Files
pytorch/test/cpp/jit/test_backend_compiler_lib.cpp
Nikita Shulga 4c4525fa5c Compile without -Wno-unused-variable (take 2) (#66041)
Summary:
Delete `-Wno-unused-variable` from top level `CMakeLists.txt`
Still suppress those warnings for tests and `torch_python`

Delete number of unused variables from caffe2 code
Use `(void)var;` to suppress unused variable in range loops
Use `C10_UNUSED` for global constructors and use `constexpr` instead of `static` for global constants

Do not delete `caffe2::OperatorBase::Output` calls as they have side effects

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66041

Reviewed By: ngimel

Differential Revision: D31360142

Pulled By: malfet

fbshipit-source-id: 6fdfb9f91efdc49ca984a2f2a17ee377d28210c8
2021-10-04 20:39:39 -07:00

134 lines
4.7 KiB
C++

#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_exception.h>
namespace torch {
namespace jit {
// Implementation of a PyTorch Backend that can process, compile and execute
// TorchScript Modules composed of 'add' and 'sub' operators. It just supports
// for modules that implement a sum or subtraction of 2 inputs (i.e. in1 + in2
// or in1 - in2). Hence the methods of the models expect exactly 2 inputs of
// type Tensor. This backend is used to demonstrate the flow of compilation and
// execution with minimum amount of work. It's not intended to a practical
// backend that can be used for actual inference.
// Implementation details:
//
// Compilation
// 1. A backend with minimum compilation features, "backend_with_compiler_demo"
// is added.
// 2. The compilation happens AOT in the preprocess function registered to this
// backend.
// 3. Compiled results are stored in a string blob for each method. They are
// serialized to the lowered module with __getstate__ function.
// 4. Error message with model source code is thrown, for features not handled
// by the backend compiler.
//
// Runtime
// 1. The compiled blob is loaded in __setstate__ method.
// 2. The compile function of the backend: parse the preprocessed blob to the
// format (a list of tokens) that the backend can understand.
// 3. The execute function of the backend executes the specified method
// (handle).
namespace {
std::vector<std::tuple<std::string, int64_t>> parseMethodHandle(
const std::string& blob) {
std::vector<std::tuple<std::string, int64_t>> result;
std::stringstream s_stream(blob);
constexpr char debug_handle_token[] = "<debug_handle>";
while (s_stream.good()) {
std::string substr;
getline(s_stream, substr, ',');
auto debug_handle_pos = substr.find(debug_handle_token);
int64_t debug_handle{-1};
auto instruction = substr.substr(0);
if (debug_handle_pos != std::string::npos) {
instruction = substr.substr(0, debug_handle_pos);
debug_handle = stoi(substr.substr(debug_handle_pos + 14));
}
result.push_back(std::make_tuple(instruction, debug_handle));
}
return result;
}
} // namespace
class BackendWithCompiler : public PyTorchBackendInterface {
public:
// Constructor.
// NOLINTNEXTLINE(modernize-use-equals-default)
explicit BackendWithCompiler() {}
// NOLINTNEXTLINE(modernize-use-override)
virtual ~BackendWithCompiler() = default;
bool is_available() override {
return true;
}
// Since the actual compilation is done AOT,
c10::impl::GenericDict compile(
c10::IValue processed,
c10::impl::GenericDict method_compile_spec) override {
auto dict = processed.toGenericDict();
auto handles =
c10::Dict<std::string, std::vector<std::tuple<std::string, int64_t>>>();
for (const auto& kv : dict) {
auto tokens = parseMethodHandle(kv.value().toStringRef());
handles.insert(kv.key().toStringRef(), tokens);
}
return c10::impl::toGenericDict(handles);
}
c10::impl::GenericList execute(
c10::IValue handle,
c10::impl::GenericList inputs) override {
TORCH_INTERNAL_ASSERT(inputs.size() == 2);
c10::IValue val0 = inputs[0];
at::Tensor x = val0.toTensor();
c10::IValue val1 = inputs[1];
at::Tensor h = val1.toTensor();
c10::List<at::Tensor> output_list;
for (const auto& token : handle.toList()) {
IValue val = token;
auto instruction = val.toTuple()->elements()[0].toStringRef();
auto debug_handle = val.toTuple()->elements()[1].toInt();
double const_val = 1.0;
try {
if (instruction.rfind("prim::Constant", 0) == 0) {
TORCH_CHECK(
instruction.size() > 15,
"Constant value is expected in ",
instruction);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto sub = instruction.substr(15);
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
const_val = stod(sub);
} else if (instruction == "aten::add") {
output_list.emplace_back(x.add(h, const_val));
} else if (instruction == "aten::sub") {
output_list.emplace_back(x.sub(h, const_val));
} else {
TORCH_CHECK(
false,
"Instruction, ",
instruction,
" is not supported. ",
"Contact the backend POC for details. ");
}
} catch (c10::Error& e) {
TORCH_DELEGATED_BACKEND_THROW(false, e.what(), debug_handle);
}
}
return c10::impl::toList(output_list);
}
};
namespace {
constexpr auto backend_name = "backend_with_compiler_demo";
static auto cls = torch::jit::backend<BackendWithCompiler>(backend_name);
} // namespace
} // namespace jit
} // namespace torch