Files
pytorch/test/test_xnnpack_integration.py
Kimish Patel 4c30fc7238 Integrate XNNPACK with custom class for packing weights. (#34047)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34047

This PR integrates the added xnnpack conv2d and linear op via
custom class registration for packed weights. The packed struct
is serializable.

Test Plan:
python test test/test_xnnpack_integration.py

Imported from OSS

Differential Revision: D20185657

fbshipit-source-id: fc7e692d8f913e493b293b02d92f4e78536d7698
2020-03-14 12:51:56 -07:00

365 lines
16 KiB
Python

from __future__ import division
import unittest
import torch
import torch.backends.xnnpack
from torch.nn import functional as F
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import TestCase, run_tests
from hypothesis import given, assume
from hypothesis import strategies as st
import io
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
class TestXNNPACKOps(TestCase):
@given(batch_size=st.integers(0, 3),
data_shape=hu.array_shapes(1, 3, 2, 64),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans())
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
data_shape = [batch_size] + list(data_shape)
input_data = torch.rand(data_shape)
weight = torch.rand((weight_output_dim, data_shape[-1]))
if use_bias:
bias = torch.rand((weight_output_dim))
else:
bias = None
ref_result = F.linear(input_data, weight, bias)
packed_weight_bias = torch.ops._xnnpack.linear_prepack(weight, bias)
output_linear_xnnpack = torch.ops._xnnpack.linear_packed(input_data, packed_weight_bias)
torch.testing.assert_allclose(ref_result, output_linear_xnnpack, rtol=1e-2, atol=1e-3)
@given(batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans())
def test_conv2d(self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
use_bias):
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >=
dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >=
dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
bias = None
if use_bias:
bias = torch.rand((output_channels))
ref_result = F.conv2d(input_data, weight, bias,
strides, paddings, dilations, groups)
packed_weight_bias = torch.ops._xnnpack.conv2d_prepack(weight, bias,
strides, paddings, dilations, groups)
xnnpack_result = torch.ops._xnnpack.conv2d_packed(input_data, packed_weight_bias)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
class TestXNNPACKSerDes(TestCase):
@given(batch_size=st.integers(0, 3),
data_shape=hu.array_shapes(1, 3, 2, 64),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans())
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
class Linear(torch.nn.Module):
def __init__(self, weight, bias=None):
super(Linear, self).__init__()
self.weight = weight
self.bias = bias
def forward(self, x):
return F.linear(x, self.weight, self.bias)
class LinearPrePacked(torch.nn.Module):
def __init__(self, weight, bias=None):
super(LinearPrePacked, self).__init__()
self.packed_weight_bias = torch.ops._xnnpack.linear_prepack(weight, bias)
def forward(self, x):
return torch.ops._xnnpack.linear_packed(x, self.packed_weight_bias)
data_shape = [batch_size] + list(data_shape)
weight = torch.rand((weight_output_dim, data_shape[-1]))
if use_bias:
bias = torch.rand((weight_output_dim))
else:
bias = None
scripted_linear = torch.jit.script(Linear(weight, bias))
scripted_linear_prepacked = torch.jit.script(LinearPrePacked(weight, bias))
input_data = torch.rand(data_shape)
ref_result = scripted_linear(input_data)
output_linear_xnnpack = scripted_linear_prepacked(input_data)
torch.testing.assert_allclose(ref_result, output_linear_xnnpack, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand(data_shape)
buffer = io.BytesIO()
torch.jit.save(scripted_linear, buffer)
buffer.seek(0)
deserialized_linear = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_linear_prepacked, buffer)
buffer.seek(0)
deserialized_linear_prepacked = torch.jit.load(buffer)
ref_result = deserialized_linear(input_data)
output_linear_xnnpack = deserialized_linear_prepacked(input_data)
torch.testing.assert_allclose(ref_result, output_linear_xnnpack, rtol=1e-2, atol=1e-3)
@given(batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans())
def test_conv2d(self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
use_bias):
class Conv2D(torch.nn.Module):
def __init__(self, weight, bias, strides, paddings, dilations, groups):
super(Conv2D, self).__init__()
self.weight = weight
self.bias = bias
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
class Conv2DPrePacked(torch.nn.Module):
def __init__(self, weight, bias, strides, paddings, dilations, groups):
super(Conv2DPrePacked, self).__init__()
self.packed_weight_bias = torch.ops._xnnpack.conv2d_prepack(weight, bias,
strides, paddings, dilations, groups)
def forward(self, x):
return torch.ops._xnnpack.conv2d_packed(x, self.packed_weight_bias)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >=
dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >=
dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
bias = None
if use_bias:
bias = torch.rand((output_channels))
scripted_conv2d = torch.jit.script(Conv2D(weight, bias,
strides, paddings, dilations, groups))
scripted_conv2d_prepacked = torch.jit.script(Conv2DPrePacked(
weight, bias, strides, paddings, dilations, groups))
ref_result = scripted_conv2d(input_data)
xnnpack_result = scripted_conv2d_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d, buffer)
buffer.seek(0)
deserialized_conv2d = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d_prepacked, buffer)
buffer.seek(0)
deserialized_conv2d_prepacked = torch.jit.load(buffer)
ref_result = deserialized_conv2d(input_data)
xnnpack_result = deserialized_conv2d_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@given(batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
linear_weight_output_dim=st.integers(2, 64),
use_bias=st.booleans())
def test_combined_model(self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
linear_weight_output_dim,
use_bias):
class M(torch.nn.Module):
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
strides, paddings, dilations, groups):
super(M, self).__init__()
self.conv_weight = conv_weight
self.conv_bias = conv_bias
self.linear_weight = linear_weight
self.linear_bias = linear_bias
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.conv_weight, self.conv_bias,
self.strides, self.paddings, self.dilations, self.groups)
o = o.permute([0, 2, 3, 1])
o = F.linear(o, self.linear_weight, self.linear_bias)
return F.relu(o)
class MPrePacked(torch.nn.Module):
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
strides, paddings, dilations, groups):
super(MPrePacked, self).__init__()
self.conv2d_packed_weight_bias = \
torch.ops._xnnpack.conv2d_prepack(conv_weight, conv_bias,
strides, paddings, dilations, groups)
self.linear_packed_weight_bias = \
torch.ops._xnnpack.linear_prepack(linear_weight, linear_bias)
def forward(self, x):
o = torch.ops._xnnpack.conv2d_packed(x, self.conv2d_packed_weight_bias)
o = o.permute([0, 2, 3, 1])
o = torch.ops._xnnpack.linear_packed(o, self.linear_packed_weight_bias)
return F.relu(o)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >=
dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >=
dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
conv_bias = None
if use_bias:
conv_bias = torch.rand((output_channels))
# This is done just to find the output shape of the result
# so that the shape of weight for the following linear layer
# can be determined.
result = F.conv2d(input_data, conv_weight, conv_bias,
strides, paddings, dilations, groups)
linear_input_shape = result.shape[1]
input_data = input_data.contiguous(memory_format=torch.channels_last)
linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape))
linear_bias = None
if use_bias:
linear_bias = torch.rand((linear_weight_output_dim))
scripted_m = torch.jit.script(M(conv_weight, conv_bias, linear_weight,
linear_bias, strides, paddings, dilations, groups))
scripted_m_prepacked = torch.jit.script(
MPrePacked(
conv_weight,
conv_bias,
linear_weight,
linear_bias,
strides,
paddings,
dilations,
groups))
ref_result = scripted_m(input_data)
xnnpack_result = scripted_m_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
input_data = input_data.contiguous(memory_format=torch.channels_last)
buffer = io.BytesIO()
torch.jit.save(scripted_m, buffer)
buffer.seek(0)
deserialized_m = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_m_prepacked, buffer)
buffer.seek(0)
deserialized_m_prepacked = torch.jit.load(buffer)
ref_result = deserialized_m(input_data)
xnnpack_result = deserialized_m_prepacked(input_data)
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
if __name__ == "__main__":
run_tests()