Files
pytorch/torch/csrc/jit/codegen/onednn/kernel.h
sanchitintel 4ee29d6033 [Reland take-2] Add JIT graph fuser for oneDNN Graph API (v0.5)
Re-landing #68111/#74596

## Description
v0.5 PR of this [RFC](https://github.com/pytorch/pytorch/issues/49444).

On the basis of #50256, the below improvements are included:

 * The [v0.5 release branch](https://github.com/oneapi-src/oneDNN/releases/tag/graph-v0.5) of the oneDNN Graph API is used
 * The fuser now works with the profiling graph executor. We have inserted type check nodes to guard the profiled tensor properties.

 ### User API:
The optimization pass is disabled by default. Users could enable it by:

```
 torch.jit.enable_onednn_fusion(True)
```
`torch.jit.freeze` should be used after tracing (recommended) or scripting a model.

 ### Performance:
 [pytorch/benchmark](https://github.com/pytorch/benchmark) tool is used to compare the performance:

 * SkyLake 8180 (1 socket of 28 cores):
   ![image](https://user-images.githubusercontent.com/65992142/151162305-05e44425-a24e-4d5e-94e1-743b40b87a8c.png)
* SkyLake 8180 (single thread):
   ![image](https://user-images.githubusercontent.com/65992142/151162528-69f90b79-d08d-46b8-8775-d80a6ccbce8a.png)
   * By mapping hardswish to oneDNN Graph, it’s 8% faster than PyTorch JIT (NNC + OFI)
   ** We expect performance gain after mapping transpose, contiguous & view to oneDNN graph ops

 ### Directory structure of the integration code
 Fuser-related code is placed under:

 ```
 torch/csrc/jit/codegen/onednn/
 ```

 Optimization pass registration is done in:

 ```
 torch/csrc/jit/passes/onednn_graph_fuser.h
 ```

 CMake for the integration code is in:

 ```
 caffe2/CMakeLists.txt
 cmake/public/mkldnn.cmake
 cmake/Modules/FindMKLDNN.cmake
 ```

 ## Limitations
 * In this PR, we only support Pytorch-oneDNN-Graph integration on Linux platform. Support on Windows and MacOS will be enabled as a next step.
 * We have only optimized the inference use-case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76622
Approved by: https://github.com/eellison
2022-05-05 16:57:03 +00:00

94 lines
2.7 KiB
C++

#pragma once
#include <unordered_map>
#include <oneapi/dnnl/dnnl_graph.hpp>
#include <torch/csrc/jit/codegen/onednn/LlgaTensorImpl.h>
#include <torch/csrc/jit/codegen/onednn/graph_helper.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/interpreter.h>
namespace torch {
namespace jit {
namespace fuser {
namespace onednn {
using ArgSpec = LlgaTensorDesc;
using ArgSpecs = std::vector<ArgSpec>;
using RunArg = dnnl::graph::tensor;
using RunArgs = std::vector<RunArg>;
using TensorArgs = std::vector<at::Tensor>;
class LlgaKernel {
public:
explicit LlgaKernel(const Node* fusionNode);
void run(Stack& stack);
void initialize(const TensorArgs& inputs);
const std::string& debugName() const {
return debugName_;
}
private:
bool useOpaqueLayout(size_t offset) const;
// PyTorch copy constants inside the subgraph instead of referencing them.
// Constants inputs to the partition are no longer in the graph->inputs().
// Need use the tid retrieved from the partition to find the missing
// constant inputs.
void initializeConstantInputs();
ArgSpecs initializeInputSpecs(const TensorArgs& inputs);
ArgSpecs initializeOutputSpecs() const;
dnnl::graph::compiled_partition compile(
const dnnl::graph::partition& partition);
std::map<size_t, int64_t> initializeTensorIdToOccurence() const;
std::tuple<RunArgs, RunArgs> prepareRunArgs(
const TensorArgs& inputs,
TensorArgs& outputs) const;
static std::string genDebugName() {
static size_t debugId = 0;
return "LlgaPartition_" + std::to_string(debugId++);
}
static dnnl::graph::logical_tensor toLogicalTensor(const ArgSpec& s) {
return s.logical_tensor();
}
at::Device device_ = at::kCPU;
const Node* fusionNode_;
std::shared_ptr<Graph> graph_;
int64_t nGraphInputs_ = 0; // number of inputs to graph_ on the IR
int64_t nOutputs_ = 0;
std::map<size_t, Value*> tensorIdToValue_;
std::vector<int64_t> runArgsIdx_;
dnnl::graph::partition partition_;
// nPartitionInputs_ is the actual number of inputs to partition_ of graph_
// needed by the backend.
// nPartitionInputs_ = nGraphInputs_ + constantInputs_.size() since Constant
// inputs are copied to the inside of the subgraph
int64_t nPartitionInputs_;
dnnl::graph::compiled_partition compilation_;
std::set<size_t> initializedInputIds_;
std::vector<Value*> constantValues_;
TensorArgs constantInputs_;
ArgSpecs inputSpecs_;
ArgSpecs outputSpecs_;
std::vector<dnnl::graph::logical_tensor> constantLogicalTensors_;
std::string debugName_;
std::once_flag initialized_flag;
bool is_initialized_ = false;
};
} // namespace onednn
} // namespace fuser
} // namespace jit
} // namespace torch