Files
pytorch/torch/csrc/jit/tensorexpr/kernel.cpp
Ryan Spring 4f8b986e28 Implement Tanh Gelu Approximation (#61439)
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser

```
def gelu(x, approximate : str = 'none'):
    if approximate == 'tanh':
        # sqrt(2/pi) = 0.7978845608028654
        return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
    else:
        return x * normcdf(x)
```

Linking XLA PR - https://github.com/pytorch/xla/pull/3039

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439

Reviewed By: VitalyFedyunin

Differential Revision: D33894937

Pulled By: jbschlosser

fbshipit-source-id: b65e8fb6ea66168af8f34f45ed50e92737a33851
(cherry picked from commit 6e986f91a958dd73514b4e64984c0b149157dc6f)
2022-02-14 03:40:32 +00:00

1853 lines
61 KiB
C++

#include <c10/util/variant.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Parallel.h>
#include <ATen/TensorGeometry.h>
#include <c10/core/ScalarTypeToTypeMeta.h>
#include <c10/util/irange.h>
#include <c10/util/string_utils.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/symbolic_shape_runtime_fusion.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/graph_opt.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/loopnest_randomization.h>
#include <torch/csrc/jit/tensorexpr/operators/operators.h>
using namespace torch::jit;
using namespace torch::jit::tensorexpr;
namespace torch {
namespace jit {
namespace tensorexpr {
std::string buildErrorMessage(const std::string& s) {
static const std::string generic_error_message =
"This error occured in the fuser. You can turn off the fuser with "
"torch.jit.enable_fusion(False).";
if (s.empty()) {
return generic_error_message;
}
if (s.back() == '.') {
return s + " " + generic_error_message;
}
return s + ". " + generic_error_message;
}
static int te_cuda_pointwise_loop_levels = -1;
static int te_cuda_pointwise_block_count = -1;
static int te_cuda_pointwise_block_size = -1;
static bool fallback_allowed = false;
static bool te_generate_block_code = false;
static bool te_must_use_llvm_on_cpu = true;
static bool cat_wo_conditionals = true; // NOLINT
static bool opt_conditionals = false; // NOLINT
bool setFallbackAllowed(bool value) {
bool old_value = fallback_allowed;
fallback_allowed = value;
return old_value;
}
bool fallbackAllowed() {
static const char* enable_c_str = std::getenv("PYTORCH_TENSOREXPR_FALLBACK");
if (!enable_c_str) {
return fallback_allowed;
}
if (std::string(enable_c_str) == "0") {
return false;
}
return true;
}
bool fallbackEnforced() {
static const char* enable_c_str = std::getenv("PYTORCH_TENSOREXPR_FALLBACK");
if (tensorexpr::getTEGenerateBlockCode()) {
return false;
}
if (!enable_c_str) {
return fallback_allowed;
}
if (std::string(enable_c_str) == "2") {
return true;
}
return false;
}
int64_t randomTransformsRequested() {
const char* enable_c_str =
std::getenv("PYTORCH_TENSOREXPR_RANDOM_TRANSFORM_SEED");
if (!enable_c_str) {
return 0;
}
return std::stoi(std::string(enable_c_str));
}
bool dontUseLLVMFlag() {
static const char* enable_c_str =
std::getenv("PYTORCH_TENSOREXPR_DONT_USE_LLVM");
if (!enable_c_str) {
return false;
}
return std::string(enable_c_str) == "1";
}
int& getTECudaPointwiseLoopLevels() {
return te_cuda_pointwise_loop_levels;
}
int& getTECudaPointwiseBlockCount() {
return te_cuda_pointwise_block_count;
}
int& getTECudaPointwiseBlockSize() {
return te_cuda_pointwise_block_size;
}
// TODO: Remove this global var
// Ideally Block code gen should be decided
// based on device type in tensor.
bool& getTEGenerateBlockCode() {
return te_generate_block_code;
}
bool& getTEMustUseLLVMOnCPU() {
return te_must_use_llvm_on_cpu;
}
bool& getCatWoConditionals() {
return cat_wo_conditionals;
}
bool& getOptConditionals() {
return opt_conditionals;
}
c10::optional<at::Device> pickDeviceType(
const at::ArrayRef<torch::jit::Value*>& inputs) {
c10::optional<at::Device> device = c10::nullopt;
for (auto const& input : inputs) {
auto tt = input->type()->cast<TensorType>();
if (tt && tt->device()) {
if (device && *device != *tt->device()) {
return c10::nullopt;
}
device = *tt->device();
}
}
return device;
}
c10::optional<at::Device> pickDeviceType(const std::shared_ptr<Graph>& graph) {
c10::optional<at::Device> device = c10::nullopt;
for (auto const& node : graph->nodes()) {
for (auto const& input : node->inputs()) {
if (auto tt = input->type()->cast<TensorType>()) {
if (auto inputDevice = tt->device()) {
TORCH_INTERNAL_ASSERT(
!device || *device == *inputDevice,
buildErrorMessage(
"Different devices specified for inputs to the fuser."));
device = inputDevice;
}
}
}
}
for (auto const& input : graph->inputs()) {
if (auto tt = input->type()->cast<TensorType>()) {
if (auto inputDevice = tt->device()) {
TORCH_INTERNAL_ASSERT(
!device || *device == *inputDevice,
buildErrorMessage(
"Different devices specified for inputs to the fuser."));
device = inputDevice;
}
}
}
if (!device) {
// By default assume the device is CPU
device = at::kCPU;
}
return device;
}
// If v is a Tensor with concretely-known sizes and dtype, return them, else
// nullopt.
c10::optional<TensorInfo> getTensorInfoJit(torch::jit::Value* v) {
auto const& it = v->type()->cast<TensorType>();
c10::ScalarType dtype = c10::ScalarType::Float;
if (!it) {
return c10::nullopt;
}
if (!it->isComplete()) {
return c10::nullopt;
}
if (it->scalarType()) {
// TODO: ideally we should be strict here and return nullopt if the dtype is
// absent in the JIT IR. We're assuming a default Float dtype for now, until
// dtype propagation is implemented.
dtype = *it->scalarType();
}
auto concrete_sizes = it->sizes().concrete_sizes();
if (!concrete_sizes) {
return c10::nullopt;
}
return TensorInfo{*concrete_sizes, dtype};
}
std::vector<int64_t> _pair_int(IValue v) {
if (v.isIntList()) {
return v.toIntVector();
} else {
return {v.toInt(), v.toInt()};
}
}
static bool isContiguous(const torch::jit::Value* v) {
auto const& tt = v->type()->cast<TensorType>();
if (!tt) {
return false;
}
if (!tt->isComplete()) {
return false;
}
auto const& sizes = tt->sizes().concrete_sizes();
auto const& strides = tt->strides().concrete_sizes();
if (!sizes || !strides) {
return false;
}
return *strides == TensorType::contiguousStridesOf(*sizes);
}
// The fuser only supports conv2d with very specific properties:
// - Static shapes: 4-d input and filter, 1-d bias.
// - Constant strides/padding/dilation/groups
// - Equal padding and strides, dilation == 1.
// - Depthwise (groups == in_channels == out_channels)
// - 3x3 kernel
bool conv2dIsSupportedJit(const torch::jit::Node* node) {
auto const& input = getTensorInfoJit(node->input(0));
auto const& weight = getTensorInfoJit(node->input(1));
auto const& bias = getTensorInfoJit(node->input(2));
auto const& stride = toIValue(node->input(3));
auto const& pad = toIValue(node->input(4));
auto const& dilation = toIValue(node->input(5));
auto const& groups = toIValue(node->input(6));
// Everything should be statically known.
if (!input || !weight || !bias || !stride || !pad || !dilation || !groups) {
GRAPH_DEBUG("some params aren't static");
return false;
}
// All inputs should be contiguous so no transposition is required.
if (!isContiguous(node->input(0)) || !isContiguous(node->input(1)) ||
!isContiguous(node->input(2))) {
GRAPH_DEBUG("conv2dIsSupported: some inputs are not contiguous");
return false;
}
return conv2dIsSupported(
*input,
*weight,
*bias,
_pair_int(*stride),
_pair_int(*pad),
_pair_int(*dilation),
groups->toInt());
}
// The fuser currently only supports matmul of 2D x 2D matrices
bool matmulIsSupported(const torch::jit::Node* node) {
auto const& input0 = getTensorInfoJit(node->input(0));
auto const& input1 = getTensorInfoJit(node->input(1));
// Everything should be statically known.
if (!input0 || !input1) {
GRAPH_DEBUG("matmulIsSupported: Input shapes aren't static");
return false;
}
// Proper ndim for tensor inputs.
if (input0->dims.size() != 2 || input1->dims.size() != 2) {
GRAPH_DEBUG("matmulIsSupported: Unsupported input sizes");
return false;
}
// Inputs should be contiguous, or the TE will needlessly transpose them.
if (!isContiguous(node->input(0)) || !isContiguous(node->input(1))) {
GRAPH_DEBUG("matmulIsSupported: Input shapes are not contiguous");
return false;
}
return true;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch
static at::ScalarType tensorType(BufPtr b) {
return static_cast<at::ScalarType>(b->dtype().scalar_type());
}
ExprHandle TensorExprKernel::constant(const torch::jit::Value* v) {
if (v->node()->kind() == prim::Constant) {
auto val = toIValue(v).value();
if (val.isDouble()) {
return DoubleImm::make(val.toDouble());
} else if (val.isInt()) {
return LongImm::make(val.toInt());
} else if (val.isBool()) {
return BoolImm::make(val.toBool());
} else if (val.isNone()) {
// This is just a placeholder so we don't throw. None-handling
// is operator-specific and should be handled properly in
// the operator-specific lowering code.
return IntImm::make(0);
} else {
throw unsupported_dtype();
}
}
if (!scalars_.count(v)) {
throw malformed_input("no scalar in Constant");
}
return scalars_.at(v);
}
ArgValue TensorExprKernel::toArg(const torch::jit::Value* v) const {
auto vi = scalars_.find(v);
if (vi != scalars_.end()) {
return VarHandle(vi->second);
}
auto ti = bufs_.find(v);
if (ti != bufs_.end()) {
return BufHandle(ti->second);
}
if (v->node()->kind() == prim::ListConstruct) {
std::vector<ArgValue> vec;
for (auto el : v->node()->inputs()) {
vec.push_back(toArg(el));
}
if (vec.size() == 0) {
return BufList(); // Return arbitrarily typed vector
} else if (c10::get_if<BufHandle>(&vec[0])) {
return convertVecArgValue<BufHandle>(vec);
} else if (c10::get_if<int64_t>(&vec[0])) {
return convertVecArgValue<int64_t>(vec);
}
throw unsupported_dtype();
}
if (v->node()->kind() == prim::Constant) {
auto val = toIValue(v).value();
if (val.isDouble()) {
return val.toDouble();
} else if (val.isInt()) {
return val.toInt();
} else if (val.isBool()) {
return val.toBool();
} else if (val.isNone()) {
// This is just a placeholder so we don't throw. None-handling
// is operator-specific and should be handled properly in
// the operator-specific lowering code.
return ArgNone();
} else if (val.isIntList()) {
return val.toIntVector();
} else if (val.isDoubleList()) {
return val.toDoubleVector();
} else if (val.isString()) {
return val.toStringRef();
} else {
throw unsupported_dtype(val.type()->str());
}
}
if (!scalars_.count(v)) {
throw malformed_input("no scalar in Constant");
}
return scalars_.at(v);
}
ExprHandle TensorExprKernel::getVarForShape(const c10::ShapeSymbol& ss) {
if (ss.is_static()) {
return LongImm::make(ss.static_size());
}
auto value = ss.value();
auto it = shapeSymbolToVar_.find(value);
if (it == shapeSymbolToVar_.end()) {
VarHandle var("ss" + std::to_string(-value), kLong);
shapeSymbolToVar_.emplace(value, var);
return std::move(var);
}
return it->second;
}
std::vector<ExprHandle> TensorExprKernel::sizesFromSymbolicShape(
const c10::SymbolicShape& shape) {
std::vector<ExprHandle> dims;
auto maybe_rank = shape.rank();
TORCH_INTERNAL_ASSERT(maybe_rank);
auto rank = *maybe_rank;
for (const auto i : c10::irange(rank)) {
dims.push_back(getVarForShape(shape[i]));
}
return dims;
}
std::vector<ExprHandle> TensorExprKernel::sizesForValue(
const torch::jit::Value* v) {
if (known_sizes_.count(v)) {
return known_sizes_.at(v);
}
// If the shape is present in the type info, just extract it from here. No
// need to infer it.
if (v->type()->kind() == TypeKind::TensorType) {
auto tt = v->type()->cast<TensorType>();
return sizesFromSymbolicShape(tt->symbolic_sizes());
}
if (v->type()->isSubtypeOf(*FloatType::get()) ||
v->type()->isSubtypeOf(*BoolType::get()) ||
v->type()->isSubtypeOf(*IntType::get())) {
return {};
}
if (v->type()->isSubtypeOf(*NoneType::get())) {
return {};
}
GRAPH_DEBUG("Unknown sizes for the node: ", *v->node());
GRAPH_DEBUG("Full fusion group graph:\n", *v->node()->owningGraph());
std::string msg = std::string("Unhandled node kind (in sizesForValue): ") +
v->node()->kind().toQualString();
throw malformed_input(msg);
}
c10::optional<ScalarType> findDtypeForValue(const torch::jit::Value* v) {
if (v->type()->kind() == TypeKind::TensorType) {
auto tt = v->type()->cast<TensorType>();
if (tt->scalarType()) {
return static_cast<ScalarType>(*tt->scalarType());
}
}
return tryScalarTypeFromJitType(*v->type());
}
bool constZeroDimTensorAsScalarArg(
const Value* v,
std::vector<ArgValue>& args) {
if (v->node()->kind() != prim::Constant || !v->type()->cast<TensorType>()) {
return false;
}
const auto t = toIValue(v)->toTensor();
if (t.sizes().size() != 0) {
return false;
}
c10::ScalarType dtype = c10::typeMetaToScalarType(t.dtype());
switch (dtype) {
case ScalarType::Float:
args.emplace_back(t.item().toFloat());
return true;
case ScalarType::Long:
args.emplace_back(t.item().toLong());
return true;
default:
std::stringstream ss;
ss << "Unsupported tensor dtype:" << dtype
<< " for converting constant 0-dim Tensor to scalar" << std::endl;
throw unsupported_dtype(ss.str());
}
}
Tensor TensorExprKernel::computeValue(const torch::jit::Value* v) {
auto inputs = v->node()->inputs();
auto op = v->node()->kind();
if (op == aten::rand_like) {
hasRandom_ = true;
}
auto outputType = findDtypeForValue(v);
std::vector<ExprHandle> outputShape = sizesForValue(v);
std::vector<ArgValue> argInputs;
if (op == prim::ConstantChunk) {
auto const& n = v->node();
argInputs.emplace_back(toArg(inputs[0]));
argInputs.emplace_back(static_cast<int64_t>(v->offset()));
argInputs.emplace_back(n->i(attr::dim));
argInputs.emplace_back(n->i(attr::chunks));
} else if (op == aten::to) {
argInputs.emplace_back(toArg(inputs[0]));
} else if (op == aten::quantize_per_tensor) {
argInputs.emplace_back(toArg(inputs[0]));
if (!constZeroDimTensorAsScalarArg(inputs[1], argInputs)) {
argInputs.emplace_back(toArg(inputs[1]));
}
if (!constZeroDimTensorAsScalarArg(inputs[2], argInputs)) {
argInputs.emplace_back(toArg(inputs[2]));
}
argInputs.emplace_back(toArg(inputs[3]));
} else if (op == aten::conv2d) {
for (auto inp : inputs) {
argInputs.emplace_back(toArg(inp));
}
// handle optional bias
if (c10::get_if<ArgNone>(&argInputs[2])) {
Dtype dtype = outputType ? Dtype(*outputType) : kFloat;
std::vector<ExprHandle> biasShape;
biasShape.push_back(outputShape[1]);
auto bias_tensor = at::zeros({outputShape[1].AsNode<LongImm>()->value()});
unpacked_constant_tensors_.push_back(bias_tensor);
BufPtr buf = alloc<Buf>(
"conv2d_bias_opt_" + sanitizeName(v->debugName()),
ExprHandleVectorToExprVector(biasShape),
dtype);
constants_.push_back({buf, bias_tensor.data_ptr()});
argInputs[2] = BufHandle(buf);
}
} else {
for (auto inp : inputs) {
argInputs.emplace_back(toArg(inp));
}
}
if (NNCLoweringFunction custom_lowering = getCustomLoweringFor(op)) {
return custom_lowering(argInputs, outputShape, outputType, device_);
}
if (v->node()->maybeSchema()) {
if (NNCLoweringFunction lowering =
getStandardLoweringFor(c10::toString(v->node()->schema()))) {
return lowering(argInputs, outputShape, outputType, device_);
}
}
std::string msg = std::string("Unhandled node kind (in computeValue): ") +
op.toQualString();
if (v->node()->maybeSchema()) {
msg += std::string("\nSchema: ") + c10::toString(v->node()->schema());
}
throw malformed_input(msg);
}
// Return the (lower, upper) loop bounds if they are constants, else nullopt.
c10::optional<std::pair<int64_t, int64_t>> loopBounds(ForPtr loop) {
auto start = IRSimplifier::simplify(loop->start());
auto stop = IRSimplifier::simplify(loop->stop());
if (!start->isConstant() || !stop->isConstant()) {
return c10::nullopt;
}
return c10::make_optional(
std::make_pair(immediateAs<int64_t>(start), immediateAs<int64_t>(stop)));
}
// True if all the loops in this vector have equal bounds.
bool loopBoundsAllEqual(const std::vector<ForPtr>& loops) {
auto bounds = loopBounds(loops[0]);
if (!bounds) {
return false;
}
for (auto const& loop : loops) {
auto next = loopBounds(loop);
if (!next) {
return false;
}
if (bounds->first != next->first || bounds->second != next->second) {
return false;
}
}
return true;
}
// Recursively fuse all the loops with matching bounds in `st`. Stops fusing
// at any level containing non-loops or non-matching bounds. The restriction
// on matching bounds exists to avoid inserting conditionals on the loop
// indices where none would be needed, which would significantly complicate
// vectorization.
void fuseAllLoops(StmtPtr st) {
if (auto block = to<tensorexpr::Block>(st)) {
std::vector<ForPtr> loopsToFuse;
for (auto stmt : *block) {
auto loop = to<For>(stmt);
if (!loop) {
// Block contains something that's not a loop. Quit.
return;
}
loopsToFuse.push_back(loop);
}
if (loopsToFuse.empty()) {
return;
}
if (!loopBoundsAllEqual(loopsToFuse)) {
return;
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr fusedLoop;
if (!LoopNest::fuseLoops(loopsToFuse, &fusedLoop)) {
return;
}
fuseAllLoops(fusedLoop->body());
}
}
// Compute the trip count of a loop if it is a constant.
c10::optional<int64_t> tripCount(ForPtr loop) {
auto tc = IRSimplifier::simplify(
cast<int64_t>(ExprHandle(loop->stop()) - ExprHandle(loop->start())));
if (auto val = to<LongImm>(tc.node())) {
return val->value();
}
return c10::nullopt;
}
// Prune innermost loops until iterations satisfies a minimum grain size.
static void pruneByGrainSize(std::vector<ForPtr>& loops) {
constexpr int64_t minGrainSize = 32768;
int64_t grainSize = 1;
for (int64_t i = loops.size(); i > 0; i--) {
auto tc = tripCount(loops[i - 1]);
if (!tc) {
break;
}
grainSize *= *tc;
if (grainSize < minGrainSize) {
loops.pop_back();
}
}
}
// Retain enough outermost loops to fill the number of threads.
static void pruneByThreadCount(std::vector<ForPtr>& loops) {
int64_t trips = 1;
auto threads = at::get_num_threads();
auto it = loops.begin();
for (; it != loops.end(); it++) {
if (trips >= threads) {
break;
}
auto tc = tripCount(*it);
if (!tc) {
break;
}
trips *= *tc;
}
loops.erase(it, loops.end());
}
// Flatten and parallelize outer loops, subject to a minimum number of elements
// in the inner loop, and a maximum level of thread-level parallelism in the
// outer loops.
template <typename Bufs>
static void parallelizeOuterLoops(LoopNest& l, Bufs&& bufs) {
for (auto const& buf : bufs) {
auto loops = l.getLoopStmtsFor(buf);
pruneByGrainSize(loops);
pruneByThreadCount(loops);
// There are no loops to parallelize; give up.
if (loops.size() == 0) {
continue;
}
// The loop nest contains a reduction; give up.
auto reductions = NodeFinder<ReduceOp>::find(loops[0]);
if (reductions.size() > 0) {
continue;
}
// The loop nest has loop carried dependences; give up.
if (LoopNest::hasLoopCarriedDependence(loops[0])) {
continue;
}
// Try to flatten the outer loops and parallelize them if successful.
ForPtr flattened = nullptr;
if (loops.size() == 1) {
flattened = loops[0];
} else {
LoopNest::flatten(loops, &flattened);
}
if (flattened) {
flattened->set_parallel();
}
}
}
StmtPtr TensorExprKernel::transformLoops(BackendType backendType, StmtPtr st) {
torch::jit::tensorexpr::LoopNest l(st, bufOutputs_);
LoopNest::sanitizeNames(l.root_stmt());
GRAPH_DEBUG("Original Stmt:\n", std::to_string(l.root_stmt()), "\n");
int64_t random_tr_seed = randomTransformsRequested();
if (random_tr_seed) {
if (random_tr_seed == -1)
random_tr_seed = std::time(nullptr);
loopnestRandomization(random_tr_seed, l);
GRAPH_DEBUG(
"After random transform:\n", std::to_string(l.root_stmt()), "\n");
}
bool hasReduction = NodeFinder<ReduceOp>::find(l.root_stmt()).size() != 0;
// For Block codegen we create a map of tensor dims before
// inlining. Like GPU codegen we need to inline. But the order
// where this analysis is run matters.
auto block_analysis = std::make_unique<CreateBufferMap>();
if (backendType == kBlockCodeGen) {
// Run Block analysis to get multi dim buffer info
auto root_stmt = l.root_stmt();
root_stmt->accept(block_analysis.get());
}
l.simplify();
GRAPH_DEBUG("after simplify", *l.root_stmt());
// Inlining output & intermediate buffers can duplicate computation.
// Duplicating work can slow down the program if it's not ameliorated in some
// way, but we've empirically found that:
// - On CPU, LLVM's CSE does a good job as long as you horizontally fuse
// output loops.
// - On GPU, there's enough compute to hide the extra work, and inlining
// avoids synchronizing between kernels.
l.inlineIntermediateBufs(/*allow_duplicated_work=*/true);
GRAPH_DEBUG("after inline", *l.root_stmt());
// Optimizing conditionals needs to be performed after inlining because
// inlining wouldn't work once the loops are split. Also, it has to be
// performed before loop fusion because loop fusion introduces cases where
// multiple conditionals are in the same loop and this optimization does not
// handle such cases yet.
if (getOptConditionals()) {
l.optimizeConditionals();
GRAPH_DEBUG("after optimizing conditionals: ", *l.root_stmt());
}
// Fuse loops "horizontally". This pass allows us to combine loops that
// write to different output buffers, as long as they have the same bounds.
if (backendType == kLLVMCodeGen) {
fuseAllLoops(l.root_stmt());
GRAPH_DEBUG("after fuse", *l.root_stmt());
parallelizeOuterLoops(l, bufOutputs_);
GRAPH_DEBUG("after parallelize", *l.root_stmt());
}
if (backendType == kCudaCodeGen) {
for (auto buf : bufOutputs_) {
std::vector<ForPtr> loops = l.getLoopStmtsFor(buf);
if (loops.empty()) {
// This happens when Buf is 0-dim
continue;
}
ForPtr flattened = nullptr;
LoopNest::flatten(loops, &flattened);
assert(flattened);
int loopLevels = getTECudaPointwiseLoopLevels();
const int kDefaultLoopLevels = 2;
loopLevels = (loopLevels > 0) ? loopLevels : kDefaultLoopLevels;
int blockCount = getTECudaPointwiseBlockCount();
int blockSize = getTECudaPointwiseBlockSize();
if (loopLevels == 2) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner;
const int kDefaultBlockSize = 512;
if (blockSize < 0) {
blockSize = kDefaultBlockSize;
}
LoopNest::splitWithMask(flattened, blockSize, &inner);
flattened->set_gpu_block_index(0);
inner->set_gpu_thread_index(0);
} else if (loopLevels == 3) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner1;
// TODO: change the number of microprocessors
const int kDefaultBlockCount = 1280;
const int kDefaultBlockSize = 256;
blockCount = (blockCount > 0) ? blockCount : kDefaultBlockCount;
blockSize = (blockSize > 0) ? blockSize : kDefaultBlockSize;
LoopNest::splitWithMask(flattened, blockCount * blockSize, &inner);
LoopNest::splitWithMask(inner, blockSize, &inner1);
inner->set_gpu_block_index(0);
inner1->set_gpu_thread_index(0);
} else {
throw std::runtime_error(
"Invalid loop-level: " + c10::to_string(loopLevels));
}
}
}
if (backendType == kBlockCodeGen) {
for (auto buf : bufOutputs_) {
const int default_fp16_blocksize = 16;
const int default_uint8_blocksize = 32;
int blockSize = default_fp16_blocksize;
// We only handle looplevels == 2 for now
if (buf->dtype().scalar_type() == ScalarType::Byte) {
blockSize = default_uint8_blocksize;
}
std::vector<ForPtr> loops = l.getLoopStmtsFor(buf);
TORCH_INTERNAL_ASSERT(
!loops.empty(),
buildErrorMessage(
"No loops found for the buffer " + buf->name_hint() +
" in the fuser."));
ForPtr flattened = nullptr;
LoopNest::flatten(loops, &flattened);
assert(flattened);
ForPtr inner = nullptr;
LoopNest::splitWithMask(flattened, blockSize, &inner);
flattened->set_gpu_block_index(0);
inner->set_gpu_thread_index(0);
flattened->set_buffer_map(block_analysis->getBufferMap());
}
}
if (pre_alloc_) {
auto interm_bufs = l.getIntermediateBufs();
preAllocIntermediateBufs(interm_bufs);
}
l.prepareForCodegen();
GRAPH_DEBUG("after prepareForCodegen", *l.root_stmt());
l.simplify();
GRAPH_DEBUG("after simplification", *l.root_stmt());
if (backendType == kLLVMCodeGen && !hasReduction) {
l.vectorizeInnerLoops();
GRAPH_DEBUG("after vectorization", *l.root_stmt());
}
StmtPtr stmt = l.root_stmt();
// Arithmetic Simplification.
stmt = IRSimplifier::simplify(stmt);
GRAPH_DEBUG("Final Stmt:\n", std::to_string(stmt), "\n");
return stmt;
}
std::string TensorExprKernel::getCodeGenName(BackendType backendType) {
switch (backendType) {
case kCudaCodeGen:
return "cuda_codegen";
case kLLVMCodeGen:
return "llvm_codegen";
case kSimpleIREval:
return "simple_ir_eval";
case kBlockCodeGen:
return "block_codegen";
default:
throw std::runtime_error(
"invalid backend type: " +
c10::to_string(static_cast<int>(backendType)));
}
}
template <typename T>
static bool isValidPrimProperty(const c10::optional<T>& a, T b) {
return !a.has_value() || *a == b;
}
TensorExprKernel::BackendType TensorExprKernel::inferBackendTypeFromDevice(
at::Device device) {
BackendType backendType = BackendType::kUninitialized;
if (device.type() == at::kCUDA) {
backendType = kCudaCodeGen;
} else if (device.type() == at::kCPU && getTEGenerateBlockCode()) {
backendType = kBlockCodeGen;
} else if (device.type() == at::kCPU) {
#ifdef TORCH_ENABLE_LLVM
backendType = dontUseLLVMFlag() ? kSimpleIREval : kLLVMCodeGen;
#else
backendType = kSimpleIREval;
#endif
if (getTEMustUseLLVMOnCPU() && backendType == kSimpleIREval) {
throw std::runtime_error("LLVM Backend not found");
}
} else {
throw std::runtime_error("Invalid device type");
}
return backendType;
}
// we use the debug names in printing cuda code, they need to be removed
// of characters that can't be used in a variable identifier
void TensorExprKernel::genInputDebugNames() {
std::unordered_map<std::string, const torch::jit::Value*> name_to_value;
std::unordered_set<std::string> name_set;
std::unordered_map<const torch::jit::Value*, std::string> value_to_name;
for (const torch::jit::Value* input : graph_->inputs()) {
std::string sanitized_name = sanitizeName(input->debugName());
// we could get fancier here, but name conflict is extremely unlikely
while (name_set.count(sanitized_name)) {
sanitized_name.append("_");
}
value_to_name[input] = sanitized_name;
name_set.insert(sanitized_name);
}
input_name_map_ = std::move(value_to_name);
}
template <typename T>
static std::vector<ExprHandle> toExprHandles(const std::vector<T>& sizes) {
std::vector<ExprHandle> dims;
dims.reserve(sizes.size());
for (auto const& size : sizes) {
dims.emplace_back(size);
}
return dims;
}
ExprHandle TensorExprKernel::getStrideArg(
size_t tensor_input_index,
size_t stride_index) {
auto it = strideArgToVar_.find(
std::pair<size_t, size_t>(tensor_input_index, stride_index));
if (it == strideArgToVar_.end()) {
VarHandle var(
"stride_arg" + std::to_string(tensor_input_index) + "_" +
std::to_string(stride_index),
kLong);
strideArgToVar_[std::pair<size_t, size_t>(
tensor_input_index, stride_index)] = var;
return std::move(var);
}
return it->second;
}
std::vector<torch::jit::StrideInput>& TensorExprKernel::
getSymbolicInputStrideDesc(const torch::jit::Value* value) {
for (size_t i : c10::irange(graph_->inputs().size())) {
if (value == graph_->inputs().at(i)) {
TORCH_INTERNAL_ASSERT(sym_stride_inputs_.count(i));
return sym_stride_inputs_[i];
}
}
TORCH_INTERNAL_ASSERT(false);
}
std::vector<ExprHandle> TensorExprKernel::getInputStrides(
const torch::jit::Value* input,
const std::vector<ExprHandle>& inputTensorDims) {
std::vector<ExprHandle> inputTensorStrides;
if (input->isCompleteTensor()) {
auto const strides =
input->type()->expect<TensorType>()->strides().concrete_sizes();
std::vector<ExprHandle> inputTensorStrides;
for (size_t stride : *strides) {
inputTensorStrides.push_back(LongImm::make(stride));
}
return inputTensorStrides;
}
size_t rank = inputTensorDims.size();
std::vector<StrideInput>& stride_input = getSymbolicInputStrideDesc(input);
if (stride_input.size() == 1 &&
(stride_input[0] == StrideInput::TENSOR_CONT_CHANNELS_LAST ||
stride_input[0] == StrideInput::TENSOR_CONT)) {
auto strides = stride_input[0] == StrideInput::TENSOR_CONT
? make_contiguous_strides(inputTensorDims)
: make_channels_last_strides(inputTensorDims);
return fmap(strides, [&](ExprPtr stride) { return ExprHandle(stride); });
}
inputTensorStrides.resize(rank);
std::vector<bool> stride_set;
for (size_t i = 0; i < rank; ++i) {
stride_set.push_back(false);
}
// first, generate non-dependent values
size_t generated_strides = 0;
for (const auto i : c10::irange(rank)) {
if (stride_input[i] == torch::jit::StrideInput::S_ONE) {
inputTensorStrides[i] = LongImm::make(1);
stride_set[i] = true;
generated_strides++;
} else if (stride_input[i] == torch::jit::StrideInput::S_AS_ARG) {
size_t input_index = input->offset();
inputTensorStrides[i] = getStrideArg(input_index, i);
stride_set[i] = true;
generated_strides++;
}
}
// Contiguous and Transposed Contiguous depend on adjacent values
while (generated_strides != rank) {
for (int i = static_cast<int>(rank) - 1; i >= 0; i--) {
if (stride_input[i] == torch::jit::StrideInput::S_CONT &&
stride_set[i + 1]) {
inputTensorStrides[i] =
inputTensorStrides[i + 1] * inputTensorDims[i + 1];
stride_set[i] = true;
generated_strides++;
}
}
for (int i = 0; i < rank; i++) {
if (stride_input[i] == torch::jit::StrideInput::S_TRAN_CONT &&
stride_set[i - 1]) {
inputTensorStrides[i] =
inputTensorStrides[i - 1] * inputTensorDims[i - 1];
stride_set[i] = true;
generated_strides++;
}
}
}
return inputTensorStrides;
}
Tensor TensorExprKernel::bindInput(const torch::jit::Value* input) {
auto const& t = input->type();
auto const& outputs = input->owningGraph()->outputs();
std::unordered_set<const Value*> outputs_set(outputs.begin(), outputs.end());
Tensor result(nullptr, nullptr);
switch (t->kind()) {
case TypeKind::TensorType: {
auto tt = input->type()->cast<TensorType>();
bool contiguous_concrete_tensor =
(input->isCompleteTensor() && isContiguous(input));
bool contiguous_sym_tensor = false;
if (has_symbolic_shapes_) {
auto desc = getSymbolicInputStrideDesc(input);
contiguous_sym_tensor =
desc.size() == 1 && desc[0] == torch::jit::StrideInput::TENSOR_CONT;
}
// We don't need to copy the input if:
// 1) it is not an output AND
// 2) it is contiguous
bool contiguous = contiguous_concrete_tensor || contiguous_sym_tensor;
if (!outputs_set.count(input) && contiguous) {
BufHandle inBuffer(
"t" + input_name_map_[input],
sizesFromSymbolicShape(tt->symbolic_sizes()),
ToDtype(static_cast<ScalarType>(*tt->scalarType())));
bufs_.emplace(input, inBuffer.node());
bufferArgs_.emplace_back(inBuffer);
break;
}
// if the input isn't contiguous or is an output,
// write strided input into contiguous buffer that is
// then used in all further compute
auto size_handles = sizesFromSymbolicShape(tt->symbolic_sizes());
auto inputTensorStrides = getInputStrides(input, size_handles);
ExprHandle flat_size = 1;
for (size_t i = 0; i < size_handles.size(); ++i) {
auto size = size_handles[i];
if (size.AsNode<LongImm>() && immediateAs<int64_t>(size.node()) == 0) {
flat_size = 0;
break;
}
flat_size = flat_size + (size - 1) * inputTensorStrides[i];
}
flat_size = IRSimplifier::simplify(flat_size);
BufHandle inBuffer(
"t" + input_name_map_[input],
{flat_size},
ToDtype(static_cast<ScalarType>(*tt->scalarType())));
result = Compute(
"input" + c10::to_string(bufs_.size() + 1),
size_handles,
[&](const std::vector<VarHandle>& axes) {
ExprHandle idx = 0;
for (size_t i = 0; i < axes.size(); i++) {
idx = idx + axes[i] * inputTensorStrides[i];
}
return inBuffer.load(idx);
});
bufs_.emplace(input, result.buf());
bufferArgs_.emplace_back(inBuffer);
break;
}
case TypeKind::FloatType: {
VarHandle v("v" + input_name_map_[input], kDouble);
bufferArgs_.emplace_back(v);
scalars_.emplace(input, v);
break;
}
case TypeKind::BoolType: {
VarHandle v("v" + input_name_map_[input], kBool);
bufferArgs_.emplace_back(v);
scalars_.emplace(input, v);
break;
}
case TypeKind::IntType: {
VarHandle v("v" + input_name_map_[input], kLong);
bufferArgs_.emplace_back(v);
scalars_.emplace(input, v);
break;
}
default: {
throw unsupported_dtype(t->repr_str());
break;
}
}
return result;
}
NNCLoweringFunction TensorExprKernel::getCustomLoweringFor(
c10::Symbol op) const {
if (custom_lowerings_.count(op))
return custom_lowerings_.at(op);
return nullptr;
}
template <typename T>
std::vector<size_t> reverse_sort_indices(const std::vector<T>& v) {
// initialize original index locations
std::vector<size_t> idx(v.size());
iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(), [&v](size_t i1, size_t i2) {
return v[i1] > v[i2];
});
return idx;
}
bool denseAndNonOverlapping(
at::ArrayRef<int64_t> sizes,
at::ArrayRef<int64_t> strides) {
return (strides == at::infer_dense_strides(sizes, strides));
}
Tensor TensorExprKernel::convertSymbolicOutputToCorrectStrides(
const std::vector<ExprHandle>& sizes,
const std::vector<size_t>& sorted_stride_indices_descending,
const std::vector<ExprPtr>& strides,
BufPtr& buf) {
// We need to convert the output tensor so that its values are layed
// so that when viewed from the output strides the values are correct.
// A contiguous Tensor of size(2, 3) with values 0-5 is layed out as:
// [0] [1] [2] [3] [4] [5]
// The same valued tensor with strides (1, 2) would be layed out like
// [0] [3] [1] [4] [2] [5]
// When we are doing the re-ordering of values into the output tensor,
// we are iterating per-element of the input, and we are fixed
// in indexing in to the output tensor at [i, j] = val
// `val` we want here is equal to the indices for the output
// tensor that would have given the same position as the output
// The position is equal to the sum of stride[i] * index[i],
// and we can can calculate the equivalent indices in the
// output tensor strides by iteratively computing the index of
// the biggest stride:
// absolute = ...
// for stride in strides_from_largest_to_smallest:
// cur_idx = absolute // stride
// absolute = absolute % stride
std::vector<ExprPtr> default_strides = make_contiguous_strides(sizes);
auto zero = LongImm::make(0);
return Compute(
"output_1", sizes, [&](const std::vector<VarHandle>& axes_input) {
std::vector<ExprHandle> axes(axes_input.begin(), axes_input.end());
auto absolute_position = ExprHandle(immLike(axes[0], 0));
for (size_t i = 0; i < axes.size(); ++i) {
ExprHandle stride(default_strides[i]);
ExprHandle axis = axes[i];
absolute_position = absolute_position + (stride * axis);
}
std::vector<ExprHandle> new_axes(
sorted_stride_indices_descending.size());
for (size_t stride_index : sorted_stride_indices_descending) {
auto size = sizes[stride_index];
auto stride = strides[stride_index];
auto index = absolute_position / ExprHandle(stride);
// XXX, in symbolic output ordering, we do not the arbitrary
// ordering of strides as in usual output ordering, just
// channels last, so even in the presence of size == 1
// we produce correct output here
absolute_position = absolute_position % ExprHandle(stride);
new_axes[stride_index] = index;
}
return BufHandle(buf).load(new_axes);
});
}
Tensor TensorExprKernel::convertSymbolicOutputToCorrectStrides(
torch::jit::Value* v) {
const TensorTypePtr& tt = v->type()->expect<TensorType>();
TORCH_INTERNAL_ASSERT(
bufs_.count(v),
buildErrorMessage(
"Ouput tensor has no corresponding bufs in the fuser."));
BufPtr buf = bufs_.at(v);
// output is contiguous, no work to do
if (tensorOutputStrideDesc_[v->offset()] ==
torch::jit::StrideInput::TENSOR_CONT) {
return Tensor(buf, nullptr);
;
}
TORCH_INTERNAL_ASSERT(
tensorOutputStrideDesc_[v->offset()] ==
torch::jit::StrideInput::TENSOR_CONT_CHANNELS_LAST);
auto sizes = sizesFromSymbolicShape(tt->symbolic_sizes());
auto strides = make_channels_last_strides(sizes);
// For a tensor with dimensions N C H W, channels last
// format will is in format N H W C,
// so the order largest to smallest will be N, H, W, C
std::vector<size_t> sorted_stride_indices = {0, 2, 3, 1};
auto zero = LongImm::make(0);
std::vector<ExprPtr> default_strides = make_contiguous_strides(sizes);
// See explanation in convertOutputToCorrectStrides
return convertSymbolicOutputToCorrectStrides(
sizes, sorted_stride_indices, strides, buf);
}
Tensor TensorExprKernel::convertStaticShapeOutputToCorrectStrides(
torch::jit::Value* v) {
const TensorTypePtr& tt = v->type()->expect<TensorType>();
TORCH_INTERNAL_ASSERT(
bufs_.count(v),
buildErrorMessage(
"Ouput tensor has no corresponding bufs in the fuser."));
BufPtr buf = bufs_.at(v);
// No shape info is present in the graph
if (!tt->sizes().concrete_sizes()) {
std::string msg =
std::string("Shapes for output '%") + v->debugName() + "' are unknown";
throw malformed_input(msg);
}
TORCH_INTERNAL_ASSERT(
tt->sizes().concrete_sizes(),
buildErrorMessage("Output shapes are unknown."));
auto sizes = *tt->sizes().concrete_sizes();
std::vector<int64_t> default_strides = TensorType::contiguousStridesOf(sizes);
if (!tt->strides().concrete_sizes()) {
return Tensor(buf, nullptr);
}
TORCH_INTERNAL_ASSERT(
tt->strides().concrete_sizes(),
buildErrorMessage("Output strides are unknown."));
const std::vector<int64_t> strides = *tt->strides().concrete_sizes();
// All Tensors in NNC are layed out in default, contiguous layout.
// If the output is also default contiguous we don't need to do anything
if (strides == default_strides) {
return Tensor(buf, nullptr);
}
// If the tensor is not dense or overlaps, we have
// no way of matching the profiled striding
if (!denseAndNonOverlapping(sizes, strides)) {
return Tensor(buf, nullptr);
}
auto dims = sizesForValue(v);
auto zero = LongImm::make(0);
std::vector<size_t> sorted_stride_indices = reverse_sort_indices(strides);
// TODO: call into `convertOutputToCorrectStrides`. Currently this causes a
// bug in IRSimplifier to occur. See explanation in
// `convertOutputToCorrectStrides`
return Compute(
"output_1", dims, [&](const std::vector<VarHandle>& axes_input) {
std::vector<ExprHandle> axes(axes_input.begin(), axes_input.end());
auto absolute_position = ExprHandle(immLike(axes[0], 0));
for (size_t i = 0; i < axes.size(); ++i) {
absolute_position = absolute_position +
(ExprHandle(immLike(axes[i], default_strides[i])) * axes[i]);
}
std::vector<ExprHandle> new_axes(sorted_stride_indices.size());
for (size_t stride_index : sorted_stride_indices) {
auto size = sizes[stride_index];
auto index = zero;
if (size != 1) {
auto stride = strides[stride_index];
index = absolute_position /
ExprHandle(immLike(absolute_position, stride));
absolute_position = absolute_position %
ExprHandle(immLike(absolute_position, stride));
}
new_axes[stride_index] = index;
}
return BufHandle(buf).load(new_axes);
});
}
void TensorExprKernel::bindConstant(const torch::jit::Value* v) {
auto val = toIValue(v).value();
if (torch::isCustomClass(val)) {
auto name_hint = "const_" + sanitizeName(v->debugName());
auto dtype = Dtype(ScalarType::Float);
std::vector<ExprPtr> dims;
BufPtr buf = alloc<Buf>(name_hint, dims, dtype);
auto dataPtr = val.toObjectRef().getSlot(0).toCapsule().get();
// NOLINTNEXTLINE
constants_.push_back({buf, dataPtr, const_cast<Node*>(v->node())});
bufs_[v] = buf;
return;
}
if (!v->type()->cast<TensorType>()) {
// Only Tensor constants need to be bound, scalar constants will be turned
// into immediates in TE IR
return;
}
auto const_tensor = toIValue(v)->toTensor();
auto scalar_type = c10::typeMetaToScalarType(const_tensor.options().dtype());
const auto& tt = v->type()->expect<TensorType>();
auto sizes = const_tensor.sizes();
std::vector<ExprHandle> te_sizes;
te_sizes.reserve(sizes.size());
for (auto s : sizes) {
te_sizes.push_back(s);
}
BufPtr buf = alloc<Buf>(
"const_" + sanitizeName(v->debugName()),
ExprHandleVectorToExprVector(te_sizes),
ToDtype(scalar_type));
if (!const_tensor.is_contiguous()) {
const_tensor = const_tensor.clone().contiguous();
unpacked_constant_tensors_.push_back(const_tensor);
}
constants_.push_back({buf, const_tensor.data_ptr()});
bufs_[v] = buf;
}
std::vector<BufPtr> TensorExprKernel::preAllocIntermediateBufs(
const std::vector<BufPtr>& interm_bufs) {
std::vector<BufPtr> remaining_interm_bufs;
std::vector<std::pair<BufPtr, void*>> allocated_bufs;
for (auto buf : interm_bufs) {
// Check if buf shape is static and compute its size if static.
bool is_static = true;
size_t size =
elementSize(buf->dtype().scalar_type()) * buf->dtype().lanes();
for (auto& d : buf->dims()) {
if (!d->isConstant()) {
is_static = false;
break;
}
size = size * (*intValue(d));
}
// Only allocate memory for static bufs.
if (!is_static) {
remaining_interm_bufs.push_back(buf);
continue;
}
auto bp = (void*)malloc(size);
if (!bp) {
remaining_interm_bufs.push_back(buf);
continue;
}
constants_.push_back({buf, bp});
}
return remaining_interm_bufs;
}
BlockPtr TensorExprKernel::bindAllInputs() {
std::vector<CodeGen::BufferArg> symbolic_shape_args;
std::vector<CodeGen::BufferArg> symbolic_stride_args;
auto symbolic_shape_inputs_start_pos =
nInputs_ - symbolic_shape_inputs_.size();
if (has_symbolic_shapes_) {
// The graph is supposed to have input params that represent the symbolic
// dims at the end of the list of inputs. The number of such symbolic input
// params is defined by the size of the `symbolic_shape_inputs_` vector.
//
// TODO: Check if the tensors with symbolic shapes are contiguous.
TORCH_CHECK(
nInputs_ > symbolic_shape_inputs_.size(),
"Symbolic dims not provided as inputs to the graph");
// First, process the symbolic input params and create a new variable for
// each of them.
// NOTE: This has to be done before processing the tensor inputs, because
// their symbolic sizes needs to be associated with these variables we
// create for the symbolic input params.
symbolic_shape_args.reserve(symbolic_shape_inputs_.size());
for (size_t i = symbolic_shape_inputs_start_pos; i < nInputs_; ++i) {
auto input = graph_->inputs()[i];
if (input->type()->kind() != TypeKind::IntType) {
throw std::runtime_error(
"Expected integer type input to graph for symbolic dims.");
}
VarHandle v("v" + input_name_map_[input], kLong);
symbolic_shape_args.emplace_back(v);
scalars_.emplace(input, v);
shapeSymbolInputPos_[scalars_[input].node()] = i;
}
// For every shape symbol, store a map to the corresponding var.
for (size_t i = 0; i < symbolic_shape_inputs_.size(); ++i) {
shapeSymbolToVar_[symbolic_shape_inputs_[i]] =
scalars_[graph_->inputs()[symbolic_shape_inputs_start_pos + i]];
}
// Next, process symbolic input params and create an argument for symbolic
for (size_t i = 0; i < symbolic_shape_inputs_start_pos; ++i) {
auto input = graph_->inputs()[i];
auto tt = input->type()->cast<TensorType>();
if (!tt) {
continue;
}
auto symbolic_stride = getSymbolicInputStrideDesc(input);
for (size_t j = 0; j < symbolic_stride.size(); ++j) {
if (symbolic_stride[j] == torch::jit::StrideInput::S_AS_ARG) {
VarHandle v("v" + input_name_map_[input], kLong);
symbolic_stride_args.emplace_back(v);
strideArgToVar_[{i, j}] = v;
input_stride_args_.emplace_back(i, j);
}
}
}
}
// Block to collect the Stmts corresponding to all tensors.
auto block = alloc<Block>(std::vector<StmtPtr>({}));
// Process the inputs before the symbolic input params.
for (const auto i : c10::irange(symbolic_shape_inputs_start_pos)) {
auto input = graph_->inputs()[i];
Tensor t = bindInput(input);
if (t.stmt()) {
block->append_stmt(t.stmt());
}
}
// Now, add all the variables corresponding to the symbolic input params.
bufferArgs_.insert(
bufferArgs_.end(),
symbolic_shape_args.begin(),
symbolic_shape_args.end());
// Now, add all the variables corresponding to symbolic stride inputs
bufferArgs_.insert(
bufferArgs_.end(),
symbolic_stride_args.begin(),
symbolic_stride_args.end());
return block;
}
void TensorExprKernel::compile() {
GRAPH_DUMP("TensorExprKernel graph:", graph_);
device_ = *pickDeviceType(graph_);
OptimizeCat(graph_);
has_symbolic_shapes_ = !symbolic_shape_inputs_.empty();
nInputs_ = graph_->inputs().size();
nOutputs_ = graph_->outputs().size();
genInputDebugNames();
// Bind inputs to buffers.
auto block = bindAllInputs();
// Bind nodes to tensor compute expressions.
for (auto const& n : graph_->nodes()) {
if (n->kind() == prim::ListConstruct) {
continue;
} else if (n->kind() == prim::Constant) {
bindConstant(n->output());
continue;
} else {
for (auto const& output : n->outputs()) {
if (output->hasUses()) {
Tensor t = computeValue(output);
if (output->type()->cast<TensorType>()) {
// Value is tensor
if (t.buf()) {
bufs_.emplace(output, t.buf());
}
block->append_stmt(t.stmt());
} else {
// Value is scalar
//
// We represent scalar computations in TE with a pair of statements:
// Let val = <compute_expression>
// Store(buf_for_scalar[0], val)
//
// Subsequent computations will use val when they refer to the
// given value, and the buffer will be used if we need to return
// the computed value as an output of the kernel. If this is not an
// output, the store will be removed later by DCE.
//
// NB: NNC's lowering functions return Tensor, which is a pair
// <Buf, Stmt>, but here we also need Var. How can we obtain all of
// Var, Buf, and Stmt?
// We use the following trick: the lowering function creates the
// Let-stmt and a "fake" buffer, whose only purpose is to hold the
// Var. Then outside the lowering function (namely, right here) we
// generate the store and the actual buffer.
VarPtr v = t.buf()->base_handle();
scalars_[output] = VarHandle(v);
block->append_stmt(t.stmt());
std::vector<ExprPtr> dims;
BufHandle buf(
"scalar_" + sanitizeName(output->debugName()), {}, v->dtype());
StmtPtr store = Store::make(buf, {}, ExprHandle(v));
block->append_stmt(store);
bufs_.emplace(output, buf.node());
}
}
}
}
if (hasRandom_ && hasBroadcast_) {
throw std::runtime_error(
"Cannot support broadcast and random within one kernel");
}
}
// Move output operands from `bufs_` to `bufOutputs_`
for (auto i : c10::irange(graph_->outputs().size())) {
auto& output = graph_->outputs().at(i);
if (!bufs_.count(output)) {
throw malformed_input("cannot find output Tensor");
}
if (!output->type()->cast<TensorType>()) {
// Scalar outputs are represented as 0-dim buffers.
bufOutputs_.insert(bufs_.at(output));
bufferArgs_.emplace_back(BufHandle(bufs_.at(output)));
tensorOutputTensorOptions_.emplace_back(
c10::TensorOptions(tensorType(bufs_.at(output))).device(device_));
tensorOutputSizes_.emplace_back();
tensorOutputStrides_.emplace_back();
isOutputScalar_.push_back(true);
bufs_.erase(output);
continue;
}
const auto& tt = output->type()->expect<TensorType>();
if (has_symbolic_shapes_) {
auto sizes = sizesFromSymbolicShape(tt->symbolic_sizes());
tensorOutputSymbolicSizes_.push_back(sizes);
TORCH_INTERNAL_ASSERT(sym_stride_outputs_.count(i));
auto stride_desc = sym_stride_outputs_[i];
tensorOutputStrideDesc_.push_back(stride_desc);
Tensor properly_strided_output =
convertSymbolicOutputToCorrectStrides(output);
if (properly_strided_output.stmt()) {
block->append_stmt(properly_strided_output.stmt());
}
bufs_[output] = properly_strided_output.buf();
} else {
// The "strided" tensor will be incorrect if used in NNC,
// since NNC views it as contiguous. Only convert it to the right
// strides at the end of the kernel (if already contiguous it's a no-op)
Tensor properly_strided_output =
convertStaticShapeOutputToCorrectStrides(output);
if (properly_strided_output.stmt()) {
block->append_stmt(properly_strided_output.stmt());
}
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
bufs_[output] = properly_strided_output.buf();
auto sizes = *tt->sizes().concrete_sizes();
tensorOutputSizes_.push_back(sizes);
auto strides = tt->strides().concrete_sizes();
// If the tensor is not dense or overlaps, we have
// no way of matching the profiled striding
if (strides && denseAndNonOverlapping(sizes, *strides)) {
tensorOutputStrides_.push_back(*strides);
} else {
tensorOutputStrides_.push_back(TensorType::contiguousStridesOf(sizes));
}
}
bufOutputs_.insert(bufs_.at(output));
bufferArgs_.emplace_back(BufHandle(bufs_.at(output)));
tensorOutputTensorOptions_.emplace_back(
c10::TensorOptions(tensorType(bufs_.at(output))).device(device_));
isOutputScalar_.push_back(false);
bufs_.erase(output);
}
BackendType backendType = inferBackendTypeFromDevice(device_);
stmt_ = transformLoops(backendType, block);
for (auto c : constants_) {
bufferArgs_.emplace_back(BufHandle(c.buf));
}
if (has_symbolic_shapes_) {
tensorOutputSizes_.resize(bufOutputs_.size());
tensorOutputStrides_.resize(bufOutputs_.size());
}
// Generate code.
codegen_ = CreateCodeGen(
getCodeGenName(backendType),
stmt_,
bufferArgs_,
device_,
kernel_func_name_);
}
void TensorExprKernel::recompile() {
codegen_ = CreateCodeGen(
"llvm_codegen", stmt_, bufferArgs_, device_, kernel_func_name_);
}
TensorExprKernel::TensorExprKernel(
const std::shared_ptr<Graph>& subgraph,
const std::string& kernel_func_name,
std::unordered_map<c10::Symbol, NNCLoweringFunction> custom_lowerings,
std::vector<int64_t> symbolic_shape_inputs,
bool pre_alloc /*= false*/,
std::unordered_map<
const torch::jit::Value*,
std::vector<torch::jit::StrideInput>> symbolic_strides)
: graph_(subgraph),
code_(subgraph, ""),
symbolic_shape_inputs_(std::move(symbolic_shape_inputs)),
custom_lowerings_(std::move(custom_lowerings)),
pre_alloc_(pre_alloc),
kernel_func_name_(kernel_func_name) {
// convert symbolic_stride to map by output and input index,
// since we may manipulate output pointers in graph manipulation
for (size_t i : c10::irange(graph_->inputs().size())) {
if (symbolic_strides.count(graph_->inputs().at(i))) {
sym_stride_inputs_[i] = symbolic_strides[graph_->inputs().at(i)];
}
}
for (size_t i : c10::irange(graph_->outputs().size())) {
if (symbolic_strides.count(graph_->outputs().at(i))) {
auto& desc = symbolic_strides[graph_->outputs().at(i)];
TORCH_INTERNAL_ASSERT(desc.size() == 1);
sym_stride_outputs_[i] = desc[0];
}
}
allow_fallback_ = fallbackAllowed();
if (!allow_fallback_) {
compile();
return;
}
use_fallback_ = fallbackEnforced();
if (use_fallback_) {
return;
}
try {
compile();
} catch (...) {
use_fallback_ = true;
}
}
void TensorExprKernel::run(Stack& stack) {
if (!use_fallback_ && !allow_fallback_) {
runKernel(stack);
} else if (!use_fallback_ && allow_fallback_) {
try {
runKernel(stack);
} catch (...) {
fallback(stack);
}
} else {
fallback(stack);
}
}
void TensorExprKernel::updateOutputSizesAndStrides(
const at::ArrayRef<IValue>& inputs) {
TORCH_INTERNAL_ASSERT(has_symbolic_shapes_);
// If there are symbolic shapes, then the output tensor size wouldn't have
// been computed at compile time. That has to be done here by using the
// symbolic shape input params passed in to this call.
TORCH_INTERNAL_ASSERT(
tensorOutputSymbolicSizes_.size() == bufOutputs_.size());
TORCH_INTERNAL_ASSERT(tensorOutputSizes_.size() == bufOutputs_.size());
TORCH_INTERNAL_ASSERT(tensorOutputStrides_.size() == bufOutputs_.size());
for (size_t i = 0, e = bufOutputs_.size(); i < e; ++i) {
tensorOutputSizes_[i].clear();
for (auto t : tensorOutputSymbolicSizes_[i]) {
if (t.AsNode<LongImm>()) {
tensorOutputSizes_[i].emplace_back(immediateAs<int64_t>(t.node()));
} else {
auto input_pos = shapeSymbolInputPos_.at(t.node());
TORCH_INTERNAL_ASSERT(input_pos < inputs.size());
TORCH_INTERNAL_ASSERT(inputs[input_pos].isInt());
tensorOutputSizes_[i].emplace_back(inputs[input_pos].toInt());
}
}
if (tensorOutputStrideDesc_[i] == torch::jit::StrideInput::TENSOR_CONT) {
tensorOutputStrides_[i] =
TensorType::contiguousStridesOf(tensorOutputSizes_[i]);
} else if (
tensorOutputStrideDesc_[i] ==
torch::jit::StrideInput::TENSOR_CONT_CHANNELS_LAST) {
tensorOutputStrides_[i] =
at::get_channels_last_strides_2d(tensorOutputSizes_[i]);
} else {
std::string output_desc = toString(tensorOutputStrideDesc_[i]);
TORCH_INTERNAL_ASSERT(
false, "Expected contiguous or channels last, got ", output_desc);
}
}
}
std::vector<CodeGen::CallArg> TensorExprKernel::prepareRunArgs(
const at::ArrayRef<IValue>& inputs,
std::vector<at::Tensor>& outputs) {
// TODO: preallocate `runArgs` during compilation and fill in values where
// possible (e.g. for constant tensors)
std::vector<CodeGen::CallArg> runArgs;
runArgs.reserve(
inputs.size() + input_stride_args_.size() + bufOutputs_.size());
for (auto& input : inputs) {
if (input.isInt()) {
runArgs.emplace_back(input.toInt());
} else if (input.isBool()) {
runArgs.emplace_back(input.toBool());
} else if (input.isDouble()) {
runArgs.emplace_back(input.toDouble());
} else if (input.isTensor()) {
runArgs.emplace_back(input.toTensor().data_ptr());
}
}
if (has_symbolic_shapes_) {
updateOutputSizesAndStrides(inputs);
// add stride args
for (const auto& input_stride_arg : input_stride_args_) {
runArgs.emplace_back(
inputs[input_stride_arg.first].toTensor().strides().at(
input_stride_arg.second));
}
}
for (size_t i = 0, e = bufOutputs_.size(); i < e; ++i) {
auto const& opts = tensorOutputTensorOptions_[i];
outputs.emplace_back(codegen_->empty_strided(
tensorOutputSizes_[i],
tensorOutputStrides_[i],
opts.dtype,
opts.layout,
opts.device,
opts.pinned_memory));
runArgs.emplace_back(outputs.back().data_ptr());
}
for (auto c : constants_) {
runArgs.emplace_back(c.ptr);
}
return runArgs;
}
StmtPtr TensorExprKernel::getCodeGenStmt() {
return codegen_->stmt();
}
void TensorExprKernel::runKernel(Stack& stack) {
// Set up arguments (inputs, then outputs) for kernel call.
auto inputs = last(stack, nInputs_);
std::vector<at::Tensor> outputs;
std::vector<CodeGen::CallArg> runArgs = prepareRunArgs(inputs, outputs);
// Call the kernel.
codegen_->call(runArgs);
// Update the stack.
drop(stack, nInputs_);
int64_t idx = 0;
for (auto& o : outputs) {
if (isOutputScalar_[idx++]) {
// Scalar outputs are returned as 0-dim tensors, we need to extract the
// scalar value from them
push_one(stack, o.item());
} else {
push_one(stack, std::move(o));
}
}
}
void TensorExprKernel::runFast(
const std::vector<void*>& inputs,
const std::vector<void*>& outputs) {
std::vector<void*> args(inputs);
args.reserve(inputs.size() + outputs.size() + constants_.size());
args.insert(args.end(), outputs.begin(), outputs.end());
// TODO: we can consider preallocating and pre-filling the args vector.
for (auto c : constants_) {
args.push_back(c.ptr);
}
// Call the kernel.
codegen_->call_raw(args);
}
void TensorExprKernel::runWithAllocatedOutputs(Stack& stack) {
TORCH_INTERNAL_ASSERT(
device_ == at::kCPU,
"Pre-allocated output tensors are supported only on CPUs.");
std::vector<void*> args;
args.reserve(nInputs_ + nOutputs_ + constants_.size());
// stack has inputs on the top and outputs right below them.
auto stack_ivals = last(stack, nOutputs_ + nInputs_);
auto stack_outputs = stack_ivals.slice(0, nOutputs_);
auto stack_inputs = stack_ivals.slice(nOutputs_);
std::vector<int64_t> int_inputs(nInputs_);
for (auto i : c10::irange(nInputs_)) {
auto inp = stack_inputs[i];
if (inp.isInt()) {
int_inputs[i] = inp.toInt();
args.emplace_back(&int_inputs[i]);
} else if (inp.isTensor()) {
args.emplace_back(inp.toTensor().data_ptr());
} else {
TORCH_INTERNAL_ASSERT(
false, "Unhandled input type while calling TensorExprKernel");
}
}
std::vector<int64_t> stride_values(input_stride_args_.size());
if (has_symbolic_shapes_) {
updateOutputSizesAndStrides(stack_inputs);
// add stride args
for (auto idx : c10::irange(input_stride_args_.size())) {
const auto& input_stride_arg = input_stride_args_[idx];
stride_values[idx] =
stack_inputs[input_stride_arg.first].toTensor().strides().at(
input_stride_arg.second);
args.emplace_back(&stride_values[idx]);
}
TORCH_INTERNAL_ASSERT(nOutputs_ == bufOutputs_.size());
for (size_t i = 0, e = bufOutputs_.size(); i < e; ++i) {
auto& out = stack_outputs[i].toTensor();
// This has only been tested on CPUs.
// TODO: Test on GPUs.
out.resize_(tensorOutputSizes_[i]);
args.emplace_back(out.data_ptr());
}
} else {
for (auto i : c10::irange(nOutputs_)) {
args.emplace_back(stack_outputs[i].toTensor().data_ptr());
}
}
for (const auto& c : constants_) {
args.emplace_back(c.ptr);
}
// Call the kernel.
codegen_->call_raw(args);
// Remove the inputs from the stack. The outputs are already below the inputs
// in the stack.
drop(stack, nInputs_);
}