mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34047 This PR integrates the added xnnpack conv2d and linear op via custom class registration for packed weights. The packed struct is serializable. Test Plan: python test test/test_xnnpack_integration.py Imported from OSS Differential Revision: D20185657 fbshipit-source-id: fc7e692d8f913e493b293b02d92f4e78536d7698
365 lines
16 KiB
Python
365 lines
16 KiB
Python
from __future__ import division
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.backends.xnnpack
|
|
from torch.nn import functional as F
|
|
import torch.testing._internal.hypothesis_utils as hu
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
from hypothesis import given, assume
|
|
from hypothesis import strategies as st
|
|
import io
|
|
|
|
|
|
@unittest.skipUnless(torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests."
|
|
" Please build with USE_XNNPACK=1.")
|
|
class TestXNNPACKOps(TestCase):
|
|
@given(batch_size=st.integers(0, 3),
|
|
data_shape=hu.array_shapes(1, 3, 2, 64),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans())
|
|
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
|
|
data_shape = [batch_size] + list(data_shape)
|
|
input_data = torch.rand(data_shape)
|
|
weight = torch.rand((weight_output_dim, data_shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand((weight_output_dim))
|
|
else:
|
|
bias = None
|
|
ref_result = F.linear(input_data, weight, bias)
|
|
packed_weight_bias = torch.ops._xnnpack.linear_prepack(weight, bias)
|
|
output_linear_xnnpack = torch.ops._xnnpack.linear_packed(input_data, packed_weight_bias)
|
|
torch.testing.assert_allclose(ref_result, output_linear_xnnpack, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans())
|
|
def test_conv2d(self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
use_bias):
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >=
|
|
dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >=
|
|
dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand((output_channels))
|
|
|
|
ref_result = F.conv2d(input_data, weight, bias,
|
|
strides, paddings, dilations, groups)
|
|
packed_weight_bias = torch.ops._xnnpack.conv2d_prepack(weight, bias,
|
|
strides, paddings, dilations, groups)
|
|
xnnpack_result = torch.ops._xnnpack.conv2d_packed(input_data, packed_weight_bias)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
@unittest.skipUnless(torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests."
|
|
" Please build with USE_XNNPACK=1.")
|
|
class TestXNNPACKSerDes(TestCase):
|
|
@given(batch_size=st.integers(0, 3),
|
|
data_shape=hu.array_shapes(1, 3, 2, 64),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans())
|
|
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self, weight, bias=None):
|
|
super(Linear, self).__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, self.bias)
|
|
|
|
class LinearPrePacked(torch.nn.Module):
|
|
def __init__(self, weight, bias=None):
|
|
super(LinearPrePacked, self).__init__()
|
|
self.packed_weight_bias = torch.ops._xnnpack.linear_prepack(weight, bias)
|
|
|
|
def forward(self, x):
|
|
return torch.ops._xnnpack.linear_packed(x, self.packed_weight_bias)
|
|
|
|
data_shape = [batch_size] + list(data_shape)
|
|
weight = torch.rand((weight_output_dim, data_shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand((weight_output_dim))
|
|
else:
|
|
bias = None
|
|
scripted_linear = torch.jit.script(Linear(weight, bias))
|
|
scripted_linear_prepacked = torch.jit.script(LinearPrePacked(weight, bias))
|
|
input_data = torch.rand(data_shape)
|
|
ref_result = scripted_linear(input_data)
|
|
output_linear_xnnpack = scripted_linear_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, output_linear_xnnpack, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand(data_shape)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_linear, buffer)
|
|
buffer.seek(0)
|
|
deserialized_linear = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_linear_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_linear_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_linear(input_data)
|
|
output_linear_xnnpack = deserialized_linear_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, output_linear_xnnpack, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans())
|
|
def test_conv2d(self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
use_bias):
|
|
class Conv2D(torch.nn.Module):
|
|
def __init__(self, weight, bias, strides, paddings, dilations, groups):
|
|
super(Conv2D, self).__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv2d(x, self.weight, self.bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
|
|
class Conv2DPrePacked(torch.nn.Module):
|
|
def __init__(self, weight, bias, strides, paddings, dilations, groups):
|
|
super(Conv2DPrePacked, self).__init__()
|
|
self.packed_weight_bias = torch.ops._xnnpack.conv2d_prepack(weight, bias,
|
|
strides, paddings, dilations, groups)
|
|
|
|
def forward(self, x):
|
|
return torch.ops._xnnpack.conv2d_packed(x, self.packed_weight_bias)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >=
|
|
dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >=
|
|
dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand((output_channels))
|
|
|
|
scripted_conv2d = torch.jit.script(Conv2D(weight, bias,
|
|
strides, paddings, dilations, groups))
|
|
scripted_conv2d_prepacked = torch.jit.script(Conv2DPrePacked(
|
|
weight, bias, strides, paddings, dilations, groups))
|
|
ref_result = scripted_conv2d(input_data)
|
|
xnnpack_result = scripted_conv2d_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_conv2d(input_data)
|
|
xnnpack_result = deserialized_conv2d_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
linear_weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans())
|
|
def test_combined_model(self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
linear_weight_output_dim,
|
|
use_bias):
|
|
class M(torch.nn.Module):
|
|
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
|
|
strides, paddings, dilations, groups):
|
|
super(M, self).__init__()
|
|
self.conv_weight = conv_weight
|
|
self.conv_bias = conv_bias
|
|
self.linear_weight = linear_weight
|
|
self.linear_bias = linear_bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(x, self.conv_weight, self.conv_bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = F.linear(o, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
class MPrePacked(torch.nn.Module):
|
|
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
|
|
strides, paddings, dilations, groups):
|
|
super(MPrePacked, self).__init__()
|
|
self.conv2d_packed_weight_bias = \
|
|
torch.ops._xnnpack.conv2d_prepack(conv_weight, conv_bias,
|
|
strides, paddings, dilations, groups)
|
|
self.linear_packed_weight_bias = \
|
|
torch.ops._xnnpack.linear_prepack(linear_weight, linear_bias)
|
|
|
|
def forward(self, x):
|
|
o = torch.ops._xnnpack.conv2d_packed(x, self.conv2d_packed_weight_bias)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = torch.ops._xnnpack.linear_packed(o, self.linear_packed_weight_bias)
|
|
return F.relu(o)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >=
|
|
dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >=
|
|
dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
conv_bias = None
|
|
if use_bias:
|
|
conv_bias = torch.rand((output_channels))
|
|
|
|
# This is done just to find the output shape of the result
|
|
# so that the shape of weight for the following linear layer
|
|
# can be determined.
|
|
result = F.conv2d(input_data, conv_weight, conv_bias,
|
|
strides, paddings, dilations, groups)
|
|
linear_input_shape = result.shape[1]
|
|
|
|
input_data = input_data.contiguous(memory_format=torch.channels_last)
|
|
linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape))
|
|
linear_bias = None
|
|
if use_bias:
|
|
linear_bias = torch.rand((linear_weight_output_dim))
|
|
|
|
scripted_m = torch.jit.script(M(conv_weight, conv_bias, linear_weight,
|
|
linear_bias, strides, paddings, dilations, groups))
|
|
scripted_m_prepacked = torch.jit.script(
|
|
MPrePacked(
|
|
conv_weight,
|
|
conv_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
strides,
|
|
paddings,
|
|
dilations,
|
|
groups))
|
|
ref_result = scripted_m(input_data)
|
|
xnnpack_result = scripted_m_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
input_data = input_data.contiguous(memory_format=torch.channels_last)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_m, buffer)
|
|
buffer.seek(0)
|
|
deserialized_m = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_m_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_m_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_m(input_data)
|
|
xnnpack_result = deserialized_m_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|