mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Apply ruff rule about implicit string concatenation, this autofixes strings that are all the same type and on the same line. These lines are broken up likely as the result of autoformatters in the past. All fixes are automated using the autofixes in ISC001. Pull Request resolved: https://github.com/pytorch/pytorch/pull/146408 Approved by: https://github.com/justinchuby, https://github.com/janeyx99
1500 lines
54 KiB
Python
1500 lines
54 KiB
Python
# Owner(s): ["oncall: mobile"]
|
|
|
|
import io
|
|
import itertools
|
|
import unittest
|
|
|
|
from hypothesis import assume, given, strategies as st
|
|
|
|
import torch
|
|
import torch.backends.xnnpack
|
|
import torch.testing._internal.hypothesis_utils as hu
|
|
from torch.nn import functional as F
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_utils import (
|
|
IS_FBCODE,
|
|
run_tests,
|
|
slowTest,
|
|
TEST_WITH_TSAN,
|
|
TestCase,
|
|
)
|
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
|
|
|
|
|
@unittest.skipUnless(
|
|
torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.",
|
|
)
|
|
@unittest.skipIf(
|
|
TEST_WITH_TSAN,
|
|
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
|
|
)
|
|
class TestXNNPACKOps(TestCase):
|
|
@unittest.skip(
|
|
"Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488"
|
|
)
|
|
@given(
|
|
batch_size=st.integers(0, 3),
|
|
data_shape=hu.array_shapes(1, 3, 2, 64),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans(),
|
|
)
|
|
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
|
|
data_shape = [batch_size] + list(data_shape)
|
|
input_data = torch.rand(data_shape)
|
|
weight = torch.rand((weight_output_dim, data_shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand(weight_output_dim)
|
|
else:
|
|
bias = None
|
|
ref_result = F.linear(input_data, weight, bias)
|
|
packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
|
|
output_linearprepacked = torch.ops.prepacked.linear_clamp_run(
|
|
input_data, packed_weight_bias
|
|
)
|
|
torch.testing.assert_close(
|
|
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
|
|
)
|
|
|
|
@given(
|
|
input_size=st.integers(2, 32),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans(),
|
|
)
|
|
def test_linear_1d_input(self, input_size, weight_output_dim, use_bias):
|
|
input_data = torch.rand(input_size)
|
|
weight = torch.rand((weight_output_dim, input_data.shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand(weight_output_dim)
|
|
else:
|
|
bias = None
|
|
ref_result = F.linear(input_data, weight, bias)
|
|
packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
|
|
output_linearprepacked = torch.ops.prepacked.linear_clamp_run(
|
|
input_data, packed_weight_bias
|
|
)
|
|
torch.testing.assert_close(
|
|
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
|
|
)
|
|
|
|
@given(
|
|
batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from(
|
|
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
|
|
),
|
|
)
|
|
def test_conv2d(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
use_bias,
|
|
format,
|
|
):
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
weight = torch.rand(
|
|
(output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
)
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand(output_channels)
|
|
|
|
ref_result = F.conv2d(
|
|
input_data, weight, bias, strides, paddings, dilations, groups
|
|
)
|
|
packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(
|
|
weight, bias, strides, paddings, dilations, groups
|
|
)
|
|
xnnpack_result = torch.ops.prepacked.conv2d_clamp_run(
|
|
input_data, packed_weight_bias
|
|
)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(
|
|
batch_size=st.integers(1, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
output_pad_h=st.integers(0, 2),
|
|
output_pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from(
|
|
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
|
|
),
|
|
)
|
|
def test_conv2d_transpose(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
output_pad_h,
|
|
output_pad_w,
|
|
dilation,
|
|
use_bias,
|
|
format,
|
|
):
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
output_paddings = (output_pad_h, output_pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
|
|
assume((output_pad_h < stride_h) and (output_pad_h < dilation))
|
|
assume((output_pad_w < stride_w) and (output_pad_w < dilation))
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
weight = torch.rand(
|
|
(input_channels, output_channels_per_group, kernel_h, kernel_w)
|
|
)
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand(output_channels)
|
|
|
|
# Note that groups/dilation is in reverse order from conv2d
|
|
ref_result = F.conv_transpose2d(
|
|
input_data,
|
|
weight,
|
|
bias,
|
|
strides,
|
|
paddings,
|
|
output_paddings,
|
|
groups,
|
|
dilation,
|
|
)
|
|
packed_weight_bias = torch.ops.prepacked.conv2d_transpose_clamp_prepack(
|
|
weight, bias, strides, paddings, output_paddings, dilations, groups
|
|
)
|
|
xnnpack_result = torch.ops.prepacked.conv2d_transpose_clamp_run(
|
|
input_data, packed_weight_bias
|
|
)
|
|
torch.testing.assert_close(
|
|
ref_result.contiguous(), xnnpack_result.contiguous(), rtol=1e-2, atol=1e-3
|
|
)
|
|
|
|
|
|
@unittest.skipUnless(
|
|
torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.",
|
|
)
|
|
@unittest.skipIf(
|
|
TEST_WITH_TSAN,
|
|
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
|
|
)
|
|
class TestXNNPACKSerDes(TestCase):
|
|
@unittest.skip(
|
|
"Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488"
|
|
)
|
|
@given(
|
|
batch_size=st.integers(0, 3),
|
|
data_shape=hu.array_shapes(1, 3, 2, 64),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans(),
|
|
)
|
|
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self, weight, bias=None):
|
|
super().__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, self.bias)
|
|
|
|
class LinearPrePacked(torch.nn.Module):
|
|
def __init__(self, weight, bias=None):
|
|
super().__init__()
|
|
self.packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(
|
|
weight, bias
|
|
)
|
|
|
|
def forward(self, x):
|
|
return torch.ops.prepacked.linear_clamp_run(x, self.packed_weight_bias)
|
|
|
|
data_shape = [batch_size] + list(data_shape)
|
|
weight = torch.rand((weight_output_dim, data_shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand(weight_output_dim)
|
|
else:
|
|
bias = None
|
|
scripted_linear = torch.jit.script(Linear(weight, bias))
|
|
scripted_linear_clamp_prepacked = torch.jit.script(
|
|
LinearPrePacked(weight, bias)
|
|
)
|
|
input_data = torch.rand(data_shape)
|
|
ref_result = scripted_linear(input_data)
|
|
output_linearprepacked = scripted_linear_clamp_prepacked(input_data)
|
|
torch.testing.assert_close(
|
|
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
|
|
)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand(data_shape)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_linear, buffer)
|
|
buffer.seek(0)
|
|
deserialized_linear = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_linear_clamp_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_linear_clamp_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_linear(input_data)
|
|
output_linearprepacked = deserialized_linear_clamp_prepacked(input_data)
|
|
torch.testing.assert_close(
|
|
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
|
|
)
|
|
|
|
@given(
|
|
batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from(
|
|
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
|
|
),
|
|
)
|
|
def test_conv2d(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
use_bias,
|
|
format,
|
|
):
|
|
class Conv2D(torch.nn.Module):
|
|
def __init__(self, weight, bias, strides, paddings, dilations, groups):
|
|
super().__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv2d(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
self.strides,
|
|
self.paddings,
|
|
self.dilations,
|
|
self.groups,
|
|
)
|
|
|
|
class Conv2DPrePacked(torch.nn.Module):
|
|
def __init__(self, weight, bias, strides, paddings, dilations, groups):
|
|
super().__init__()
|
|
self.packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(
|
|
weight, bias, strides, paddings, dilations, groups
|
|
)
|
|
|
|
def forward(self, x):
|
|
return torch.ops.prepacked.conv2d_clamp_run(x, self.packed_weight_bias)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
weight = torch.rand(
|
|
(output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
)
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand(output_channels)
|
|
|
|
scripted_conv2d = torch.jit.script(
|
|
Conv2D(weight, bias, strides, paddings, dilations, groups)
|
|
)
|
|
scripted_conv2d_clamp_prepacked = torch.jit.script(
|
|
Conv2DPrePacked(weight, bias, strides, paddings, dilations, groups)
|
|
)
|
|
ref_result = scripted_conv2d(input_data)
|
|
xnnpack_result = scripted_conv2d_clamp_prepacked(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d_clamp_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_conv2d(input_data)
|
|
xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(
|
|
batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
output_pad_h=st.integers(0, 2),
|
|
output_pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from(
|
|
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
|
|
),
|
|
)
|
|
def test_conv2d_transpose(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
output_pad_h,
|
|
output_pad_w,
|
|
dilation,
|
|
use_bias,
|
|
format,
|
|
):
|
|
class Conv2DT(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
strides,
|
|
paddings,
|
|
output_paddings,
|
|
dilations,
|
|
groups,
|
|
):
|
|
super().__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.output_paddings = output_paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv_transpose2d(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
self.strides,
|
|
self.paddings,
|
|
self.output_paddings,
|
|
self.groups,
|
|
self.dilations,
|
|
)
|
|
|
|
class Conv2DTPrePacked(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
strides,
|
|
paddings,
|
|
output_paddings,
|
|
dilations,
|
|
groups,
|
|
):
|
|
super().__init__()
|
|
self.packed_weight_bias = (
|
|
torch.ops.prepacked.conv2d_transpose_clamp_prepack(
|
|
weight,
|
|
bias,
|
|
strides,
|
|
paddings,
|
|
output_paddings,
|
|
dilations,
|
|
groups,
|
|
)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return torch.ops.prepacked.conv2d_transpose_clamp_run(
|
|
x, self.packed_weight_bias
|
|
)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
output_paddings = (output_pad_h, output_pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
|
|
assume((output_pad_h < stride_h) and (output_pad_h < dilation))
|
|
assume((output_pad_w < stride_w) and (output_pad_w < dilation))
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
weight = torch.rand(
|
|
(input_channels, output_channels_per_group, kernel_h, kernel_w)
|
|
)
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand(output_channels)
|
|
|
|
scripted_conv2d = torch.jit.script(
|
|
Conv2DT(weight, bias, strides, paddings, output_paddings, dilations, groups)
|
|
)
|
|
scripted_conv2d_clamp_prepacked = torch.jit.script(
|
|
Conv2DTPrePacked(
|
|
weight, bias, strides, paddings, output_paddings, dilations, groups
|
|
)
|
|
)
|
|
ref_result = scripted_conv2d(input_data)
|
|
xnnpack_result = scripted_conv2d_clamp_prepacked(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d_clamp_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_conv2d(input_data)
|
|
xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
@unittest.skip(
|
|
"Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488"
|
|
)
|
|
@given(
|
|
batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
linear_weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from(
|
|
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
|
|
),
|
|
)
|
|
def test_combined_model(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
linear_weight_output_dim,
|
|
use_bias,
|
|
format,
|
|
):
|
|
class M(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
conv_weight,
|
|
conv_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
strides,
|
|
paddings,
|
|
dilations,
|
|
groups,
|
|
):
|
|
super().__init__()
|
|
self.conv_weight = conv_weight
|
|
self.conv_bias = conv_bias
|
|
self.linear_weight = linear_weight
|
|
self.linear_bias = linear_bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(
|
|
x,
|
|
self.conv_weight,
|
|
self.conv_bias,
|
|
self.strides,
|
|
self.paddings,
|
|
self.dilations,
|
|
self.groups,
|
|
)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = F.linear(o, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
class MPrePacked(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
conv_weight,
|
|
conv_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
strides,
|
|
paddings,
|
|
dilations,
|
|
groups,
|
|
):
|
|
super().__init__()
|
|
self.conv2d_clamp_run_weight_bias = (
|
|
torch.ops.prepacked.conv2d_clamp_prepack(
|
|
conv_weight, conv_bias, strides, paddings, dilations, groups
|
|
)
|
|
)
|
|
self.linear_clamp_run_weight_bias = (
|
|
torch.ops.prepacked.linear_clamp_prepack(linear_weight, linear_bias)
|
|
)
|
|
|
|
def forward(self, x):
|
|
o = torch.ops.prepacked.conv2d_clamp_run(
|
|
x, self.conv2d_clamp_run_weight_bias
|
|
)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = torch.ops.prepacked.linear_clamp_run(
|
|
o, self.linear_clamp_run_weight_bias
|
|
)
|
|
return F.relu(o)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if format is not None:
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
conv_weight = torch.rand(
|
|
(output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
)
|
|
conv_bias = None
|
|
if use_bias:
|
|
conv_bias = torch.rand(output_channels)
|
|
|
|
# This is done just to find the output shape of the result
|
|
# so that the shape of weight for the following linear layer
|
|
# can be determined.
|
|
result = F.conv2d(
|
|
input_data, conv_weight, conv_bias, strides, paddings, dilations, groups
|
|
)
|
|
linear_input_shape = result.shape[1]
|
|
|
|
linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape))
|
|
linear_bias = None
|
|
if use_bias:
|
|
linear_bias = torch.rand(linear_weight_output_dim)
|
|
|
|
scripted_m = torch.jit.script(
|
|
M(
|
|
conv_weight,
|
|
conv_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
strides,
|
|
paddings,
|
|
dilations,
|
|
groups,
|
|
)
|
|
)
|
|
scripted_m_prepacked = torch.jit.script(
|
|
MPrePacked(
|
|
conv_weight,
|
|
conv_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
strides,
|
|
paddings,
|
|
dilations,
|
|
groups,
|
|
)
|
|
)
|
|
ref_result = scripted_m(input_data)
|
|
xnnpack_result = scripted_m_prepacked(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
input_data = input_data.contiguous(memory_format=torch.channels_last)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_m, buffer)
|
|
buffer.seek(0)
|
|
deserialized_m = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_m_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_m_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_m(input_data)
|
|
xnnpack_result = deserialized_m_prepacked(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
@unittest.skipUnless(
|
|
torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.",
|
|
)
|
|
@unittest.skipIf(
|
|
TEST_WITH_TSAN,
|
|
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
|
|
)
|
|
class TestXNNPACKRewritePass(TestCase):
|
|
@staticmethod
|
|
def validate_transformed_module(
|
|
# To please flake
|
|
self,
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=False,
|
|
fuse_clamping_ops=False,
|
|
):
|
|
input_data = torch.normal(1, 20, size=data_shape)
|
|
|
|
for jit_method in ["script", "trace"]:
|
|
module_instance = self
|
|
if jit_method == "script":
|
|
scripted_model = torch.jit.script(module_instance)
|
|
else:
|
|
scripted_model = torch.jit.trace(module_instance, input_data)
|
|
scripted_model.eval()
|
|
ref_result = scripted_model(input_data)
|
|
torch._C._jit_pass_insert_prepacked_ops(scripted_model._c)
|
|
if fuse_clamping_ops or prepack_removal:
|
|
scripted_model._c = torch._C._freeze_module(scripted_model._c)
|
|
if fuse_clamping_ops:
|
|
torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv(scripted_model._c)
|
|
if prepack_removal:
|
|
torch._C._jit_pass_fold_prepacking_ops(scripted_model._c)
|
|
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_model, buffer)
|
|
buffer.seek(0)
|
|
deserialized_scripted_model = torch.jit.load(buffer)
|
|
for pattern, v in pattern_count_map.items():
|
|
if v == 0:
|
|
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
|
|
elif v == -1:
|
|
FileCheck().check_not(pattern).run(
|
|
deserialized_scripted_model.graph
|
|
)
|
|
else:
|
|
FileCheck().check_count(pattern, v, exactly=True).run(
|
|
deserialized_scripted_model.graph
|
|
)
|
|
xnnpack_result = deserialized_scripted_model(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
def test_linear(self):
|
|
data_shape = [2, 3, 32]
|
|
weight_output_dim = 24
|
|
weight_shape = (weight_output_dim, data_shape[-1])
|
|
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, self.bias)
|
|
|
|
class LinearNoBias(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(weight_shape), requires_grad=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, None)
|
|
|
|
# Linear with bias pattern.
|
|
pattern_count_map = {
|
|
"Tensor = prim::CallFunction": -1,
|
|
"prepacked::linear_clamp_prepack": 1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
Linear(), pattern_count_map, data_shape
|
|
)
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
LinearNoBias(), pattern_count_map, data_shape
|
|
)
|
|
|
|
# Conv params
|
|
batch_size = 2
|
|
input_channels_per_group = 6
|
|
height = 16
|
|
width = 16
|
|
output_channels_per_group = 6
|
|
groups = 4
|
|
kernel_h = kernel_w = 3
|
|
stride_h = stride_w = 1
|
|
pad_h = pad_w = 1
|
|
output_pad_h = output_pad_w = 0
|
|
dilation = 1
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
output_paddings = (output_pad_h, output_pad_w)
|
|
dilations = (dilation, dilation)
|
|
conv_weight_shape = (
|
|
output_channels,
|
|
input_channels_per_group,
|
|
kernel_h,
|
|
kernel_w,
|
|
)
|
|
conv_transpose_weight_shape = (
|
|
input_channels,
|
|
output_channels_per_group,
|
|
kernel_h,
|
|
kernel_w,
|
|
)
|
|
conv_bias_shape = output_channels
|
|
|
|
class Conv2D(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(conv_weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(conv_bias_shape), requires_grad=False
|
|
)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv2d(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
self.strides,
|
|
self.paddings,
|
|
self.dilations,
|
|
self.groups,
|
|
)
|
|
|
|
class Conv2DT(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(conv_transpose_weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(conv_bias_shape), requires_grad=False
|
|
)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.output_paddings = output_paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv_transpose2d(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
self.strides,
|
|
self.paddings,
|
|
self.output_paddings,
|
|
self.groups,
|
|
self.dilations,
|
|
)
|
|
|
|
data_shape = (batch_size, input_channels, height, width)
|
|
pattern_count_map = {
|
|
"Tensor = aten::conv2d": -1,
|
|
"prepacked::conv2d_clamp_prepack": 1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
Conv2D(), pattern_count_map, data_shape
|
|
)
|
|
|
|
transpose_data_shape = (batch_size, input_channels, height, width) # noqa: F841
|
|
transpose_pattern_count_map = {
|
|
"Tensor = aten::conv_transpose2d": -1,
|
|
"prepacked::conv2d_transpose_clamp_prepack": 1,
|
|
"prepacked::conv2d_transpose_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
Conv2DT(), transpose_pattern_count_map, data_shape
|
|
)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
conv_weight = torch.rand(
|
|
(output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
)
|
|
conv_bias = torch.rand(output_channels)
|
|
result = F.conv2d(
|
|
input_data, conv_weight, conv_bias, strides, paddings, dilations, groups
|
|
)
|
|
linear_input_shape = result.shape[1]
|
|
linear_weight_shape = (weight_output_dim, linear_input_shape)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self, activation_fn=F.relu):
|
|
super().__init__()
|
|
self.conv_weight = torch.nn.Parameter(
|
|
torch.rand(conv_weight_shape), requires_grad=False
|
|
)
|
|
self.conv_bias = torch.nn.Parameter(
|
|
torch.rand(conv_bias_shape), requires_grad=False
|
|
)
|
|
self.linear_weight = torch.nn.Parameter(
|
|
torch.rand(linear_weight_shape), requires_grad=False
|
|
)
|
|
self.linear_bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
self.activation_fn = activation_fn
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(
|
|
x,
|
|
self.conv_weight,
|
|
self.conv_bias,
|
|
self.strides,
|
|
self.paddings,
|
|
self.dilations,
|
|
self.groups,
|
|
)
|
|
o = self.activation_fn(o)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = F.linear(o, self.linear_weight, self.linear_bias)
|
|
return self.activation_fn(o)
|
|
|
|
pattern_count_map = {
|
|
"Tensor = aten::conv2d": -1,
|
|
"prepacked::conv2d_clamp_prepack": 1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": 1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(), pattern_count_map, data_shape
|
|
)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["Tensor = prim::CallFunction"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(), pattern_count_map, data_shape, prepack_removal=True
|
|
)
|
|
|
|
# Not inplace relu fusion test.
|
|
pattern_count_map = {
|
|
"aten::relu": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(), pattern_count_map, data_shape, prepack_removal=True
|
|
)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::relu"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True,
|
|
)
|
|
|
|
# Inplace relu fusion test.
|
|
pattern_count_map = {
|
|
"aten::relu": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.relu_), pattern_count_map, data_shape, prepack_removal=True
|
|
)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::relu"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.relu_),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True,
|
|
)
|
|
|
|
# Not inplace hardtanh fusion test.
|
|
pattern_count_map = {
|
|
"aten::hardtanh": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh), pattern_count_map, data_shape, prepack_removal=True
|
|
)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::hardtanh"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True,
|
|
)
|
|
|
|
# Inplace hardtanh fusion test.
|
|
pattern_count_map = {
|
|
"aten::hardtanh_": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh_), pattern_count_map, data_shape, prepack_removal=True
|
|
)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::hardtanh_"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh_),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True,
|
|
)
|
|
|
|
class MFusionAntiPattern(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear_weight = torch.nn.Parameter(
|
|
torch.rand(linear_weight_shape), requires_grad=False
|
|
)
|
|
self.linear_bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
o = F.relu(o)
|
|
o = F.hardtanh(o)
|
|
return o
|
|
|
|
# Unfusable hardtanh.
|
|
pattern_count_map = {
|
|
"aten::hardtanh": 1, # hardtanh cannot be.
|
|
"aten::relu": -1, # relu is fused.
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
MFusionAntiPattern(),
|
|
pattern_count_map,
|
|
(16, linear_weight_shape[1]),
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True,
|
|
)
|
|
|
|
class MFusionAntiPatternParamMinMax(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear_weight = torch.nn.Parameter(
|
|
torch.rand(linear_weight_shape), requires_grad=False
|
|
)
|
|
self.linear_bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
min = x[0, 0]
|
|
max = min + 10
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
o = F.hardtanh(o, min, max)
|
|
return o
|
|
|
|
# Unfusable hardtanh.
|
|
pattern_count_map = {
|
|
"aten::hardtanh": 1, # hardtanh cannot be.
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
MFusionAntiPatternParamMinMax(),
|
|
pattern_count_map,
|
|
(16, linear_weight_shape[1]),
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True,
|
|
)
|
|
|
|
def test_decomposed_linear(self):
|
|
data_shape = [2, 32]
|
|
weight_output_dim = 24
|
|
weight_shape = (weight_output_dim, data_shape[-1])
|
|
|
|
class DecomposedLinearAddmm(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
weight_t = self.weight.t()
|
|
return torch.addmm(self.bias, x, weight_t)
|
|
|
|
class DecomposedLinearMatmulAdd(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
weight_t = self.weight.t()
|
|
y = torch.matmul(x, weight_t)
|
|
res = y.add_(self.bias)
|
|
return res
|
|
|
|
class DecomposedLinearMatmul(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(weight_output_dim), requires_grad=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
weight_t = self.weight.t()
|
|
res = torch.matmul(x, weight_t)
|
|
return res
|
|
|
|
# Linear with bias pattern.
|
|
pattern_count_map = {
|
|
"Tensor = prim::CallFunction": -1,
|
|
"prepacked::linear_clamp_prepack": 1,
|
|
"prepacked::linear_clamp_run": 1,
|
|
}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
DecomposedLinearAddmm(), pattern_count_map, data_shape
|
|
)
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
DecomposedLinearMatmulAdd(), pattern_count_map, data_shape
|
|
)
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
DecomposedLinearMatmul(), pattern_count_map, data_shape
|
|
)
|
|
|
|
|
|
@unittest.skipUnless(
|
|
torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.",
|
|
)
|
|
@unittest.skipIf(
|
|
TEST_WITH_TSAN,
|
|
"TSAN is not fork-safe since we're forking in a multi-threaded environment",
|
|
)
|
|
class TestXNNPACKConv1dTransformPass(TestCase):
|
|
@staticmethod
|
|
def validate_transform_conv1d_to_conv2d(
|
|
self, pattern_count_transformed_map, pattern_count_optimized_map, data_shape
|
|
):
|
|
input_data = torch.normal(1, 20, size=data_shape)
|
|
|
|
for jit_method in ["script", "trace"]:
|
|
module_instance = self
|
|
if jit_method == "script":
|
|
scripted_model = torch.jit.script(module_instance)
|
|
else:
|
|
scripted_model = torch.jit.trace(module_instance, input_data)
|
|
scripted_model.eval()
|
|
ref_result = scripted_model(input_data)
|
|
torch._C._jit_pass_transform_conv1d_to_conv2d(scripted_model._c)
|
|
optimized_scripted_model = optimize_for_mobile(scripted_model)
|
|
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_model, buffer)
|
|
buffer.seek(0)
|
|
deserialized_scripted_model = torch.jit.load(buffer)
|
|
|
|
for pattern, v in pattern_count_transformed_map.items():
|
|
if v == 0:
|
|
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
|
|
elif v == -1:
|
|
FileCheck().check_not(pattern).run(
|
|
deserialized_scripted_model.graph
|
|
)
|
|
else:
|
|
FileCheck().check_count(pattern, v, exactly=True).run(
|
|
deserialized_scripted_model.graph
|
|
)
|
|
transformed_result = deserialized_scripted_model(input_data)
|
|
torch.testing.assert_close(
|
|
ref_result, transformed_result, rtol=1e-2, atol=1e-3
|
|
)
|
|
|
|
optimized_buffer = io.BytesIO()
|
|
torch.jit.save(optimized_scripted_model, optimized_buffer)
|
|
optimized_buffer.seek(0)
|
|
deserialized_optimized_scripted_model = torch.jit.load(optimized_buffer)
|
|
|
|
for pattern, v in pattern_count_optimized_map.items():
|
|
if v == 0:
|
|
FileCheck().check(pattern).run(
|
|
deserialized_optimized_scripted_model.graph
|
|
)
|
|
elif v == -1:
|
|
FileCheck().check_not(pattern).run(
|
|
deserialized_optimized_scripted_model.graph
|
|
)
|
|
else:
|
|
FileCheck().check_count(pattern, v, exactly=True).run(
|
|
deserialized_optimized_scripted_model.graph
|
|
)
|
|
xnnpack_result = deserialized_optimized_scripted_model(input_data)
|
|
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
@unittest.skipIf(IS_FBCODE, "T137513244")
|
|
def test_conv1d_basic(self):
|
|
batch_size_list = range(1, 3)
|
|
input_channels_per_group_list = range(10, 12)
|
|
width_list = range(10, 12)
|
|
output_channels_per_group_list = range(10, 12)
|
|
groups_list = range(1, 3)
|
|
kernel_list = range(1, 4)
|
|
stride_list = range(1, 3)
|
|
padding_list = range(0, 3)
|
|
dilation_list = range(1, 3)
|
|
|
|
for hparams in itertools.product(
|
|
batch_size_list,
|
|
input_channels_per_group_list,
|
|
width_list,
|
|
output_channels_per_group_list,
|
|
groups_list,
|
|
kernel_list,
|
|
stride_list,
|
|
padding_list,
|
|
dilation_list,
|
|
):
|
|
(
|
|
batch_size,
|
|
input_channels_per_group,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel,
|
|
stride,
|
|
padding,
|
|
dilation,
|
|
) = hparams
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
conv_weight_shape = (output_channels, input_channels_per_group, kernel)
|
|
conv_bias_shape = output_channels
|
|
|
|
class Conv1D(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.rand(conv_weight_shape), requires_grad=False
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.rand(conv_bias_shape), requires_grad=False
|
|
)
|
|
self.stride = stride
|
|
self.padding = padding
|
|
self.dilation = dilation
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv1d(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
|
|
data_shape = (batch_size, input_channels, width)
|
|
pattern_count_transformed_map = {
|
|
"Tensor = aten::conv1d": -1,
|
|
"Tensor = aten::conv2d": 1,
|
|
}
|
|
pattern_count_optimized_map = {
|
|
"Tensor = aten::conv1d": -1,
|
|
"Tensor = aten::conv2d": -1,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
}
|
|
|
|
TestXNNPACKConv1dTransformPass.validate_transform_conv1d_to_conv2d(
|
|
Conv1D(),
|
|
pattern_count_transformed_map,
|
|
pattern_count_optimized_map,
|
|
data_shape,
|
|
)
|
|
|
|
# See https://github.com/pytorch/pytorch/issues/46066
|
|
@slowTest
|
|
def test_conv1d_with_relu_fc(self):
|
|
batch_size_list = range(1, 3)
|
|
input_channels_per_group_list = range(10, 12)
|
|
width_list = range(10, 12)
|
|
output_channels_per_group_list = range(10, 12)
|
|
groups_list = range(1, 3)
|
|
kernel_list = range(1, 4)
|
|
stride_list = range(1, 3)
|
|
padding_list = range(0, 3)
|
|
dilation_list = range(1, 3)
|
|
output_features_list = range(1, 3)
|
|
|
|
for hparams in itertools.product(
|
|
batch_size_list,
|
|
input_channels_per_group_list,
|
|
width_list,
|
|
output_channels_per_group_list,
|
|
groups_list,
|
|
kernel_list,
|
|
stride_list,
|
|
padding_list,
|
|
dilation_list,
|
|
output_features_list,
|
|
):
|
|
(
|
|
batch_size,
|
|
input_channels_per_group,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel,
|
|
stride,
|
|
padding,
|
|
dilation,
|
|
output_features,
|
|
) = hparams
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
conv_weight_shape = (output_channels, input_channels_per_group, kernel)
|
|
conv_bias_shape = output_channels
|
|
conv_output_width = (
|
|
int((width + 2 * padding - dilation * (kernel - 1) - 1) / stride) + 1
|
|
)
|
|
fc_weight_shape = (output_features, output_channels * conv_output_width)
|
|
fc_bias_shape = output_features
|
|
|
|
class Net(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv_weight = torch.nn.Parameter(
|
|
torch.rand(conv_weight_shape), requires_grad=False
|
|
)
|
|
self.conv_bias = torch.nn.Parameter(
|
|
torch.rand(conv_bias_shape), requires_grad=False
|
|
)
|
|
self.stride = stride
|
|
self.padding = padding
|
|
self.dilation = dilation
|
|
self.groups = groups
|
|
|
|
self.fc_weight = torch.nn.Parameter(
|
|
torch.rand(fc_weight_shape), requires_grad=False
|
|
)
|
|
self.fc_bias = torch.nn.Parameter(
|
|
torch.rand(fc_bias_shape), requires_grad=False
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = F.conv1d(
|
|
x,
|
|
self.conv_weight,
|
|
self.conv_bias,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
x = F.relu(x)
|
|
x = x.view(x.size(0), -1)
|
|
x = F.linear(x, self.fc_weight, self.fc_bias)
|
|
return x
|
|
|
|
data_shape = (batch_size, input_channels, width)
|
|
pattern_count_transformed_map = {
|
|
"Tensor = aten::conv1d": -1,
|
|
"Tensor = aten::conv2d": 1,
|
|
}
|
|
pattern_count_optimized_map = {
|
|
"Tensor = aten::conv1d": -1,
|
|
"Tensor = aten::conv2d": -1,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
}
|
|
TestXNNPACKConv1dTransformPass.validate_transform_conv1d_to_conv2d(
|
|
Net(),
|
|
pattern_count_transformed_map,
|
|
pattern_count_optimized_map,
|
|
data_shape,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|