mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17082 clangr codemod Reviewed By: ezyang Differential Revision: D14078498 fbshipit-source-id: f7f65d6d81c7942293f53fdaa61f756d8b7360c1
43 lines
1.0 KiB
C++
43 lines
1.0 KiB
C++
#ifndef CAFFE2_MAP_OP_H_
|
|
#define CAFFE2_MAP_OP_H_
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/operator.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <typename T, class Context>
|
|
class APMeterOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
template <class... Args>
|
|
explicit APMeterOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...),
|
|
buffer_size_(
|
|
this->template GetSingleArgument<int32_t>("buffer_size", 1000)),
|
|
buffer_used_(0) {}
|
|
|
|
bool RunOnDevice() override;
|
|
|
|
protected:
|
|
using BufferDataType = std::pair<float, int>;
|
|
// Buffer the predictions for each class
|
|
std::vector<std::vector<BufferDataType>> buffers_;
|
|
// Capacity of the buffer
|
|
int buffer_size_;
|
|
// Used buffer
|
|
int buffer_used_;
|
|
|
|
INPUT_TAGS(PREDICTION, LABEL);
|
|
|
|
protected:
|
|
// Buffer predictions for N sample and D classes
|
|
void
|
|
BufferPredictions(const float* Xdata, const int* labelData, int N, int D);
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_MAP_OP_H_
|