Files
pytorch/test/cpp/api/modules.cpp
Pavel Belevich 5005f7bce7 C++ API parity: MaxUnpool3d
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27027

Test Plan: Imported from OSS

Differential Revision: D17682402

Pulled By: pbelevich

fbshipit-source-id: 2008ce405176c174cdba88b4f25cd77a82bb13ea
2019-10-02 05:40:42 -07:00

1230 lines
38 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
using namespace torch::nn;
using namespace torch::test;
class TestModel : public torch::nn::Module {
public:
TestModel()
: l1(register_module("l1", Linear(10, 3))),
l2(register_module("l2", Linear(3, 5))),
l3(register_module("l3", Linear(5, 100))) {}
Linear l1, l2, l3;
};
class NestedModel : public torch::nn::Module {
public:
NestedModel()
: param_(register_parameter("param", torch::empty({3, 2, 21}))),
l1(register_module("l1", Linear(5, 20))),
t(register_module("test", std::make_shared<TestModel>())) {}
torch::Tensor param_;
Linear l1;
std::shared_ptr<TestModel> t;
};
struct ModulesTest : torch::test::SeedingFixture {};
TEST_F(ModulesTest, Conv1d) {
Conv1d model(Conv1dOptions(3, 2, 3).stride(2));
auto x = torch::randn({2, 3, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(s.ndimension(), 0);
for (auto i = 0; i < 3; i++) {
ASSERT_EQ(y.size(i), 2);
}
ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3);
}
TEST_F(ModulesTest, Conv2dEven) {
Conv2d model(Conv2dOptions(3, 2, 3).stride(2));
auto x = torch::randn({2, 3, 5, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 4);
ASSERT_EQ(s.ndimension(), 0);
for (auto i = 0; i < 4; i++) {
ASSERT_EQ(y.size(i), 2);
}
ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 3);
}
TEST_F(ModulesTest, Conv2dUneven) {
Conv2d model(Conv2dOptions(3, 2, {3, 2}).stride({2, 2}));
auto x = torch::randn({2, 3, 5, 4}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 4);
ASSERT_EQ(s.ndimension(), 0);
for (auto i = 0; i < 4; i++) {
ASSERT_EQ(y.size(i), 2);
}
ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 2);
}
TEST_F(ModulesTest, Conv3d) {
Conv3d model(Conv3dOptions(3, 2, 3).stride(2));
auto x = torch::randn({2, 3, 5, 5, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 5);
ASSERT_EQ(s.ndimension(), 0);
for (auto i = 0; i < 5; i++) {
ASSERT_EQ(y.size(i), 2);
}
ASSERT_TRUE(model->weight.grad().numel() == 3 * 2 * 3 * 3 * 3);
}
TEST_F(ModulesTest, MaxPool1d) {
MaxPool1d model(MaxPool1dOptions(3).stride(2));
auto x = torch::ones({1, 1, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1 ,2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2}));
}
TEST_F(ModulesTest, MaxPool1dReturnIndices) {
MaxPool1d model(MaxPool1dOptions(3).stride(2));
auto x = torch::ones({1, 1, 5}, torch::requires_grad());
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
ASSERT_EQ(y.dim(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1 ,2})));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2}));
ASSERT_TRUE(torch::allclose(indices, torch::tensor({{{0, 2}}}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({1, 1, 2}));
}
TEST_F(ModulesTest, MaxPool2dEven) {
MaxPool2d model(MaxPool2dOptions(3).stride(2));
auto x = torch::ones({2, 5, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2 ,2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2}));
}
TEST_F(ModulesTest, MaxPool2dUneven) {
MaxPool2d model(MaxPool2dOptions({3, 2}).stride({2, 2}));
auto x = torch::ones({2, 5, 4}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2}));
}
TEST_F(ModulesTest, MaxPool2dReturnIndices) {
MaxPool2d model(MaxPool2dOptions(3).stride(2));
auto x = torch::ones({2, 5, 5}, torch::requires_grad());
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
ASSERT_EQ(y.dim(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2 ,2})));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2}));
ASSERT_TRUE(torch::allclose(
indices,
torch::tensor({{{ 0, 2},
{10, 12}},
{{ 0, 2},
{10, 12}}}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({2, 2, 2}));
}
TEST_F(ModulesTest, MaxPool3d) {
MaxPool3d model(MaxPool3dOptions(3).stride(2));
auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2, 2}));
}
TEST_F(ModulesTest, MaxPool3dReturnIndices) {
MaxPool3d model(MaxPool3dOptions(3).stride(2));
auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad());
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
ASSERT_EQ(y.dim(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2, 2}));
ASSERT_TRUE(torch::allclose(
indices,
torch::tensor({{{{ 0, 2},
{10, 12}},
{{50, 52},
{60, 62}}},
{{{ 0, 2},
{10, 12}},
{{50, 52},
{60, 62}}}}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({2, 2, 2, 2}));
}
TEST_F(ModulesTest, AvgPool1d) {
AvgPool1d model(AvgPool1dOptions(3).stride(2));
auto x = torch::ones({1, 1, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2}));
}
TEST_F(ModulesTest, AvgPool2dEven) {
AvgPool2d model(AvgPool2dOptions(3).stride(2));
auto x = torch::ones({2, 5, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2}));
}
TEST_F(ModulesTest, AvgPool2dUneven) {
AvgPool2d model(AvgPool2dOptions({3, 2}).stride({2, 2}));
auto x = torch::ones({2, 5, 4}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2}));
}
TEST_F(ModulesTest, AvgPool3d) {
AvgPool3d model(AvgPool3dOptions(3).stride(2));
auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2, 2}));
}
TEST_F(ModulesTest, Identity) {
Identity identity;
auto input = torch::tensor({{1, 3, 4}, {2, 3, 4}}, torch::requires_grad());
auto output = identity->forward(input);
auto expected = torch::tensor({{1, 3, 4}, {2, 3, 4}}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(torch::equal(output, expected));
ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input)));
}
TEST_F(ModulesTest, AdaptiveMaxPool1d) {
AdaptiveMaxPool1d model(3);
auto x = torch::tensor({{{1, 2, 3, 4, 5}}}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({{{2, 4, 5}}}, torch::kFloat)));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 3}));
}
TEST_F(ModulesTest, AdaptiveMaxPool1dReturnIndices) {
AdaptiveMaxPool1d model(3);
auto x = torch::tensor({{{1, 2, 3, 4, 5}}}, torch::requires_grad());
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
ASSERT_EQ(y.dim(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({{{2, 4, 5}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 3}));
ASSERT_TRUE(torch::allclose(indices, torch::tensor({{{1, 3, 4}}}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({1, 1, 3}));
}
TEST_F(ModulesTest, AdaptiveMaxPool2dEven) {
AdaptiveMaxPool2d model(3);
auto x = torch::arange(0, 50);
x.resize_({2, 5, 5}).set_requires_grad(true);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{6, 8, 9},
{16, 18, 19},
{21, 23, 24}},
{{31, 33, 34},
{41, 43, 44},
{46, 48, 49}},
}, torch::kFloat)));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3}));
}
TEST_F(ModulesTest, AdaptiveMaxPool2dUneven) {
AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2}));
auto x = torch::arange(0, 40);
x.resize_({2, 5, 4}).set_requires_grad(true);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{5, 7},
{13, 15},
{17, 19}},
{{25, 27},
{33, 35},
{37, 39}},
}, torch::kFloat)));
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 2}));
}
TEST_F(ModulesTest, AdaptiveMaxPool2dReturnIndicesEven) {
AdaptiveMaxPool2d model(3);
auto x = torch::arange(0, 50);
x.resize_({2, 5, 5}).set_requires_grad(true);
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{6, 8, 9},
{16, 18, 19},
{21, 23, 24}},
{{31, 33, 34},
{41, 43, 44},
{46, 48, 49}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3}));
ASSERT_EQ(indices.ndimension(), 3);
ASSERT_TRUE(torch::allclose(indices, torch::tensor({
{{6, 8, 9},
{16, 18, 19},
{21, 23, 24}},
{{6, 8, 9},
{16, 18, 19},
{21, 23, 24}},
}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({2, 3, 3}));
}
TEST_F(ModulesTest, AdaptiveMaxPool2dReturnIndicesUneven) {
AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2}));
auto x = torch::arange(0, 40);
x.resize_({2, 5, 4}).set_requires_grad(true);
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{5, 7},
{13, 15},
{17, 19}},
{{25, 27},
{33, 35},
{37, 39}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 2}));
ASSERT_EQ(indices.ndimension(), 3);
ASSERT_TRUE(torch::allclose(indices, torch::tensor({
{{5, 7},
{13, 15},
{17, 19}},
{{5, 7},
{13, 15},
{17, 19}},
}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({2, 3, 2}));
}
TEST_F(ModulesTest, AdaptiveMaxPool3d) {
AdaptiveMaxPool3d model(3);
auto x = torch::arange(0, 64);
x.resize_({1, 4, 4, 4}).set_requires_grad(true);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{21, 22, 23},
{25, 26, 27},
{29, 30, 31}},
{{37, 38, 39},
{41, 42, 43},
{45, 46, 47}},
{{53, 54, 55},
{57, 58, 59},
{61, 62, 63}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 3, 3, 3}));
}
TEST_F(ModulesTest, AdaptiveMaxPool3dReturnIndices) {
AdaptiveMaxPool3d model(3);
auto x = torch::arange(0, 64);
x.resize_({1, 4, 4, 4}).set_requires_grad(true);
torch::Tensor y, indices;
std::tie(y, indices) = model->forward_with_indices(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{21, 22, 23},
{25, 26, 27},
{29, 30, 31}},
{{37, 38, 39},
{41, 42, 43},
{45, 46, 47}},
{{53, 54, 55},
{57, 58, 59},
{61, 62, 63}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 3, 3, 3}));
ASSERT_EQ(indices.ndimension(), 4);
ASSERT_TRUE(torch::allclose(indices, torch::tensor({
{{21, 22, 23},
{25, 26, 27},
{29, 30, 31}},
{{37, 38, 39},
{41, 42, 43},
{45, 46, 47}},
{{53, 54, 55},
{57, 58, 59},
{61, 62, 63}},
}, torch::kLong)));
ASSERT_EQ(indices.sizes(), torch::IntArrayRef({1, 3, 3, 3}));
}
TEST_F(ModulesTest, AdaptiveAvgPool1d) {
AdaptiveAvgPool1d model(3);
auto x = torch::tensor({{{1, 2, 3, 4, 5}}}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({{{1.5, 3.0, 4.5}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 3}));
}
TEST_F(ModulesTest, AdaptiveAvgPool2dEven) {
AdaptiveAvgPool2d model(3);
auto x = torch::arange(0, 50);
x.resize_({2, 5, 5}).set_requires_grad(true);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{ 3.0, 4.5, 6.0},
{10.5, 12.0, 13.5},
{18.0, 19.5, 21.0}},
{{28.0, 29.5, 31.0},
{35.5, 37.0, 38.5},
{43.0, 44.5, 46.0}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3}));
}
TEST_F(ModulesTest, AdaptiveAvgPool2dUneven) {
AdaptiveAvgPool2d model(AdaptiveAvgPool2dOptions({3, 2}));
auto x = torch::arange(0, 40);
x.resize_({2, 5, 4}).set_requires_grad(true);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{2.5, 4.5},
{8.5, 10.5},
{14.5, 16.5}},
{{22.5, 24.5},
{28.5, 30.5},
{34.5, 36.5}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 2}));
}
TEST_F(ModulesTest, AdaptiveAvgPool3d) {
AdaptiveAvgPool3d model(3);
auto x = torch::arange(0, 64);
x.resize_({1, 4, 4, 4}).set_requires_grad(true);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::tensor({
{{10.5, 11.5, 12.5},
{14.5, 15.5, 16.5},
{18.5, 19.5, 20.5}},
{{26.5, 27.5, 28.5},
{30.5, 31.5, 32.5},
{34.5, 35.5, 36.5}},
{{42.5, 43.5, 44.5},
{46.5, 47.5, 48.5},
{50.5, 51.5, 52.5}},
}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 3, 3, 3}));
}
TEST_F(ModulesTest, MaxUnpool1d) {
auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong);
auto x = torch::tensor({{{2, 4, 5}}}, torch::requires_grad());
auto model = MaxUnpool1d{3};
auto y = model->forward(x, indices);
ASSERT_EQ(y.dim(), 3);
ASSERT_TRUE(torch::allclose(y,
torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 9}));
indices = torch::tensor({{{1, 3, 4}}}, torch::kLong);
x = torch::tensor({{{2, 4, 5}}}, torch::requires_grad());
model = MaxUnpool1d{MaxUnpool1dOptions(3).stride(2).padding(1)};
y = model->forward(x, indices, c10::IntArrayRef({1, 1, 5}));
ASSERT_EQ(y.dim(), 3);
ASSERT_TRUE(torch::allclose(y,
torch::tensor({{{0, 2, 0, 4, 5}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 5}));
}
TEST_F(ModulesTest, MaxPool1d_MaxUnpool1d) {
MaxPool1d pool {MaxPool1dOptions(2).stride(2)};
MaxUnpool1d unpool {MaxUnpool1dOptions(2).stride(2)};
auto input = torch::tensor({{{1, 2, 3, 4, 5, 6, 7, 8}}}, torch::kFloat);
torch::Tensor output, indices;
std::tie(output, indices) = pool->forward_with_indices(input);
ASSERT_TRUE(torch::allclose(
unpool(output, indices),
torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8}}} , torch::kFloat)));
// Example showcasing the use of output_size
input = torch::tensor({{{1, 2, 3, 4, 5, 6, 7, 8, 9}}}, torch::kFloat);
std::tie(output, indices) = pool->forward_with_indices(input);
ASSERT_TRUE(torch::allclose(
unpool(output, indices, input.sizes()),
torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8, 0}}} , torch::kFloat)));
ASSERT_TRUE(torch::allclose(
unpool(output, indices),
torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8}}} , torch::kFloat)));
}
TEST_F(ModulesTest, MaxUnpool2d) {
auto indices = torch::tensor({
{{{ 6, 8, 9},
{16, 18, 19},
{21, 23, 24}}},
{{{ 6, 8, 9},
{16, 18, 19},
{21, 23, 24}}}}, torch::kLong);
auto x = torch::tensor({
{{{ 6, 8, 9},
{16, 18, 19},
{21, 23, 24}}},
{{{31, 33, 34},
{41, 43, 44},
{46, 48, 49}}}}, torch::requires_grad());
auto model = MaxUnpool2d{MaxUnpool2dOptions(3).stride(2).padding(1)};
auto y = model->forward(x, indices);
ASSERT_EQ(y.dim(), 4);
ASSERT_TRUE(torch::allclose(y, torch::tensor(
{{{{ 0, 0, 0, 0, 0},
{ 0, 6, 0, 8, 9},
{ 0, 0, 0, 0, 0},
{ 0, 16, 0, 18, 19},
{ 0, 21, 0, 23, 24}}},
{{{ 0, 0, 0, 0, 0},
{ 0, 31, 0, 33, 34},
{ 0, 0, 0, 0, 0},
{ 0, 41, 0, 43, 44},
{ 0, 46, 0, 48, 49}}}} , torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 1, 5, 5}));
}
TEST_F(ModulesTest, MaxPool2d_MaxUnpool2d) {
MaxPool2d pool {MaxPool2dOptions(2).stride(2)};
MaxUnpool2d unpool {MaxUnpool2dOptions(2).stride(2)};
auto input = torch::tensor({{{{ 1, 2, 3, 4},
{ 5, 6, 7, 8},
{ 9, 10, 11, 12},
{13, 14, 15, 16}}}}, torch::kFloat);
torch::Tensor output, indices;
std::tie(output, indices) = pool->forward_with_indices(input);
ASSERT_TRUE(torch::allclose(
unpool(output, indices),
torch::tensor({{{{ 0, 0, 0, 0},
{ 0, 6, 0, 8},
{ 0, 0, 0, 0},
{ 0, 14, 0, 16}}}} , torch::kFloat)));
ASSERT_TRUE(torch::allclose(
unpool(output, indices, torch::IntArrayRef{1, 1, 5, 5}),
torch::tensor({{{{ 0, 0, 0, 0, 0},
{ 6, 0, 8, 0, 0},
{ 0, 0, 0, 14, 0},
{ 16, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0}}}}, torch::kFloat)));
}
TEST_F(ModulesTest, MaxUnpool3d) {
auto indices = torch::tensor({{{{{26}}}}}, torch::kLong);
auto x = torch::tensor({{{{{26}}}}}, torch::requires_grad());
auto model = MaxUnpool3d{3};
auto y = model->forward(x, indices);
ASSERT_EQ(y.dim(), 5);
ASSERT_TRUE(torch::allclose(y, torch::tensor(
{{{{{ 0, 0, 0},
{ 0, 0, 0},
{ 0, 0, 0}},
{{ 0, 0, 0},
{ 0, 0, 0},
{ 0, 0, 0}},
{{ 0, 0, 0},
{ 0, 0, 0},
{ 0, 0, 26}}}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 3, 3, 3}));
}
TEST_F(ModulesTest, MaxUnpool3dOutputSize) {
auto indices = torch::tensor(
{{{{{21, 23},
{29, 31}},
{{53, 55},
{61, 63}}}}}, torch::kLong);
auto x = torch::tensor(
{{{{{21, 23},
{29, 31}},
{{53, 55},
{61, 63}}}}}, torch::requires_grad());
auto model = MaxUnpool3d{MaxUnpool3dOptions(3).stride(2).padding(1)};
auto y = model->forward(x, indices, torch::IntArrayRef({1, 1, 4, 4, 4}));
ASSERT_EQ(y.dim(), 5);
ASSERT_TRUE(torch::allclose(y, torch::tensor(
{{{{{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0}},
{{ 0, 0, 0, 0},
{ 0, 21, 0, 23},
{ 0, 0, 0, 0},
{ 0, 29, 0, 31}},
{{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0},
{ 0, 0, 0, 0}},
{{ 0, 0, 0, 0},
{ 0, 53, 0, 55},
{ 0, 0, 0, 0},
{ 0, 61, 0, 63}}}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 4, 4, 4}));
}
TEST_F(ModulesTest, MaxPool3d_MaxUnpool3d) {
MaxPool3d pool {MaxPool3dOptions(3).stride(2)};
MaxUnpool3d unpool {MaxUnpool3dOptions(3).stride(2)};
auto input = torch::randn({20, 16, 51, 33, 15});
torch::Tensor output, indices;
std::tie(output, indices) = pool->forward_with_indices(input);
auto unpooled_output = unpool(output, indices);
ASSERT_EQ(unpooled_output.sizes(), torch::IntArrayRef({20, 16, 51, 33, 15}));
}
TEST_F(ModulesTest, Linear) {
Linear model(5, 2);
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 2);
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.size(0), 10);
ASSERT_EQ(y.size(1), 2);
ASSERT_EQ(model->weight.grad().numel(), 2 * 5);
}
TEST_F(ModulesTest, Fold) {
Fold model(FoldOptions({4, 5}, {2, 2}));
auto x = torch::randn({1, 3 * 2 * 2, 12}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 4);
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.size(0), 1);
ASSERT_EQ(y.size(1), 3);
ASSERT_EQ(y.size(2), 4);
ASSERT_EQ(y.size(3), 5);
}
TEST_F(ModulesTest, SimpleContainer) {
auto model = std::make_shared<SimpleContainer>();
auto l1 = model->add(Linear(10, 3), "l1");
auto l2 = model->add(Linear(3, 5), "l2");
auto l3 = model->add(Linear(5, 100), "l3");
auto x = torch::randn({1000, 10}, torch::requires_grad());
x = l1(x).clamp_min(0);
x = l2(x).clamp_min(0);
x = l3(x).clamp_min(0);
x.backward(torch::ones_like(x));
ASSERT_EQ(x.ndimension(), 2);
ASSERT_EQ(x.size(0), 1000);
ASSERT_EQ(x.size(1), 100);
ASSERT_EQ(x.min().item<float>(), 0);
}
TEST_F(ModulesTest, EmbeddingBasic) {
const int64_t dict_size = 10;
Embedding model(dict_size, 2);
ASSERT_TRUE(model->named_parameters().contains("weight"));
ASSERT_EQ(model->weight.ndimension(), 2);
ASSERT_EQ(model->weight.size(0), dict_size);
ASSERT_EQ(model->weight.size(1), 2);
// Cannot get gradients to change indices (input) - only for embedding
// params
auto x = torch::full({10}, dict_size - 1, torch::kInt64);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 2);
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.size(0), 10);
ASSERT_EQ(y.size(1), 2);
ASSERT_EQ(model->weight.grad().numel(), 2 * dict_size);
}
TEST_F(ModulesTest, EmbeddingList) {
Embedding model(6, 4);
auto x = torch::full({2, 3}, 5, torch::kInt64);
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.size(0), 2);
ASSERT_EQ(y.size(1), 3);
ASSERT_EQ(y.size(2), 4);
}
TEST_F(ModulesTest, Dropout) {
Dropout dropout(0.5);
torch::Tensor x = torch::ones(100, torch::requires_grad());
torch::Tensor y = dropout(x);
y.backward(torch::ones_like(y));
ASSERT_EQ(y.ndimension(), 1);
ASSERT_EQ(y.size(0), 100);
ASSERT_LT(y.sum().item<float>(), 130); // Probably
ASSERT_GT(y.sum().item<float>(), 70); // Probably
dropout->eval();
y = dropout(x);
ASSERT_EQ(y.sum().item<float>(), 100);
}
TEST_F(ModulesTest, Parameters) {
auto model = std::make_shared<NestedModel>();
auto parameters = model->named_parameters();
ASSERT_EQ(parameters["param"].size(0), 3);
ASSERT_EQ(parameters["param"].size(1), 2);
ASSERT_EQ(parameters["param"].size(2), 21);
ASSERT_EQ(parameters["l1.bias"].size(0), 20);
ASSERT_EQ(parameters["l1.weight"].size(0), 20);
ASSERT_EQ(parameters["l1.weight"].size(1), 5);
ASSERT_EQ(parameters["test.l1.bias"].size(0), 3);
ASSERT_EQ(parameters["test.l1.weight"].size(0), 3);
ASSERT_EQ(parameters["test.l1.weight"].size(1), 10);
ASSERT_EQ(parameters["test.l2.bias"].size(0), 5);
ASSERT_EQ(parameters["test.l2.weight"].size(0), 5);
ASSERT_EQ(parameters["test.l2.weight"].size(1), 3);
ASSERT_EQ(parameters["test.l3.bias"].size(0), 100);
ASSERT_EQ(parameters["test.l3.weight"].size(0), 100);
ASSERT_EQ(parameters["test.l3.weight"].size(1), 5);
}
TEST_F(ModulesTest, FunctionalCallsSuppliedFunction) {
bool was_called = false;
auto functional = Functional([&was_called](torch::Tensor input) {
was_called = true;
return input;
});
auto output = functional(torch::ones(5, torch::requires_grad()));
ASSERT_TRUE(was_called);
ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad())));
was_called = false;
// Use the call operator overload here.
output = functional(torch::ones(5, torch::requires_grad()));
ASSERT_TRUE(was_called);
ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad())));
}
TEST_F(ModulesTest, FunctionalWithTorchFunction) {
auto functional = Functional(torch::relu);
ASSERT_EQ(functional(torch::ones({})).item<float>(), 1);
ASSERT_EQ(functional(torch::ones({})).item<float>(), 1);
ASSERT_EQ(functional(torch::ones({}) * -1).item<float>(), 0);
}
TEST_F(ModulesTest, FunctionalArgumentBinding) {
auto functional =
Functional(torch::elu, /*alpha=*/1, /*scale=*/0, /*input_scale=*/1);
ASSERT_EQ(functional(torch::ones({})).item<float>(), 0);
}
TEST_F(ModulesTest, BatchNormStateful) {
BatchNorm bn(5);
// Is stateful by default.
ASSERT_TRUE(bn->options.stateful());
ASSERT_TRUE(bn->running_mean.defined());
ASSERT_EQ(bn->running_mean.dim(), 1);
ASSERT_EQ(bn->running_mean.size(0), 5);
ASSERT_TRUE(bn->running_var.defined());
ASSERT_EQ(bn->running_var.dim(), 1);
ASSERT_EQ(bn->running_var.size(0), 5);
// Is affine by default.
ASSERT_TRUE(bn->options.affine());
ASSERT_TRUE(bn->weight.defined());
ASSERT_EQ(bn->weight.dim(), 1);
ASSERT_EQ(bn->weight.size(0), 5);
ASSERT_TRUE(bn->bias.defined());
ASSERT_EQ(bn->bias.dim(), 1);
ASSERT_EQ(bn->bias.size(0), 5);
}
TEST_F(ModulesTest, BatchNormStateless) {
BatchNorm bn(BatchNormOptions(5).stateful(false).affine(false));
ASSERT_FALSE(bn->running_mean.defined());
ASSERT_FALSE(bn->running_var.defined());
ASSERT_FALSE(bn->weight.defined());
ASSERT_FALSE(bn->bias.defined());
ASSERT_THROWS_WITH(
bn(torch::ones({2, 5})),
"Calling BatchNorm::forward is only permitted "
"when the 'stateful' option is true (was false). "
"Use BatchNorm::pure_forward instead.");
}
TEST_F(ModulesTest, BatchNormPureForward) {
BatchNorm bn(BatchNormOptions(5).affine(false));
bn->eval();
// Want to make sure we use the supplied values in `pure_forward` even if
// we are stateful.
auto input = torch::randn({2, 5});
auto mean = torch::randn(5);
auto variance = torch::rand(5);
auto output = bn->pure_forward(input, mean, variance);
auto expected = (input - mean) / torch::sqrt(variance + bn->options.eps());
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(ModulesTest, Linear_CUDA) {
Linear model(5, 2);
model->to(torch::kCUDA);
auto x =
torch::randn({10, 5}, torch::device(torch::kCUDA).requires_grad(true));
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 2);
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.size(0), 10);
ASSERT_EQ(y.size(1), 2);
ASSERT_EQ(model->weight.grad().numel(), 2 * 5);
}
TEST_F(ModulesTest, Linear2_CUDA) {
Linear model(5, 2);
model->to(torch::kCUDA);
model->to(torch::kCPU);
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(y.ndimension(), 2);
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.size(0), 10);
ASSERT_EQ(y.size(1), 2);
ASSERT_EQ(model->weight.grad().numel(), 2 * 5);
}
TEST_F(ModulesTest, L1Loss) {
L1Loss loss;
auto input = torch::randn({5,6}, torch::requires_grad());
auto target = torch::empty({5,6}).random_(2);
auto output = loss->forward(torch::sigmoid(input), target);
auto s = output.sum();
s.backward();
ASSERT_EQ(output.sizes(), torch::IntArrayRef());
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(ModulesTest, HingeEmbeddingLoss) {
HingeEmbeddingLoss loss(HingeEmbeddingLossOptions().margin(2));
auto input = torch::tensor({{2, 22, 4}, {20, 10, 0}}, torch::requires_grad());
auto target = torch::tensor({{2, 6, 4}, {1, 10, 0}}, torch::kFloat);
auto output = loss->forward(input, target);
auto expected = torch::tensor({10}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(ModulesTest, CosineSimilarity) {
CosineSimilarity cos(CosineSimilarityOptions().dim(1));
auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::requires_grad());
auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::requires_grad());
auto output = cos->forward(input1, input2);
auto expected = torch::tensor({0.8078, 0.8721}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected, 1e-04));
ASSERT_EQ(input1.sizes(), input1.grad().sizes());
}
TEST_F(ModulesTest, PairwiseDistance) {
PairwiseDistance dist(PairwiseDistanceOptions(1));
auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::requires_grad());
auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::requires_grad());
auto output = dist->forward(input1, input2);
auto expected = torch::tensor({6, 6}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input1.sizes(), input1.grad().sizes());
}
TEST_F(ModulesTest, PrettyPrintIdentity) {
ASSERT_EQ(c10::str(Identity()), "torch::nn::Identity()");
}
TEST_F(ModulesTest, PrettyPrintLinear) {
ASSERT_EQ(
c10::str(Linear(3, 4)), "torch::nn::Linear(in=3, out=4, with_bias=true)");
}
TEST_F(ModulesTest, PrettyPrintConv) {
ASSERT_EQ(
c10::str(Conv1d(3, 4, 5)),
"torch::nn::Conv1d(input_channels=3, output_channels=4, kernel_size=5, stride=1)");
ASSERT_EQ(
c10::str(Conv2d(3, 4, 5)),
"torch::nn::Conv2d(input_channels=3, output_channels=4, kernel_size=[5, 5], stride=[1, 1])");
ASSERT_EQ(
c10::str(Conv2d(Conv2dOptions(3, 4, 5).stride(2))),
"torch::nn::Conv2d(input_channels=3, output_channels=4, kernel_size=[5, 5], stride=[2, 2])");
const auto options =
Conv2dOptions(3, 4, torch::IntArrayRef{5, 6}).stride({1, 2});
ASSERT_EQ(
c10::str(Conv2d(options)),
"torch::nn::Conv2d(input_channels=3, output_channels=4, kernel_size=[5, 6], stride=[1, 2])");
}
TEST_F(ModulesTest, PrettyPrintMaxPool) {
ASSERT_EQ(
c10::str(MaxPool1d(5)),
"torch::nn::MaxPool1d(kernel_size=5, stride=5, padding=0, dilation=1, ceil_mode=false)");
ASSERT_EQ(
c10::str(MaxPool2d(5)),
"torch::nn::MaxPool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0], dilation=[1, 1], ceil_mode=false)");
ASSERT_EQ(
c10::str(MaxPool2d(MaxPool2dOptions(5).stride(2))),
"torch::nn::MaxPool2d(kernel_size=[5, 5], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=false)");
ASSERT_EQ(
c10::str(MaxPool3d(5)),
"torch::nn::MaxPool3d(kernel_size=[5, 5, 5], stride=[5, 5, 5], padding=[0, 0, 0], dilation=[1, 1, 1], ceil_mode=false)");
ASSERT_EQ(
c10::str(MaxPool3d(MaxPool3dOptions(5).stride(2))),
"torch::nn::MaxPool3d(kernel_size=[5, 5, 5], stride=[2, 2, 2], padding=[0, 0, 0], dilation=[1, 1, 1], ceil_mode=false)");
const auto options =
MaxPool2dOptions(torch::IntArrayRef{5, 6}).stride({1, 2});
ASSERT_EQ(
c10::str(MaxPool2d(options)),
"torch::nn::MaxPool2d(kernel_size=[5, 6], stride=[1, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=false)");
}
TEST_F(ModulesTest, PrettyPrintAvgPool) {
ASSERT_EQ(
c10::str(AvgPool1d(5)),
"torch::nn::AvgPool1d(kernel_size=5, stride=5, padding=0)");
ASSERT_EQ(
c10::str(AvgPool2d(5)),
"torch::nn::AvgPool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0])");
ASSERT_EQ(
c10::str(AvgPool2d(AvgPool2dOptions(5).stride(2))),
"torch::nn::AvgPool2d(kernel_size=[5, 5], stride=[2, 2], padding=[0, 0])");
ASSERT_EQ(
c10::str(AvgPool3d(5)),
"torch::nn::AvgPool3d(kernel_size=[5, 5, 5], stride=[5, 5, 5], padding=[0, 0, 0])");
ASSERT_EQ(
c10::str(AvgPool3d(AvgPool3dOptions(5).stride(2))),
"torch::nn::AvgPool3d(kernel_size=[5, 5, 5], stride=[2, 2, 2], padding=[0, 0, 0])");
const auto options =
AvgPool2dOptions(torch::IntArrayRef{5, 6}).stride({1, 2});
ASSERT_EQ(
c10::str(AvgPool2d(options)),
"torch::nn::AvgPool2d(kernel_size=[5, 6], stride=[1, 2], padding=[0, 0])");
}
TEST_F(ModulesTest, PrettyPrintAdaptiveMaxPool) {
ASSERT_EQ(
c10::str(AdaptiveMaxPool1d(5)),
"torch::nn::AdaptiveMaxPool1d(output_size=5)");
const auto options = AdaptiveMaxPool1dOptions(3);
ASSERT_EQ(
c10::str(AdaptiveMaxPool1d(options)),
"torch::nn::AdaptiveMaxPool1d(output_size=3)");
ASSERT_EQ(
c10::str(AdaptiveMaxPool2d(5)),
"torch::nn::AdaptiveMaxPool2d(output_size=[5, 5])");
ASSERT_EQ(
c10::str(AdaptiveMaxPool2d(torch::IntArrayRef{5, 6})),
"torch::nn::AdaptiveMaxPool2d(output_size=[5, 6])");
ASSERT_EQ(
c10::str(AdaptiveMaxPool3d(5)),
"torch::nn::AdaptiveMaxPool3d(output_size=[5, 5, 5])");
ASSERT_EQ(
c10::str(AdaptiveMaxPool3d(torch::IntArrayRef{5, 6, 7})),
"torch::nn::AdaptiveMaxPool3d(output_size=[5, 6, 7])");
}
TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) {
ASSERT_EQ(
c10::str(AdaptiveAvgPool1d(5)),
"torch::nn::AdaptiveAvgPool1d(output_size=5)");
ASSERT_EQ(
c10::str(AdaptiveAvgPool2d(5)),
"torch::nn::AdaptiveAvgPool2d(output_size=[5, 5])");
ASSERT_EQ(
c10::str(AdaptiveAvgPool2d(torch::IntArrayRef{5, 6})),
"torch::nn::AdaptiveAvgPool2d(output_size=[5, 6])");
ASSERT_EQ(
c10::str(AdaptiveAvgPool3d(5)),
"torch::nn::AdaptiveAvgPool3d(output_size=[5, 5, 5])");
ASSERT_EQ(
c10::str(AdaptiveAvgPool3d(torch::IntArrayRef{5, 6, 7})),
"torch::nn::AdaptiveAvgPool3d(output_size=[5, 6, 7])");
}
TEST_F(ModulesTest, PrettyPrintMaxUnpool) {
ASSERT_EQ(
c10::str(MaxUnpool1d(5)),
"torch::nn::MaxUnpool1d(kernel_size=5, stride=5, padding=0)");
ASSERT_EQ(
c10::str(MaxUnpool1d(MaxUnpool1dOptions(5).stride(3).padding(1))),
"torch::nn::MaxUnpool1d(kernel_size=5, stride=3, padding=1)");
ASSERT_EQ(
c10::str(MaxUnpool2d(5)),
"torch::nn::MaxUnpool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0])");
ASSERT_EQ(
c10::str(MaxUnpool2d(torch::IntArrayRef{5, 6})),
"torch::nn::MaxUnpool2d(kernel_size=[5, 6], stride=[5, 6], padding=[0, 0])");
ASSERT_EQ(
c10::str(MaxUnpool2d(MaxUnpool2dOptions(torch::IntArrayRef{5, 6}).stride({3, 4}).padding({1, 2}))),
"torch::nn::MaxUnpool2d(kernel_size=[5, 6], stride=[3, 4], padding=[1, 2])");
}
TEST_F(ModulesTest, PrettyPrintDropout) {
ASSERT_EQ(c10::str(Dropout(0.5)), "torch::nn::Dropout(rate=0.5)");
ASSERT_EQ(
c10::str(FeatureDropout(0.5)), "torch::nn::FeatureDropout(rate=0.5)");
}
TEST_F(ModulesTest, PrettyPrintFunctional) {
ASSERT_EQ(c10::str(Functional(torch::relu)), "torch::nn::Functional()");
}
TEST_F(ModulesTest, PrettyPrintBatchNorm) {
ASSERT_EQ(
c10::str(BatchNorm(
BatchNormOptions(4).eps(0.5).momentum(0.1).affine(false).stateful(
true))),
"torch::nn::BatchNorm(features=4, eps=0.5, momentum=0.1, affine=false, stateful=true)");
}
TEST_F(ModulesTest, PrettyPrintEmbedding) {
ASSERT_EQ(
c10::str(Embedding(10, 2)),
"torch::nn::Embedding(count=10, dimension=2)");
}
TEST_F(ModulesTest, PrettyPrintHingeEmbeddingLoss) {
ASSERT_EQ(
c10::str(HingeEmbeddingLoss(HingeEmbeddingLossOptions().margin(4))),
"torch::nn::HingeEmbeddingLoss(margin=4)");
}
TEST_F(ModulesTest, PrettyPrintCosineSimilarity) {
ASSERT_EQ(
c10::str(CosineSimilarity()),
"torch::nn::CosineSimilarity(dim=1, eps=1e-08)");
ASSERT_EQ(
c10::str(CosineSimilarity(CosineSimilarityOptions().dim(0).eps(0.5))),
"torch::nn::CosineSimilarity(dim=0, eps=0.5)");
}
TEST_F(ModulesTest, PrettyPrintPairwiseDistance) {
ASSERT_EQ(
c10::str(PairwiseDistance()),
"torch::nn::PairwiseDistance(p=2, eps=1e-06, keepdim=false)");
ASSERT_EQ(
c10::str(PairwiseDistance(PairwiseDistanceOptions(3).eps(0.5).keepdim(true))),
"torch::nn::PairwiseDistance(p=3, eps=0.5, keepdim=true)");
}
TEST_F(ModulesTest, PrettyPrintNestedModel) {
struct InnerTestModule : torch::nn::Module {
InnerTestModule()
: torch::nn::Module("InnerTestModule"),
fc(register_module("fc", torch::nn::Linear(3, 4))),
table(register_module("table", torch::nn::Embedding(10, 2))) {}
torch::nn::Linear fc;
torch::nn::Embedding table;
};
struct TestModule : torch::nn::Module {
TestModule()
: torch::nn::Module("TestModule"),
fc(register_module("fc", torch::nn::Linear(4, 5))),
table(register_module("table", torch::nn::Embedding(10, 2))),
inner(register_module("inner", std::make_shared<InnerTestModule>())) {
}
torch::nn::Linear fc;
torch::nn::Embedding table;
std::shared_ptr<InnerTestModule> inner;
};
ASSERT_EQ(
c10::str(TestModule{}),
"TestModule(\n"
" (fc): torch::nn::Linear(in=4, out=5, with_bias=true)\n"
" (table): torch::nn::Embedding(count=10, dimension=2)\n"
" (inner): InnerTestModule(\n"
" (fc): torch::nn::Linear(in=3, out=4, with_bias=true)\n"
" (table): torch::nn::Embedding(count=10, dimension=2)\n"
" )\n"
")");
}