mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146504 Approved by: https://github.com/anijain2305
534 lines
14 KiB
Python
534 lines
14 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
import torch._dynamo.config
|
|
import torch._dynamo.test_case
|
|
import torch._functorch.config
|
|
import torch.nn
|
|
import torch.utils.checkpoint
|
|
from torch._dynamo.bytecode_transformation import Instruction
|
|
from torch._dynamo.symbolic_convert import SpeculationLog, SpeculationLogDivergence
|
|
|
|
|
|
class CustomException(Exception):
|
|
...
|
|
|
|
|
|
class CustomExceptionWithArgs(Exception):
|
|
def __init__(self, a, b=None):
|
|
self.a = a
|
|
self.b = b
|
|
|
|
|
|
class ExceptionTests(torch._dynamo.test_case.TestCase):
|
|
def test_exception(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception2(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError
|
|
except (NotImplementedError, AttributeError):
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception3(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except AssertionError:
|
|
x = torch.sigmoid(x)
|
|
except NotImplementedError:
|
|
x = torch.cos(x)
|
|
finally:
|
|
x = torch.cos(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception4(self):
|
|
def fn(x):
|
|
for i in range(10):
|
|
if i == 5:
|
|
return x
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception_with_another_exception(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except NotImplementedError:
|
|
x = torch.sigmoid(x)
|
|
try:
|
|
x = torch.cos(x)
|
|
raise AssertionError
|
|
except AssertionError:
|
|
x = torch.cos(x)
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception_else(self):
|
|
def gn(x):
|
|
return torch.cos(x)
|
|
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
x = gn(x)
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
else:
|
|
x = torch.cos(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
# TODO(anijain2305) - does not work with fullgraph=True
|
|
def test_exception_with_another_exception2(self):
|
|
def gn(x):
|
|
try:
|
|
x = torch.cos(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except NotImplementedError:
|
|
x = torch.sigmoid(x)
|
|
raise
|
|
|
|
def fn(x):
|
|
try:
|
|
x = torch.cos(x)
|
|
gn(x)
|
|
except Exception:
|
|
pass
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
fn(x)
|
|
# Cant use fullgraph=True because RERAISE is not supported
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
opt_fn(x)
|
|
|
|
@unittest.skipIf(sys.version_info < (3, 11), "Python 3.11+")
|
|
def test_exception_with_ctx_manager(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
with torch.no_grad():
|
|
x = torch.sin(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except NotImplementedError:
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception_raised_from_child(self):
|
|
def gn():
|
|
raise NotImplementedError("foo")
|
|
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
gn()
|
|
x = torch.sin(x)
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_dynamo_undo_kw_names(self):
|
|
def g(x, k=None):
|
|
if k:
|
|
raise TypeError("error")
|
|
return x.sin()
|
|
|
|
def fn(x):
|
|
d = {"a": x}
|
|
try:
|
|
g(x, k=True)
|
|
except Exception:
|
|
y = 0
|
|
for _, b in d.items(): # noqa: PERF102
|
|
y += b.sum()
|
|
return y
|
|
|
|
x = torch.randn(2, 3)
|
|
expected = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
got = opt_fn(x)
|
|
self.assertEqual(expected, got)
|
|
|
|
def test_raise_custom_exception(self):
|
|
class Exc(Exception):
|
|
...
|
|
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
try:
|
|
raise Exc
|
|
except Exc:
|
|
return t.sin()
|
|
except Exception:
|
|
return t.cos()
|
|
|
|
t = torch.randn(2)
|
|
y = fn(t)
|
|
self.assertEqual(y, t.sin())
|
|
|
|
def test_nn_module_getattr(self):
|
|
class A:
|
|
def __init__(self) -> None:
|
|
self._b = 20
|
|
|
|
def __getattr__(self, name):
|
|
fixed_name = "_" + name
|
|
if fixed_name in self.__dict__:
|
|
return self.__dict__[fixed_name]
|
|
raise AttributeError(f"{name} absent")
|
|
|
|
class B(A):
|
|
def __init__(self) -> None:
|
|
self.a = 10
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return super().__getattr__(name)
|
|
except AttributeError:
|
|
return 30
|
|
|
|
obj = B()
|
|
|
|
def fn(x):
|
|
return x * obj.a * obj.b * obj.c
|
|
|
|
x = torch.ones(4)
|
|
ref = fn(x)
|
|
print(ref)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
@torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
|
|
def test_custom_getattr_on_module_exception(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self, a=3):
|
|
super().__init__()
|
|
self.register_parameter("a", torch.nn.Parameter(torch.ones(4) * 2))
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return super().__getattr__(name) # defer to nn.Module's logic
|
|
except AttributeError:
|
|
if name == "a_copy":
|
|
return self.a
|
|
raise
|
|
|
|
def forward(self, x):
|
|
return x * self.a * self.a_copy
|
|
|
|
mod = Foo()
|
|
opt_mod = torch.compile(mod, backend="eager", fullgraph=True)
|
|
|
|
x = torch.ones(4)
|
|
self.assertEqual(mod(x), opt_mod(x))
|
|
|
|
def test_attribute_error_from_getattr(self):
|
|
class Mock:
|
|
def __init__(self):
|
|
self.a = 5
|
|
|
|
def __getattr__(self, name):
|
|
if name != "a":
|
|
raise AttributeError("missing")
|
|
return self.__dict__["a"]
|
|
|
|
mock = Mock()
|
|
|
|
def fn(x):
|
|
if hasattr(mock, "b"):
|
|
return torch.cos(x)
|
|
return torch.sin(x)
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_stop_iteration(self):
|
|
def zip_longest(*iterables, fillvalue=None):
|
|
# Get the iterators for each iterable
|
|
iterators = [iter(it) for it in iterables]
|
|
|
|
result = []
|
|
while True:
|
|
for it in iterators:
|
|
try:
|
|
value = next(it)
|
|
except StopIteration:
|
|
result.append(fillvalue)
|
|
return result
|
|
result.append(value)
|
|
|
|
def fn(x, y):
|
|
torch.cos(torch.randn(4))
|
|
return tuple(zip_longest(x, y))
|
|
|
|
x = [1, 2, 3, 4]
|
|
y = [10, 11, 12]
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
ref = fn(x, y)
|
|
res = opt_fn(x, y)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_nn_reraise(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
raise ValueError("woof")
|
|
return x + 2
|
|
|
|
m = M()
|
|
m.register_forward_pre_hook(lambda m, go: None)
|
|
|
|
torch._dynamo.utils.clear_compilation_metrics()
|
|
opt_call = torch.compile(lambda x: m(x), backend="eager")
|
|
self.assertRaises(ValueError, lambda: opt_call(torch.randn(3)))
|
|
metrics = torch._dynamo.utils.get_compilation_metrics()
|
|
self.assertIn("Observed exception", metrics[0].fail_reason)
|
|
|
|
def test_key_error(self):
|
|
def fn(x, d):
|
|
try:
|
|
a = d["b"]
|
|
except KeyError:
|
|
a = 2
|
|
return x * a
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
x = torch.randn(4)
|
|
d = {"a": 1}
|
|
ref = fn(x, d)
|
|
res = opt_fn(x, d)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_atrribute_error(self):
|
|
class Mock:
|
|
def __init__(self):
|
|
self.a = 1
|
|
|
|
mock = Mock()
|
|
|
|
def fn(x):
|
|
try:
|
|
c = 2
|
|
mock.b
|
|
except AttributeError:
|
|
c = 3
|
|
return torch.sin(x) * c
|
|
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_raise_from_None(self):
|
|
# Inspired from os.environ
|
|
class MyMapping:
|
|
def __init__(self, d):
|
|
self._d = d
|
|
|
|
def __getitem__(self, key):
|
|
try:
|
|
value = self._d[key]
|
|
except KeyError:
|
|
raise KeyError(key) from None
|
|
return value
|
|
|
|
d = MyMapping({"a": 10, "b": 20})
|
|
|
|
def mapping_get(obj, key, value=None):
|
|
try:
|
|
return obj.__getitem__(key)
|
|
except KeyError:
|
|
return value
|
|
|
|
def fn(x, d, key):
|
|
x = torch.sin(x + 1)
|
|
return x, mapping_get(d, key)
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
|
|
x = torch.rand(2, 3)
|
|
ref = fn(x, d, "m")
|
|
res = opt_fn(x, d, "m")
|
|
self.assertEqual(ref[0], res[0])
|
|
self.assertEqual(ref[1], res[1])
|
|
|
|
def test_raise_GeneratorExit(self):
|
|
# GeneratorExit does not inherit from Exception
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
try:
|
|
raise GeneratorExit
|
|
except Exception:
|
|
return t.sin()
|
|
except BaseException:
|
|
return t.cos()
|
|
|
|
t = torch.randn(2)
|
|
y = fn(t)
|
|
self.assertEqual(y, t.cos())
|
|
|
|
def test_speculation_exception(self):
|
|
log = SpeculationLog()
|
|
log.next("fake", 555, "fake", Instruction(1, "fake", 1, 1))
|
|
log.restart()
|
|
with self.assertRaises(SpeculationLogDivergence):
|
|
log.next("bad", 58, "bad", Instruction(2, "different", 2, 2))
|
|
|
|
def test_dict_pop(self):
|
|
# Pattern from inspect.bind
|
|
def fn(dt, x):
|
|
try:
|
|
dt.pop("b")
|
|
except KeyError:
|
|
return torch.sin(x)
|
|
else:
|
|
return torch.cos(x)
|
|
|
|
d = {"a": 1}
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
|
|
x = torch.randn(4)
|
|
self.assertEqual(fn(d, x), opt_fn(d, x))
|
|
self.assertEqual(fn({"a": 1, "b": 2}, x), opt_fn({"a": 1, "b": 2}, x))
|
|
|
|
def test_block_stack_cleanup(self):
|
|
params = {
|
|
"a": 3,
|
|
"b": 4,
|
|
"c": 5,
|
|
}
|
|
|
|
dt = {
|
|
"c": 5,
|
|
}
|
|
|
|
def fn(x):
|
|
for name in params:
|
|
try:
|
|
x = x * dt[name]
|
|
except KeyError:
|
|
x = x * torch.sin(x)
|
|
return x
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
x = torch.randn(4)
|
|
self.assertEqual(fn(x), opt_fn(x))
|
|
|
|
def test_user_defined_exception_variable(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
z = 0
|
|
try:
|
|
raise CustomException
|
|
except ValueError:
|
|
z = 1
|
|
except CustomException:
|
|
z = 2
|
|
assert z == 2
|
|
return t.sin()
|
|
|
|
t = torch.randn(2)
|
|
fn(t)
|
|
|
|
def test_user_defined_exception_with_args(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
z = 0
|
|
try:
|
|
raise CustomExceptionWithArgs(2, b=3)
|
|
except ValueError:
|
|
z = 1
|
|
except CustomExceptionWithArgs:
|
|
z = 2
|
|
assert z == 2
|
|
|
|
t = torch.randn(2)
|
|
fn(t)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|