Files
pytorch/test/test_cpp_extensions_open_device_registration.py
FFFrog 98e594b565 [OpenReg][2/N] Migrate cpp_extensions_open_device_registration to OpenReg (#156589)
----

- serialization
- dlpack

**Next Steps**:

- The rest of `test/test_cpp_extensions_open_device_registration.py` is about the fallback mechanism. In order to keep it consistent with other accelerator usage (C++ registration), the implementation of OpenReg needs to be refactored:

    * Simulate multiple device memory in a single process (a brief RFC will be submitted this week)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156589
Approved by: https://github.com/albanD
ghstack dependencies: #156588
2025-06-26 03:59:50 +00:00

100 lines
3.2 KiB
Python

# Owner(s): ["module: cpp-extensions"]
import os
import unittest
import pytorch_openreg # noqa: F401
import torch
import torch.testing._internal.common_utils as common
import torch.utils.cpp_extension
@unittest.skipIf(common.TEST_XPU, "XPU does not support cppextension currently")
@common.markDynamoStrictTest
class TestCppExtensionOpenRegistration(common.TestCase):
"""Tests Open Device Registration with C++ extensions."""
module = None
def setUp(self):
super().setUp()
# cpp extensions use relative paths. Those paths are relative to
# this file, so we'll change the working directory temporarily
self.old_working_dir = os.getcwd()
os.chdir(os.path.dirname(os.path.abspath(__file__)))
assert self.module is not None
def tearDown(self):
super().tearDown()
# return the working directory (see setUp)
os.chdir(self.old_working_dir)
@classmethod
def setUpClass(cls):
common.remove_cpp_extensions_build_root()
cls.module = torch.utils.cpp_extension.load(
name="custom_device_extension",
sources=[
"cpp_extensions/open_registration_extension.cpp",
],
extra_include_paths=["cpp_extensions"],
extra_cflags=["-g"],
verbose=True,
)
def test_open_device_scalar_type_fallback(self):
z_cpu = torch.Tensor([[0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]).to(torch.int64)
z = torch.triu_indices(3, 3, device="openreg")
self.assertEqual(z_cpu, z)
def test_open_device_tensor_type_fallback(self):
# create tensors located in custom device
x = torch.Tensor([[1, 2, 3], [2, 3, 4]]).to("openreg")
y = torch.Tensor([1, 0, 2]).to("openreg")
# create result tensor located in cpu
z_cpu = torch.Tensor([[0, 2, 1], [1, 3, 2]])
# Check that our device is correct.
device = self.module.custom_device()
self.assertTrue(x.device == device)
self.assertFalse(x.is_cpu)
# call sub op, which will fallback to cpu
z = torch.sub(x, y)
self.assertEqual(z_cpu, z)
# call index op, which will fallback to cpu
z_cpu = torch.Tensor([3, 1])
y = torch.Tensor([1, 0]).long().to("openreg")
z = x[y, y]
self.assertEqual(z_cpu, z)
def test_open_device_tensorlist_type_fallback(self):
# create tensors located in custom device
v_openreg = torch.Tensor([1, 2, 3]).to("openreg")
# create result tensor located in cpu
z_cpu = torch.Tensor([2, 4, 6])
# create tensorlist for foreach_add op
x = (v_openreg, v_openreg)
y = (v_openreg, v_openreg)
# Check that our device is correct.
device = self.module.custom_device()
self.assertTrue(v_openreg.device == device)
self.assertFalse(v_openreg.is_cpu)
# call _foreach_add op, which will fallback to cpu
z = torch._foreach_add(x, y)
self.assertEqual(z_cpu, z[0])
self.assertEqual(z_cpu, z[1])
# call _fused_adamw_ with undefined tensor.
self.module.fallback_with_undefined_tensor()
if __name__ == "__main__":
common.run_tests()