Files
pytorch/torch/_inductor/codegen/multi_kernel.py
Blaine Burton Rister 49fde426ba [Inductor] Use a helper function to tell if a tree or prefix is a reduction (#141738)
Preparatory refactor for https://github.com/pytorch/pytorch/pull/137243. Previously, we would typically check for reductions by `tree.prefix == "r"`. This PR moves the check into a helper function. This makes it easier to generalize the code to multi-dimensional reductions, which could have multiple prefixes like `("r0_", "r1_")`.

Tested by the existing CI.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141738
Approved by: https://github.com/jansel
2024-11-30 22:38:13 +00:00

452 lines
15 KiB
Python

# mypy: allow-untyped-defs
import functools
import logging
import os
import pathlib
from typing import Any, List
from torch._inductor.metrics import get_metric_table, is_metric_table_enabled
from torch.utils._ordered_set import OrderedSet
from .. import config
from ..codecache import code_hash, get_path, TritonFuture
from ..runtime.benchmarking import benchmarker
from ..runtime.triton_heuristics import (
cooperative_reduction_grid,
grid,
maybe_cooperative_reduction_grid,
)
from ..utils import cache_on_self, IndentedBuffer
from ..virtualized import V
from .common import TensorArg, WorkspaceArg
log = logging.getLogger(__name__)
def get_kernel_argdefs(kernel):
arg_defs, _, _, _ = kernel.args.python_argdefs()
return arg_defs
def _get_all_args(args_list, arg_types_list=None):
all_args = max(args_list, key=len)[:]
arg_types = max(arg_types_list, key=len)[:] if arg_types_list is not None else None
for args in args_list:
assert set(args).issubset(set(all_args)), f"{args} v.s. {all_args}"
return all_args, arg_types
def get_all_kernel_argdefs(kernels):
"""
The logic here must match with `get_all_call_args`, except no need to get arg_types here
"""
argdefs_list = [get_kernel_argdefs(kernel) for kernel in kernels]
return _get_all_args(argdefs_list)[0]
def get_all_call_args(call_args_list, arg_types_list):
"""
Passed in the call_args for each subkernel and return the call_args for the
combined multi-kernel.
Note an algorithm as follows does not always work:
```
all_call_args: Dict[
Any, None
] = {} # use a dict rather than set to maintain insertion order
for call_args in call_args_list:
all_call_args.update({arg: None for arg in call_args})
all_call_args = list(all_call_args.keys())
```
It will fail if any kernel has the same argument passed in multiple times.
Check test_pass_same_arg_multi_times in test_multi_kernel.py
Instead, we pick the longest call args and assert that other call args are
a subset of it.
"""
return _get_all_args(call_args_list, arg_types_list)
def get_numel_argdefs(kernel):
numel_argdefs = [
f"{tree.prefix}numel"
for tree in kernel.range_trees
if not tree.is_reduction or kernel.inside_reduction
]
return numel_argdefs
class MultiKernelState:
"""
Maintain state of multi-kernel compilation so we don't define duplicated
multi-kernel for the same set of sub-kernels.
V.graph.wrapper_code has a reference to MultiKernelState instance.
"""
def __init__(self):
self.subkernel_to_kernel_name = {}
def define_kernel(self, kernels):
"""
Previously we name the multi kernel as "multi_kernel_{kernel_names[0]}".
This has some minor issue.
E.g. for persistent reduction https://gist.github.com/shunting314/39e7c00ff8bb2055942ed5a3255d61ca ,
there are 2 flavors of non-persistent reduction:
https://gist.github.com/shunting314/056d43d35907e87efb883970b35c17d4
and
https://gist.github.com/shunting314/02ee753b65c513c54e695626afe682bd
The only different is cache eviction policy.
We should name the multi-kernel differently in these 2 cases.
"""
kernel_names = tuple(k.kernel_name for k in kernels)
if kernel_names in self.subkernel_to_kernel_name:
return self.subkernel_to_kernel_name[kernel_names]
# name the multi kernel based on the first kernel
multi_kernel_name = f"multi_kernel_{len(self.subkernel_to_kernel_name)}"
self.subkernel_to_kernel_name[kernel_names] = multi_kernel_name
if V.graph.cpp_wrapper:
# we should not generate any python code for multi-kernel during
# the second pass of cpp-wrapper.
return multi_kernel_name
buf = IndentedBuffer()
buf.writeline("")
buf.writeline(
f"{multi_kernel_name} = async_compile.multi_kernel({multi_kernel_name!r}, ["
)
with buf.indent():
for name in kernel_names:
buf.writeline(f"{name},")
buf.writeline("])")
wrapper = V.graph.wrapper_code
wrapper.header.splice(buf)
if config.triton.autotune_at_compile_time:
wrapper.kernel_autotune_defs.splice(buf)
return multi_kernel_name
class MultiKernel:
"""
This class maintains the compile time state for multi kernels.
Assume we do codegen for a MultiKernel encapsulating kernel1 and kernel2.
The generated definition for the multi-kernel will looks like:
```
multi_kernel_kernel1 = MultiKernelCall([kernel1, kernel2], multi_kernel_definition_code)
```
Here is an concrete example: https://gist.github.com/shunting314/d9f3fb6bc6cee3dbae005825ca196d39
"""
def __init__(self, kernels):
assert len(kernels) >= 2
self.kernels = kernels
self.kernel_name = V.graph.wrapper_code.multi_kernel_state.define_kernel(
kernels
)
# need this since some code in inductor check if the kernel object has an args
# attribute to decide if it's a non-null kernel.
self.args = object()
@staticmethod
def _merge_workspace_args(left: List[WorkspaceArg], right: List[WorkspaceArg]):
if left == right:
return left
result = {x.inner_name: x for x in left}
for arg in right:
if arg.inner_name in result:
result[arg.inner_name] = WorkspaceArg.maximum(
result[arg.inner_name], arg
)
else:
result[arg.inner_name] = arg
return [*result.values()]
@staticmethod
def merge_workspaces_inplace(kernels):
if len(kernels) < 2:
return
# All kernels must share the same workspace
workspace_args = functools.reduce(
MultiKernel._merge_workspace_args,
[kernel.args.workspace_args for kernel in kernels],
)
for kernel in kernels:
kernel.args.workspace_args = workspace_args
return workspace_args
def get_grid_fn(self):
fns = {kernel._get_grid_fn() for kernel in self.kernels}
if len(fns) == 1:
return next(iter(fns))
elif len(fns) == 2:
assert fns == {cooperative_reduction_grid, grid}
V.graph.wrapper_code.add_import_once(
f"from {maybe_cooperative_reduction_grid.__module__} import maybe_cooperative_reduction_grid"
)
return maybe_cooperative_reduction_grid
else:
raise NotImplementedError(fns)
def call_kernel(self, kernel_name):
"""
Collect the union of arguments from all subkernels as the arguments
for the multi-kernel.
"""
assert kernel_name == self.kernel_name
V.graph.wrapper_code.write_triton_header_once()
_, call_args, _, arg_types = self.kernels[0].args.python_argdefs()
for kernel in self.kernels[1:]:
_, other_call_args, _, other_arg_types = kernel.args.python_argdefs()
assert call_args == other_call_args, (call_args, other_call_args)
assert arg_types == other_arg_types
grid: List[Any] = []
if V.graph.cpp_wrapper:
# for the second pass of cpp-wrapper codegen, we should call
# the fast kernel directly
picked_kernel = MultiKernelCall.lookup_choice(kernel_name)
kernel_name = self.kernels[picked_kernel].kernel_name
# numels for all subkernels should be the same. Use kernels[0] here
self.kernels[0].add_numel_to_call_args_and_grid(
kernel_name, call_args, arg_types, grid
)
for ws in self.kernels[0].args.workspace_args:
V.graph.wrapper_code.generate_workspace_allocation(ws)
grid_fn = self.get_grid_fn()
grid = V.graph.wrapper_code.generate_default_grid(
kernel_name, grid, grid_callable=grid_fn
)
V.graph.wrapper_code.generate_kernel_call(
kernel_name,
call_args,
grid,
arg_types=arg_types,
grid_fn=grid_fn.__name__,
)
for ws in reversed(self.kernels[0].args.workspace_args):
V.graph.wrapper_code.generate_workspace_deallocation(ws)
def codegen_nan_check(self):
wrapper = V.graph.wrapper_code
seen = set()
for k in self.kernels:
_, call_args, precompile_args, _ = k.args.python_argdefs()
for arg, precompile_arg in zip(call_args, precompile_args):
if arg in seen:
continue
seen.add(arg)
if isinstance(precompile_arg, TensorArg):
line = f"assert not {arg}.isnan().any().item()"
wrapper.writeline(line)
line = f"assert not {arg}.isinf().any().item()"
wrapper.writeline(line)
@property
def removed_buffers(self):
return OrderedSet.intersection(*[k.removed_buffers for k in self.kernels])
@property
def inplaced_to_remove(self):
return OrderedSet.intersection(*[k.inplaced_to_remove for k in self.kernels])
@property
@cache_on_self
def inplace_update_buffers(self):
"""
Make sure all kernels have the same inplace update mappings.
"""
for k in self.kernels[1:]:
assert k.inplace_update_buffers == self.kernels[0].inplace_update_buffers
return self.kernels[0].inplace_update_buffers
def warn_mix_layout(self, kernel_name: str):
pass
class MultiKernelCall:
"""
This class is called at run time to actually run the kernel
"""
def __init__(self, multi_kernel_name, kernels):
assert len(kernels) >= 2
self._kernels = kernels
self.multi_kernel_name = multi_kernel_name
self.disable_cache = os.environ.get(
"TORCHINDUCTOR_DISABLE_MULTI_KERNEL_CACHE"
) == "1" or is_metric_table_enabled("persistent_red_perf")
self.picked_kernel = None
if config.triton.multi_kernel > 1:
# manually force a subkernel to ease perf testing
picked_by_config = config.triton.multi_kernel - 2
assert picked_by_config < len(self._kernels)
self.picked_kernel = picked_by_config
elif not self.disable_cache:
self.load_cache()
self._recorded = False
def cache_file_path(self):
key = code_hash(",".join([k.fn.cache_key for k in self.kernels]))
_, _, path = get_path(key, "picked_kernel")
return pathlib.Path(path)
def load_cache(self):
assert self.picked_kernel is None
path = self.cache_file_path()
if path.exists():
with path.open() as fd:
self.picked_kernel = int(fd.read())
assert self.picked_kernel >= 0 and self.picked_kernel < len(
self._kernels
)
log.debug(
"Load picked kernel %d from cache file %s", self.picked_kernel, path
)
def store_cache(self):
assert self.picked_kernel is not None
path = self.cache_file_path()
path.parent.mkdir(parents=True, exist_ok=True)
with path.open("w") as fd:
fd.write(str(self.picked_kernel))
log.debug("Store picked kernel %d to cache file %s", self.picked_kernel, path)
@property
def kernels(self):
"""
Read results from future.
This should be called after parallel compilation is done.
In case you call this before compilation is done,
it may slow down the parallel compilation.
"""
for i, kernel in enumerate(self._kernels):
if isinstance(kernel, TritonFuture):
self._kernels[i] = kernel.result()
return self._kernels
def benchmark_sub_kernels(self, *args, **kwargs):
"""
Benchmark all the sub kernels and return the execution time
(in milliseconds) for each of time.
Unit test may mock this method to force a specific kernel to
be picked.
"""
def wrap_fn(kernel):
def inner():
args_clone, kwargs_clone = kernel.clone_args(*args, **kwargs)
return kernel.run(*args_clone, **kwargs_clone)
return inner
return [
benchmarker.benchmark_gpu(wrap_fn(kernel), rep=40)
for kernel in self.kernels
]
# record_choice and lookup_choice are helper functions for cpp-wrapper
# codegen. The first pass use record_choice to keep the choice and
# the second pass do lookup by calling lookup_choice.
#
# An alternative that reused the multi-kernel cache does not work well
# since during codegen of the second pass, it's very hard to know the
# path for the cache file. Also reading the cache file need do some IO
# which can be slower.
@staticmethod
def record_choice(multi_kernel_name, choice):
"""
Record the multi-kernel choice for cpp-wrapper first pass codegen
for the second pass.
We should do nothing if this function is not called during codegen.
"""
from torch._inductor.graph import GraphLowering
if not isinstance(V.graph, GraphLowering):
return
if not V.graph.record_multi_kernel_choice:
return
V.graph.multi_kernel_to_choice[multi_kernel_name] = choice
@staticmethod
def lookup_choice(multi_kernel_name):
# this should always been done during cpp-wrapper codegen
assert V.graph.record_multi_kernel_choice
# there should be no miss
return V.graph.multi_kernel_to_choice[multi_kernel_name]
def run(self, *args, **kwargs):
if self.picked_kernel is None:
timings = self.benchmark_sub_kernels(*args, **kwargs)
self.picked_kernel = timings.index(min(timings))
k0 = self.kernels[0]
log.debug(
"pick %dth sub-kernel in %s. Size hints %s. Reduction hint %s. Timings %s",
self.picked_kernel,
[k.inductor_meta.get("kernel_name") for k in self.kernels],
k0.size_hints,
k0.inductor_meta.get("reduction_hint"),
timings,
)
get_metric_table("persistent_red_perf").add_row(
functools.partial(self._metrics_table_row, timings)
)
if not self.disable_cache:
self.store_cache()
if not self._recorded:
self._recorded = True
self.record_choice(self.multi_kernel_name, self.picked_kernel)
self.run = self.kernels[self.picked_kernel].run # type: ignore[method-assign]
self.run(*args, **kwargs)
def _metrics_table_row(self, timings):
def get_kernel_path(k):
return k.fn.fn.__code__.co_filename
k0 = self.kernels[0]
row = {
"size_hints": k0.size_hints,
"reduction_hint": k0.inductor_meta.get("reduction_hint"),
}
max_kernels = 4
assert len(timings) <= max_kernels
for i in range(max_kernels):
if i < len(self.kernels):
row[f"kernel{i}_path"] = get_kernel_path(self.kernels[i])
row[f"kernel{i}_latency"] = timings[i]
else:
row[f"kernel{i}_path"] = ""
row[f"kernel{i}_latency"] = ""
return row