mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65610 - Replace HIP_PLATFORM_HCC with USE_ROCM - Dont rely on CUDA_VERSION or HIP_VERSION and use USE_ROCM and ROCM_VERSION. - In the next PR - Will be removing the mapping from CUDA_VERSION to HIP_VERSION and CUDA to HIP in hipify. - HIP_PLATFORM_HCC is deprecated, so will add HIP_PLATFORM_AMD to support HIP host code compilation on gcc. cc jeffdaily sunway513 jithunnair-amd ROCmSupport amathews-amd Reviewed By: jbschlosser Differential Revision: D30909053 Pulled By: ezyang fbshipit-source-id: 224a966ebf1aaec79beccbbd686fdf3d49267e06
482 lines
21 KiB
C++
482 lines
21 KiB
C++
#ifndef CAFFE2_CORE_COMMON_GPU_H_
|
|
#define CAFFE2_CORE_COMMON_GPU_H_
|
|
|
|
#include <assert.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
#if !defined(USE_ROCM)
|
|
#ifdef __GNUC__
|
|
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
|
|
#pragma GCC diagnostic push
|
|
#endif
|
|
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
|
|
#endif // __GNUC__
|
|
#endif // USE_ROCM
|
|
|
|
#include <cublas_v2.h>
|
|
#include <curand.h>
|
|
#include <driver_types.h>
|
|
|
|
#include "caffe2/core/common.h"
|
|
#include "caffe2/core/logging.h"
|
|
|
|
#include "c10/cuda/CUDAMacros.h"
|
|
#include "c10/cuda/CUDAMathCompat.h"
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
#define CAFFE2_CUDA_EXPORT C10_EXPORT
|
|
|
|
// CAFFE2_CUDA_API gets translated to CAFFE2_HIP_API in hipify script, which
|
|
// causes a marco redefinition issue with the later definition of
|
|
// CAFFE2_HIP_API, so we exclude this definition when HIP is specified
|
|
#if !defined(USE_ROCM)
|
|
#define CAFFE2_CUDA_API TORCH_CUDA_CPP_API
|
|
#endif // USE_ROCM
|
|
|
|
//TODO: [ROCm] Need to remove this after CUDA->HIP mapping is updated.
|
|
#define CAFFE2_HIP_EXPORT C10_EXPORT
|
|
#define CAFFE2_HIP_API TORCH_HIP_API
|
|
|
|
// This is a macro defined for cuda fp16 support. In default, cuda fp16 is
|
|
// supported by NVCC 7.5, but it is also included in the Tegra X1 platform with
|
|
// a (custom?) NVCC 7.0. As a result, we would normally just check the cuda
|
|
// version here, but would also allow a use to pass in the flag
|
|
// CAFFE_HAS_CUDA_FP16 manually.
|
|
|
|
#ifndef CAFFE_HAS_CUDA_FP16
|
|
#define CAFFE_HAS_CUDA_FP16
|
|
#endif // CAFFE_HAS_CUDA_FP16
|
|
|
|
#ifdef CAFFE_HAS_CUDA_FP16
|
|
#include <cuda_fp16.h>
|
|
#endif
|
|
|
|
// cuda major revision number below which fp16 compute is not supoorted
|
|
#if !defined(USE_ROCM)
|
|
constexpr int kFp16CUDADevicePropMajor = 6;
|
|
#else
|
|
constexpr int kFp16CUDADevicePropMajor = 3;
|
|
#endif
|
|
|
|
// Re-enable strict aliasing diagnostic if it was disabled.
|
|
#if !defined(USE_ROCM)
|
|
#ifdef __GNUC__
|
|
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif // __GNUC__
|
|
#endif // USE_ROCM
|
|
|
|
/**
|
|
* The maximum number of peers that each gpu can have when doing p2p setup.
|
|
* Currently, according to NVidia documentation, each device can support a
|
|
* system-wide maximum of eight peer connections.
|
|
* When Caffe2 sets up peer access resources, if we have more than 8 gpus,
|
|
* we will enable peer access in groups of 8.
|
|
*/
|
|
#define CAFFE2_CUDA_MAX_PEER_SIZE 8
|
|
|
|
namespace caffe2 {
|
|
|
|
#if !defined(USE_ROCM)
|
|
/**
|
|
* Empty class to identify TensorCore-based math
|
|
*/
|
|
class TensorCoreEngine {};
|
|
#endif // USE_ROCM
|
|
|
|
#if defined(CUDA_VERSION) && CUDA_VERSION >= 10000
|
|
#define CAFFE2_CUDA_PTRATTR_MEMTYPE type
|
|
#else
|
|
#define CAFFE2_CUDA_PTRATTR_MEMTYPE memoryType
|
|
#endif
|
|
|
|
/**
|
|
* A runtime function to report the cuda version that Caffe2 is built with.
|
|
*/
|
|
inline int CudaVersion() {
|
|
#if defined(USE_ROCM)
|
|
return ROCM_VERSION;
|
|
#else
|
|
return CUDA_VERSION;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Returns the number of devices.
|
|
*/
|
|
CAFFE2_CUDA_API int NumCudaDevices();
|
|
|
|
/**
|
|
* Check if the current running session has a cuda gpu present.
|
|
*
|
|
* Note that this is different from having caffe2 built with cuda. Building
|
|
* Caffe2 with cuda only guarantees that this function exists. If there are no
|
|
* cuda gpus present in the machine, or there are hardware configuration
|
|
* problems like an insufficient driver, this function will still return false,
|
|
* meaning that there is no usable GPU present.
|
|
*
|
|
* In the open source build, it is possible that Caffe2's GPU code is
|
|
* dynamically loaded, and as a result a library could be only linked to the
|
|
* CPU code, but want to test if cuda is later available or not. In this case,
|
|
* one should use HasCudaRuntime() from common.h.
|
|
*/
|
|
inline bool HasCudaGPU() {
|
|
return NumCudaDevices() > 0;
|
|
}
|
|
|
|
/**
|
|
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
|
|
*/
|
|
CAFFE2_CUDA_API int CaffeCudaGetDevice();
|
|
|
|
/**
|
|
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
|
|
*/
|
|
CAFFE2_CUDA_API void CaffeCudaSetDevice(const int id);
|
|
|
|
/**
|
|
* Gets the GPU id that the current pointer is located at.
|
|
*/
|
|
CAFFE2_CUDA_API int GetGPUIDForPointer(const void* ptr);
|
|
|
|
/**
|
|
* Gets the device property for the given device. This function is thread safe.
|
|
* The initial run on this function is ~1ms/device; however, the results are
|
|
* cached so subsequent runs should be much faster.
|
|
*/
|
|
CAFFE2_CUDA_API const cudaDeviceProp& GetDeviceProperty(const int device);
|
|
|
|
/**
|
|
* Runs a device query function and prints out the results to LOG(INFO).
|
|
*/
|
|
CAFFE2_CUDA_API void DeviceQuery(const int deviceid);
|
|
|
|
/**
|
|
* Return a peer access pattern by returning a matrix (in the format of a
|
|
* nested vector) of boolean values specifying whether peer access is possible.
|
|
*
|
|
* This function returns false if anything wrong happens during the query of
|
|
* the GPU access pattern.
|
|
*/
|
|
CAFFE2_CUDA_API bool GetCudaPeerAccessPattern(vector<vector<bool>>* pattern);
|
|
|
|
/**
|
|
* Return the availability of TensorCores for math
|
|
*/
|
|
CAFFE2_CUDA_API bool TensorCoreAvailable();
|
|
|
|
/**
|
|
* Return a human readable cublas error string.
|
|
*/
|
|
CAFFE2_CUDA_API const char* cublasGetErrorString(cublasStatus_t error);
|
|
|
|
/**
|
|
* Return a human readable curand error string.
|
|
*/
|
|
CAFFE2_CUDA_API const char* curandGetErrorString(curandStatus_t error);
|
|
|
|
// CUDA: various checks for different function calls.
|
|
#define CUDA_ENFORCE(condition, ...) \
|
|
do { \
|
|
cudaError_t error = condition; \
|
|
CAFFE_ENFORCE_EQ( \
|
|
error, \
|
|
cudaSuccess, \
|
|
"Error at: ", \
|
|
__FILE__, \
|
|
":", \
|
|
__LINE__, \
|
|
": ", \
|
|
cudaGetErrorString(error), \
|
|
##__VA_ARGS__); \
|
|
} while (0)
|
|
#define CUDA_CHECK(condition) \
|
|
do { \
|
|
cudaError_t error = condition; \
|
|
CHECK(error == cudaSuccess) << cudaGetErrorString(error); \
|
|
} while (0)
|
|
|
|
#define CUDA_DRIVERAPI_ENFORCE(condition) \
|
|
do { \
|
|
CUresult result = condition; \
|
|
if (result != CUDA_SUCCESS) { \
|
|
const char* msg; \
|
|
cuGetErrorName(result, &msg); \
|
|
CAFFE_THROW("Error at: ", __FILE__, ":", __LINE__, ": ", msg); \
|
|
} \
|
|
} while (0)
|
|
#define CUDA_DRIVERAPI_CHECK(condition) \
|
|
do { \
|
|
CUresult result = condition; \
|
|
if (result != CUDA_SUCCESS) { \
|
|
const char* msg; \
|
|
cuGetErrorName(result, &msg); \
|
|
LOG(FATAL) << "Error at: " << __FILE__ << ":" << __LINE__ << ": " \
|
|
<< msg; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CUBLAS_ENFORCE(condition) \
|
|
do { \
|
|
cublasStatus_t status = condition; \
|
|
CAFFE_ENFORCE_EQ( \
|
|
status, \
|
|
CUBLAS_STATUS_SUCCESS, \
|
|
"Error at: ", \
|
|
__FILE__, \
|
|
":", \
|
|
__LINE__, \
|
|
": ", \
|
|
::caffe2::cublasGetErrorString(status)); \
|
|
} while (0)
|
|
#define CUBLAS_CHECK(condition) \
|
|
do { \
|
|
cublasStatus_t status = condition; \
|
|
CHECK(status == CUBLAS_STATUS_SUCCESS) \
|
|
<< ::caffe2::cublasGetErrorString(status); \
|
|
} while (0)
|
|
|
|
#define CURAND_ENFORCE(condition) \
|
|
do { \
|
|
curandStatus_t status = condition; \
|
|
CAFFE_ENFORCE_EQ( \
|
|
status, \
|
|
CURAND_STATUS_SUCCESS, \
|
|
"Error at: ", \
|
|
__FILE__, \
|
|
":", \
|
|
__LINE__, \
|
|
": ", \
|
|
::caffe2::curandGetErrorString(status)); \
|
|
} while (0)
|
|
#define CURAND_CHECK(condition) \
|
|
do { \
|
|
curandStatus_t status = condition; \
|
|
CHECK(status == CURAND_STATUS_SUCCESS) \
|
|
<< ::caffe2::curandGetErrorString(status); \
|
|
} while (0)
|
|
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
|
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
|
i += blockDim.x * gridDim.x)
|
|
|
|
#define CUDA_2D_KERNEL_LOOP(i, n, j, m) \
|
|
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
|
i += blockDim.x * gridDim.x) \
|
|
for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); \
|
|
j += blockDim.y * gridDim.y)
|
|
|
|
// The following helper functions are here so that you can write a kernel call
|
|
// when you are not particularly interested in maxing out the kernels'
|
|
// performance. Usually, this will give you a reasonable speed, but if you
|
|
// really want to find the best performance, it is advised that you tune the
|
|
// size of the blocks and grids more reasonably.
|
|
// A legacy note: this is derived from the old good Caffe days, when I simply
|
|
// hard-coded the number of threads and wanted to keep backward compatibility
|
|
// for different computation capabilities.
|
|
// For more info on CUDA compute capabilities, visit the NVidia website at:
|
|
// http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
|
|
|
|
// The number of cuda threads to use. Since work is assigned to SMs at the
|
|
// granularity of a block, 128 is chosen to allow utilizing more SMs for
|
|
// smaller input sizes.
|
|
// 1D grid
|
|
constexpr int CAFFE_CUDA_NUM_THREADS = 128;
|
|
// 2D grid
|
|
constexpr int CAFFE_CUDA_NUM_THREADS_2D_DIMX = 16;
|
|
constexpr int CAFFE_CUDA_NUM_THREADS_2D_DIMY = 16;
|
|
|
|
// The maximum number of blocks to use in the default kernel call. We set it to
|
|
// 4096 which would work for compute capability 2.x (where 65536 is the limit).
|
|
// This number is very carelessly chosen. Ideally, one would like to look at
|
|
// the hardware at runtime, and pick the number of blocks that makes most
|
|
// sense for the specific runtime environment. This is a todo item.
|
|
// 1D grid
|
|
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS = 4096;
|
|
// 2D grid
|
|
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMX = 128;
|
|
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMY = 128;
|
|
|
|
constexpr int kCUDAGridDimMaxX = 2147483647;
|
|
constexpr int kCUDAGridDimMaxY = 65535;
|
|
constexpr int kCUDAGridDimMaxZ = 65535;
|
|
|
|
/**
|
|
* @brief Compute the number of blocks needed to run N threads.
|
|
*/
|
|
inline int CAFFE_GET_BLOCKS(const int N) {
|
|
return std::max(
|
|
std::min(
|
|
(N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS,
|
|
CAFFE_MAXIMUM_NUM_BLOCKS),
|
|
// Use at least 1 block, since CUDA does not allow empty block
|
|
1);
|
|
}
|
|
|
|
/**
|
|
* @brief Compute the number of blocks needed to run N threads for a 2D grid
|
|
*/
|
|
inline dim3 CAFFE_GET_BLOCKS_2D(const int N, const int /* M */) {
|
|
dim3 grid;
|
|
// Not calling the 1D version for each dim to keep all constants as literals
|
|
|
|
grid.x = std::max(
|
|
std::min(
|
|
(N + CAFFE_CUDA_NUM_THREADS_2D_DIMX - 1) /
|
|
CAFFE_CUDA_NUM_THREADS_2D_DIMX,
|
|
CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMX),
|
|
// Use at least 1 block, since CUDA does not allow empty block
|
|
1);
|
|
|
|
grid.y = std::max(
|
|
std::min(
|
|
(N + CAFFE_CUDA_NUM_THREADS_2D_DIMY - 1) /
|
|
CAFFE_CUDA_NUM_THREADS_2D_DIMY,
|
|
CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMY),
|
|
// Use at least 1 block, since CUDA does not allow empty block
|
|
1);
|
|
|
|
return grid;
|
|
}
|
|
|
|
using CUDAGuard = c10::cuda::CUDAGuard;
|
|
|
|
template <typename T, int N>
|
|
struct SimpleArray {
|
|
T data[N];
|
|
};
|
|
|
|
constexpr int kCUDATensorMaxDims = 8;
|
|
|
|
#define DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(val, Func, T, ...) \
|
|
do { \
|
|
CAFFE_ENFORCE_LE(val, kCUDATensorMaxDims); \
|
|
switch (val) { \
|
|
case 1: { \
|
|
Func<T, 1>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 2: { \
|
|
Func<T, 2>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 3: { \
|
|
Func<T, 3>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 4: { \
|
|
Func<T, 4>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 5: { \
|
|
Func<T, 5>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 6: { \
|
|
Func<T, 6>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 7: { \
|
|
Func<T, 7>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 8: { \
|
|
Func<T, 8>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
default: { \
|
|
break; \
|
|
} \
|
|
} \
|
|
} while (false)
|
|
|
|
#define DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_2(val, Func, T1, T2, ...) \
|
|
do { \
|
|
CAFFE_ENFORCE_LE(val, kCUDATensorMaxDims); \
|
|
switch (val) { \
|
|
case 1: { \
|
|
Func<T1, T2, 1>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 2: { \
|
|
Func<T1, T2, 2>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 3: { \
|
|
Func<T1, T2, 3>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 4: { \
|
|
Func<T1, T2, 4>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 5: { \
|
|
Func<T1, T2, 5>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 6: { \
|
|
Func<T1, T2, 6>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 7: { \
|
|
Func<T1, T2, 7>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 8: { \
|
|
Func<T1, T2, 8>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
default: { \
|
|
break; \
|
|
} \
|
|
} \
|
|
} while (false)
|
|
|
|
#define DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_3(val, Func, T1, T2, T3, ...) \
|
|
do { \
|
|
CAFFE_ENFORCE_LE(val, kCUDATensorMaxDims); \
|
|
switch (val) { \
|
|
case 1: { \
|
|
Func<T1, T2, T3, 1>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 2: { \
|
|
Func<T1, T2, T3, 2>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 3: { \
|
|
Func<T1, T2, T3, 3>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 4: { \
|
|
Func<T1, T2, T3, 4>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 5: { \
|
|
Func<T1, T2, T3, 5>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 6: { \
|
|
Func<T1, T2, T3, 6>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 7: { \
|
|
Func<T1, T2, T3, 7>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
case 8: { \
|
|
Func<T1, T2, T3, 8>(__VA_ARGS__); \
|
|
break; \
|
|
} \
|
|
default: { \
|
|
break; \
|
|
} \
|
|
} \
|
|
} while (false)
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_CORE_COMMON_GPU_H_
|