrayIndices(rest_scores >= score_thresh);
pending = GetSubArray(rest_indices, AsEArrXt(inds));
}
return keep;
}
template <class Derived1, class Derived2>
std::vector<int> nms_cpu(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& sorted_indices,
float thresh,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE(proposals.cols() == 4 || proposals.cols() == 5);
if (proposals.cols() == 4) {
// Upright boxes
return nms_cpu_upright(
proposals, scores, sorted_indices, thresh, topN, legacy_plus_one);
} else {
// Rotated boxes with angle info
return nms_cpu_rotated(proposals, scores, sorted_indices, thresh, topN);
}
}
// Greedy non-maximum suppression for proposed bounding boxes
// Reject a bounding box if its region has an intersection-overunion (IoU)
// overlap with a higher scoring selected bounding box larger than a
// threshold.
// Reference: facebookresearch/Detectron/detectron/lib/utils/cython_nms.pyx
// proposals: pixel coordinates of proposed bounding boxes,
// size: (M, 4), format: [x1; y1; x2; y2]
// size: (M, 5), format: [ctr_x; ctr_y; w; h; angle (degrees)] for RRPN
// scores: scores for each bounding box, size: (M, 1)
// return: row indices of the selected proposals
template <class Derived1, class Derived2>
std::vector<int> nms_cpu(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
float thres,
bool legacy_plus_one = false) {
std::vector<int> indices(proposals.rows());
std::iota(indices.begin(), indices.end(), 0);
std::stable_sort(
indices.data(),
indices.data() + indices.size(),
[&scores](int lhs, int rhs) { return scores(lhs) > scores(rhs); });
return nms_cpu(
proposals,
scores,
indices,
thres,
-1 /* topN */,
legacy_plus_one /* legacy_plus_one */);
}
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& indices,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE(proposals.cols() == 4 || proposals.cols() == 5);
if (proposals.cols() == 4) {
// Upright boxes
return soft_nms_cpu_upright(
out_scores,
proposals,
scores,
indices,
sigma,
overlap_thresh,
score_thresh,
method,
topN,
legacy_plus_one);
} else {
// Rotated boxes with angle info
return soft_nms_cpu_rotated(
out_scores,
proposals,
scores,
indices,
sigma,
overlap_thresh,
score_thresh,
method,
topN);
}
}
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1,
bool legacy_plus_one = false) {
std::vector<int> indices(proposals.rows());
std::iota(indices.begin(), indices.end(), 0);
return soft_nms_cpu(
out_scores,
proposals,
scores,
indices,
sigma,
overlap_thresh,
score_thresh,
method,
topN,
legacy_plus_one);
}
} // namespace utils
} // namespace caffe2
#endif // CAFFE2_OPERATORS_UTILS_NMS_H_