Files
pytorch/torch/csrc/autograd/python_variable.cpp
gchanan 4c81282c33 Introduce torch.layout and split layout from dtypes. (#6145)
* Introduce torch.layout and split layout from dtypes.

Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.

Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function).  But this doesn't really follow for sparity, which isn't a common case.

It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array).  But this should be the same whether or not the tensor is represented via strides, sparsity, etc.

This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
   torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.

* Formatting, make init throw python_error.

* Fix cuda not enabled error message.

* Fix test.
2018-04-02 14:07:50 -04:00

524 lines
17 KiB
C++

#include "torch/csrc/autograd/python_variable.h"
#include "THP.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/Size.h"
#include "torch/csrc/Types.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/autograd/python_hook.h"
#include "torch/csrc/autograd/python_variable_indexing.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/autograd/utils/wrap_outputs.h"
#include "torch/csrc/jit/tracer_state.h"
#include "torch/csrc/tensor/python_tensor.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/utils/python_strings.h"
#include <ATen/ATen.h>
#include <list>
#include <memory>
#include <structmember.h>
using namespace at;
using namespace torch::autograd;
PyObject *THPVariableClass = nullptr;
static const char* VOLATILE_WARNING =
"volatile was removed and now has no effect. Use "
"`with torch.no_grad():` instead.";
// Creates a new Python object for a Variable. The Variable must not already
// have a PyObject* associated with it.
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, Variable var)
{
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto v = (THPVariable*) obj;
new (&v->cdata) Variable(std::move(var));
v->cdata.set_pyobj(obj);
if (auto fn = dynamic_cast<PyFunction*>(v->cdata.grad_fn_unsafe())) {
// Create a new reference to the THPFunction. This ensures that ref count
// of the THPFunction is at least the number of referring THPVariables.
const auto output_nr = v->cdata.output_nr();
auto grad_fn = THPFunction_asFunction((THPFunction*)fn->obj);
v->cdata.set_gradient_edge({std::move(grad_fn), output_nr});
}
}
return obj;
}
PyObject * THPVariable_Wrap(Variable var)
{
if (!var.defined()) {
Py_RETURN_NONE;
}
if (auto obj = var.pyobj()) {
Py_INCREF(obj);
return obj;
}
return THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, std::move(var));
}
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
{
Py_VISIT(self->backward_hooks);
// We don't want to traverse the grad_fn, even if the Variable owns it and the
// shared pointer's use count is 1. This is because we would need to treat
// the grad_fn as part of the Python state and hold the GIL sometimes when
// grad_fn's shared_ptr is copied, otherwise a race condition with the Python
// GC could occur. Holding the GIL when the shared_ptr is copied adds
// undesirable complexity/overhead.
//
// When hooks, a Variable, and its grad_fn are involved in a Python reference
// cycle, because we're not traversing the grad_fn, the reference cycle will
// in fact leak.
//
// See https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c
// for more details about the race condition involving traversing the grad_fn
// and the python GC.
if (self->cdata.defined()) {
for (const auto& hook : self->cdata.hooks()) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
return 0;
}
static int THPVariable_clear(THPVariable *self)
{
Py_CLEAR(self->backward_hooks);
if (self->cdata.defined()) {
if (auto grad_acc = self->cdata.try_get_grad_accumulator()) {
grad_acc->pre_hooks().clear();
}
self->cdata.set_pyobj(nullptr);
}
self->cdata.reset();
return 0;
}
static void THPVariable_dealloc(THPVariable* self)
{
PyObject_GC_UnTrack(self);
THPVariable_clear(self);
self->cdata.~Variable();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
HANDLE_TH_ERRORS
THPObjectPtr _data;
PyObject *data = nullptr;
PyObject *grad_fn = nullptr;
char is_volatile = 0;
char requires_grad = 0;
const char* name = nullptr;
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", "name", nullptr};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbOz", (char**)accepted_args,
&data, &requires_grad, &is_volatile, &grad_fn, &name))
return nullptr;
if (grad_fn == Py_None)
grad_fn = nullptr;
if (is_volatile) {
PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
}
THPUtils_assert(!(is_volatile && requires_grad),
"Variable can't be volatile and require_grad at the same time!");
THPUtils_assert(!grad_fn || THPFunction_Check(grad_fn),
"Variable _grad_fn has to be a Function object or None, but got %s",
THPUtils_typename(grad_fn));
Tensor tensor;
if (!data || data == Py_None) {
// For legacy serialization code, create an empty tensor. This is also used
// by nn.Parameter() with no arguments.
auto var = torch::tensor::get_default_tensor_type().tensor();
tensor = static_cast<Variable&>(var).data();
} else if (THPVariable_Check(data)) {
tensor = ((THPVariable*)data)->cdata.data();
} else {
throw torch::TypeError("Variable data has to be a tensor, but got %s",
THPUtils_typename(data));
}
Variable var;
if (grad_fn) {
auto grad_fn_ = THPFunction_asFunction((THPFunction*)grad_fn);
Edge edge(grad_fn_, grad_fn_->bump_inputs());
var = make_variable(std::move(tensor), std::move(edge));
} else {
var = make_variable(std::move(tensor), requires_grad);
}
if (name) {
var.set_name(name);
}
return THPVariable_NewWithVar(type, std::move(var));
END_HANDLE_TH_ERRORS
}
int THPVariable_pyinit(PyObject *self, PyObject *args, PyObject *kwds)
{
// Ensures that calls to Variable() and subclasses contain data argument.
// The 'data' argument is optional in __new__ to handle legacy serialized
// Variables.
PyObject *data;
PyObject *grad_fn = nullptr;
char is_volatile = 0;
char requires_grad = 0;
const char* name = nullptr;
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", "name", nullptr};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbOz", (char**)accepted_args,
&data, &requires_grad, &is_volatile, &grad_fn, &name))
return -1;
return 0;
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
PyObject *THPVariable_get_cdata(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
return PyLong_FromVoidPtr(var.unsafeGetTH(false));
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_version(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
return PyInt_FromLong(var.current_version());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_grad_fn(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
if (!var.grad_fn()) {
Py_RETURN_NONE;
}
return functionToPyObject(var.grad_fn());
END_HANDLE_TH_ERRORS
}
static int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
self->cdata.detach_();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
static PyObject *THPVariable_is_leaf(THPVariable *self)
{
HANDLE_TH_ERRORS
return PyBool_FromLong(!self->cdata.grad_fn());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_get_data(THPVariable *self)
{
HANDLE_TH_ERRORS
return THPVariable_Wrap(make_variable(self->cdata.data(), false));
END_HANDLE_TH_ERRORS
}
int THPVariable_set_data(THPVariable *self, PyObject *data)
{
HANDLE_TH_ERRORS
if (!THPVariable_Check(data)) {
throw torch::TypeError("Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
}
Tensor tensor = THPVariable_UnpackData(data);
if (self->cdata.data().type() != tensor.type()) {
// we change the type of var.data so we must change the type of var
auto newType = VariableType::getType(tensor);
self->cdata.temporary_hack_set_type(newType);
}
self->cdata.data() = std::move(tensor);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_grad(THPVariable *self)
{
HANDLE_TH_ERRORS
return THPVariable_Wrap(self->cdata.grad());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_grad(THPVariable *self, PyObject *py_grad)
{
HANDLE_TH_ERRORS
auto& var = self->cdata;
if (py_grad == Py_None) {
var.reset_grad();
return 0;
}
THPUtils_assertRet(-1, THPVariable_Check(py_grad),
"expected Variable or None (got %s)", THPUtils_typename(py_grad));
THPUtils_assertRet(-1, self != (THPVariable*)py_grad,
"can't assign Variable as its own grad");
auto& grad = ((THPVariable*)py_grad)->cdata;
auto& sparseType = var.type().toBackend(var.is_cuda() ? kSparseCUDA : kSparseCPU);
THPUtils_assertRet(-1, grad.type() == var.type() || grad.type() == sparseType,
"assigned grad has data of a different type");
if (var.type().is_cuda()) {
THPUtils_assertRet(-1, grad.get_device() == var.get_device(),
"assigned grad has data located on a different device");
}
THPUtils_assertRet(-1, grad.sizes().equals(var.sizes()),
"assigned grad has data of a different size");
var.grad() = grad;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_volatile(THPVariable *self)
{
const char* msg = "volatile was removed (Variable.volatile is always False)";
PyErr_WarnEx(PyExc_UserWarning, msg, 1);
Py_RETURN_FALSE;
}
int THPVariable_set_volatile(THPVariable *self, PyObject *obj)
{
return PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
}
PyObject *THPVariable_get_output_nr(THPVariable *self)
{
HANDLE_TH_ERRORS
const auto output_nr = static_cast<long>(self->cdata.output_nr());
return PyInt_FromLong(output_nr);
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_requires_grad(THPVariable *self)
{
HANDLE_TH_ERRORS
return PyBool_FromLong(self->cdata.requires_grad());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assertRet(-1, PyBool_Check(obj), "requires_grad must be a bool");
auto& var = self->cdata;
if (!var.is_leaf()) {
const char *hint = "";
if (obj == Py_False) {
hint = " If you want to use a computed variable in a subgraph "
"that doesn't require differentiation use "
"var_no_grad = var.detach().";
}
THPUtils_setError("you can only change requires_grad flags of leaf variables.%s", hint);
return -1;
}
var.set_requires_grad(obj == Py_True);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_name(THPVariable* self)
{
if (self->cdata.name() == "")
Py_RETURN_NONE;
return THPUtils_packString(self->cdata.name().c_str());
}
PyObject *THPVariable_get_backwards_hooks(THPVariable *self)
{
HANDLE_TH_ERRORS
if (self->backward_hooks) {
Py_INCREF(self->backward_hooks);
return self->backward_hooks;
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj)
{
HANDLE_TH_ERRORS
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_XDECREF(self->backward_hooks);
self->backward_hooks = obj;
self->cdata.clear_hooks();
if (obj) {
self->cdata.add_hook(std::make_shared<PyFunctionPreHook>(obj, 0));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_base(THPVariable *self)
{
HANDLE_TH_ERRORS
if (self->cdata.is_view()) {
return THPVariable_Wrap(self->cdata.base());
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_shape(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& self_ = self->cdata;
auto sizes = self_.sizes();
return THPSize_New(sizes.size(), (int64_t *)sizes.data());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_cuda(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& self_ = self->cdata;
return torch::autograd::utils::wrap(self_.is_cuda());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_sparse(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& self_ = self->cdata;
return torch::autograd::utils::wrap(self_.is_sparse());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_dtype(THPVariable *self)
{
HANDLE_TH_ERRORS
auto& self_ = self->cdata;
return torch::autograd::utils::wrap(torch::getDtype(self_.type().scalarType(), self_.type().is_cuda()));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_layout(THPVariable* self, PyObject* args) {
HANDLE_TH_ERRORS
auto& self_ = self->cdata;
return torch::autograd::utils::wrap(torch::getLayout(self_.type().backend()));
END_HANDLE_TH_ERRORS
}
static struct PyGetSetDef THPVariable_properties[] = {
{"_cdata", (getter)THPVariable_get_cdata, nullptr, nullptr, nullptr},
{"_version", (getter)THPVariable_get_version, nullptr, nullptr, nullptr},
{"grad_fn", (getter)THPVariable_get_grad_fn, nullptr, nullptr, nullptr},
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, nullptr, nullptr},
{"is_leaf", (getter)THPVariable_is_leaf, nullptr, nullptr, nullptr},
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, nullptr, nullptr},
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr}, // only for legacy reasons
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr},
{"_base", (getter)THPVariable_get_base, nullptr, nullptr, nullptr},
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, nullptr, nullptr},
{"output_nr", (getter)THPVariable_get_output_nr, nullptr, nullptr, nullptr},
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, nullptr, nullptr},
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
{"name", (getter)THPVariable_get_name, nullptr, nullptr, nullptr},
{"shape", (getter)THPVariable_get_shape, nullptr, nullptr, nullptr},
{"is_cuda", (getter)THPVariable_is_cuda, nullptr, nullptr, nullptr},
{"is_sparse", (getter)THPVariable_is_sparse, nullptr, nullptr, nullptr},
{"dtype", (getter)THPVariable_dtype, NULL, NULL, NULL},
{"layout", (getter)THPVariable_layout, NULL, NULL, NULL},
{nullptr}
};
static PyMappingMethods THPVariable_as_mapping = {
THPVariable_length,
THPVariable_getitem,
THPVariable_setitem,
};
PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._VariableBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPVariable_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
&THPVariable_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
(traverseproc)THPVariable_traverse, /* tp_traverse */
(inquiry)THPVariable_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
THPVariable_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
THPVariable_pyinit, /* tp_init */
0, /* tp_alloc */
THPVariable_pynew /* tp_new */
};
namespace torch { namespace autograd {
extern PyMethodDef variable_methods[];
extern void initTorchFunctions(PyObject *module);
}}
bool THPVariable_initModule(PyObject *module)
{
static std::vector<PyMethodDef> methods;
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
THPVariableType.tp_methods = methods.data();
if (PyType_Ready(&THPVariableType) < 0)
return false;
Py_INCREF(&THPVariableType);
PyModule_AddObject(module, "_VariableBase", (PyObject *)&THPVariableType);
torch::autograd::initTorchFunctions(module);
return true;
}