mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
TODO: - [x] Add handling for when forward is invoked multiple times without invoking backward, so that the fwd/backward states are out of sync - [x] Update rng state initialization to take from correct device - [x] Tests - [x] handling of retain_graph - [x] respect fallback random Fix for https://github.com/pytorch/pytorch/issues/130123. Updates the aot_eager and cudagraph compilation of `run_and_save_rng_state` to use the new mechanism added by https://github.com/pytorch/pytorch/pull/114068 for CUDAGraph safe rng states. We have a pair of rng states for the fwd and backward respectively. In both forward and backward the rng op will get run with `graphsafe_run_with_rng_state` which takes in RNG state and it hooks onto the current RNG generator before running the operator. The rng states for fwd/backward are initialized with the same value. We ensure that for any given run of the forward, the corresponding backward run will have the same rng states for the op as was observed in the forward. ``` ===== Forward graph 1 ===== /data/users/eellison/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): def forward(self, primals_1: "f32[4, 4][4, 1]cuda:0", primals_2: "f32[4, 4][4, 1]cuda:0", fwd_rng_state_0): sin: "f32[4, 4][4, 1]cuda:0" = torch.ops.aten.sin.default(primals_1) # No stacktrace found for following nodes graphsafe_run_with_rng_state = torch.ops.higher_order.graphsafe_run_with_rng_state(torch.ops.aten.rand.default, [4, 4], dtype = torch.float32, device = device(type='cuda', index=0), pin_memory = False, rng_state = fwd_rng_state_0); fwd_rng_state_0 = None ... ===== Backward graph 1 ===== def forward(self, primals_1: "f32[4, 4][4, 1]cuda:0", primals_2: "f32[4, 4][4, 1]cuda:0", tangents_1: "f32[4, 4][4, 1]cuda:0", bwd_rng_state_0): sin: "f32[4, 4][4, 1]cuda:0" = torch.ops.aten.sin.default(primals_1) # No stacktrace found for following nodes graphsafe_run_with_rng_state = torch.ops.higher_order.graphsafe_run_with_rng_state(torch.ops.aten.rand.default, [4, 4], dtype = torch.float32, device = device(type='cuda', index=0), pin_memory = False, rng_state = bwd_rng_state_0); bwd_rng_state_0 = None ``` There is some extra complication when a user either calls backward with retain_graph, or calls the backward in a different order as they called the forward. If a user has state fwd_rng_state0, bwd_rng_state0 and calls: - fwd0: fwd_rng_state0 -> fwd_rng_state1 - fwd1: fwd_rng_state1 -> fwd_rng_state2 - bwd1 - bwd0 Then naively, when bwd1 is invoked the bwd rng states would not be equal to the same states that were observed in fwd1. I added handling of this in the aot runtime wrappers to detect pending backward invocations, and the current position of the bwd rng states, and to update when necesssary. Other notes: Because nodes which appear later in the forward appear earlier in the backward, we need a separate rng state for each operator. If we reused the rng across ops, the forward and backward would be run with different rng states. I.e., not applied in the same order. Questions for reviewers: This does change numerics, bc the rng of the op is now taken from the input rng state instead of whatever the rng would be midway through running the graph. Technically, we only need this for cuda graph. But, I'd prefer to not have a rng divergence just for cudagraph. I am making it respect `fallback_random`. Edit: decided to apply to non cudagraphs as well, so long as fallback_random is not set I'm initializing the rng states by cloning the current state. If you had something like 5 different rands in the model with the same shape, theyd all get the same value. This doesn't seem great. I could use some other initialization scheme like taking seed from graph position, or etc etc. Not sure. Let me know thoughts. Edit: updated to be taken from randint() Update: initializing rng states from torch.randint.. Pull Request resolved: https://github.com/pytorch/pytorch/pull/146878 Approved by: https://github.com/anijain2305, https://github.com/bdhirsh
2062 lines
76 KiB
Python
2062 lines
76 KiB
Python
# mypy: allow-untyped-defs
|
|
import copy
|
|
import functools
|
|
import heapq
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import operator
|
|
import os
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass, replace
|
|
from typing import Callable, Optional, TYPE_CHECKING, Union
|
|
|
|
import torch
|
|
import torch._inductor.inductor_prims
|
|
import torch.fx as fx
|
|
import torch.utils._pytree as pytree
|
|
from torch._functorch._activation_checkpointing.ac_logging_utils import (
|
|
create_structured_trace_for_min_cut_info,
|
|
)
|
|
from torch.fx.experimental._backward_state import BackwardState
|
|
from torch.fx.experimental.proxy_tensor import is_sym_node, py_sym_types
|
|
from torch.fx.experimental.sym_node import magic_methods, method_to_operator
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
find_symbol_binding_fx_nodes,
|
|
free_symbols,
|
|
hint_int,
|
|
is_symbol_binding_fx_node,
|
|
)
|
|
from torch.fx.passes import graph_drawer
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils.checkpoint import CheckpointPolicy
|
|
|
|
from . import config
|
|
from ._activation_checkpointing.graph_info_provider import GraphInfoProvider
|
|
from ._activation_checkpointing.knapsack import (
|
|
dp_knapsack,
|
|
greedy_knapsack,
|
|
ilp_knapsack,
|
|
)
|
|
from ._activation_checkpointing.knapsack_evaluator import KnapsackEvaluator
|
|
from ._aot_autograd.logging_utils import get_aot_graph_name
|
|
from ._aot_autograd.utils import get_cuda_generator_meta_val, is_with_effects
|
|
from .compile_utils import fx_graph_cse, get_aten_target
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
import sympy
|
|
|
|
|
|
AOT_PARTITIONER_DEBUG: bool = config.debug_partitioner
|
|
log: logging.Logger = logging.getLogger(__name__)
|
|
|
|
aten = torch.ops.aten
|
|
prims = torch.ops.prims
|
|
|
|
|
|
@dataclass
|
|
class OpTypes:
|
|
"""Class for keeping track of different operator categories"""
|
|
|
|
fusible_ops: OrderedSet[Callable]
|
|
compute_intensive_ops: OrderedSet[Callable]
|
|
random_ops: OrderedSet[Callable]
|
|
view_ops: OrderedSet[Callable]
|
|
recomputable_ops: OrderedSet[Callable]
|
|
|
|
def is_fusible(self, node: fx.Node):
|
|
return get_aten_target(node) in self.fusible_ops
|
|
|
|
def is_compute_intensive(self, node: fx.Node):
|
|
return get_aten_target(node) in self.compute_intensive_ops
|
|
|
|
def is_random(self, node: fx.Node):
|
|
return get_aten_target(node) in self.random_ops
|
|
|
|
def is_view(self, node: fx.Node):
|
|
return get_aten_target(node) in self.view_ops
|
|
|
|
def is_recomputable(self, node: fx.Node):
|
|
return get_aten_target(node) in self.recomputable_ops
|
|
|
|
|
|
@dataclass
|
|
class NodeInfo:
|
|
# Be careful about iterating over these explicitly, as their order may not
|
|
# be deterministic
|
|
inputs: list[fx.Node]
|
|
_required_fw_nodes: OrderedSet[fx.Node]
|
|
required_bw_nodes: OrderedSet[fx.Node]
|
|
unclaimed_nodes: OrderedSet[fx.Node]
|
|
fw_order: dict[fx.Node, int]
|
|
|
|
@functools.cached_property
|
|
def required_fw_nodes(self) -> list[fx.Node]:
|
|
return sorted(
|
|
(n for n in self._required_fw_nodes), key=lambda n: self.fw_order[n]
|
|
)
|
|
|
|
def is_required_fw(self, n: fx.Node) -> bool:
|
|
return n in self._required_fw_nodes
|
|
|
|
def is_required_bw(self, n: fx.Node) -> bool:
|
|
return n in self.required_bw_nodes
|
|
|
|
def is_unclaimed(self, n: fx.Node) -> bool:
|
|
return n in self.unclaimed_nodes
|
|
|
|
def get_fw_order(self, n: fx.Node) -> int:
|
|
assert n in self._required_fw_nodes, f"Node {n} not in fw nodes!"
|
|
return self.fw_order[n]
|
|
|
|
|
|
@dataclass
|
|
class MinCutOptions:
|
|
ban_if_used_far_apart: bool
|
|
ban_if_long_fusible_chains: bool
|
|
ban_if_materialized_backward: bool
|
|
ban_if_not_in_allowlist: bool
|
|
ban_if_reduction: bool
|
|
|
|
|
|
def must_recompute(node: fx.Node) -> bool:
|
|
return node.meta.get("recompute", None) in [
|
|
CheckpointPolicy.MUST_RECOMPUTE,
|
|
CheckpointPolicy.PREFER_RECOMPUTE,
|
|
]
|
|
|
|
|
|
def has_recomputable_ops(fx_g: fx.GraphModule) -> bool:
|
|
for node in fx_g.graph.nodes:
|
|
if must_recompute(node):
|
|
return True
|
|
return False
|
|
|
|
|
|
def has_recomputable_rng_ops(fx_g: fx.GraphModule) -> bool:
|
|
for node in fx_g.graph.nodes:
|
|
if (
|
|
must_recompute(node)
|
|
and hasattr(node.target, "tags")
|
|
and torch.Tag.nondeterministic_seeded in node.target.tags
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
def sym_node_size(node: fx.Node) -> int:
|
|
if isinstance(node.meta["val"], (torch.SymInt, torch.SymBool)):
|
|
return 1
|
|
assert isinstance(node.meta["val"], torch.SymFloat)
|
|
return 4
|
|
|
|
|
|
class InvalidNodeBase:
|
|
def __repr__(self):
|
|
return "Invalid Node"
|
|
|
|
|
|
InvalidNode = InvalidNodeBase()
|
|
|
|
|
|
def _extract_graph_with_inputs_outputs(
|
|
joint_graph: fx.Graph,
|
|
inputs: list[fx.Node],
|
|
outputs: list[fx.Node],
|
|
subgraph: Optional[str] = None,
|
|
) -> fx.Graph:
|
|
"""
|
|
Given a graph, extracts out a subgraph that takes the specified nodes as
|
|
inputs and returns the specified outputs.
|
|
|
|
This includes specifying non-placeholder nodes as inputs.
|
|
|
|
The general strategy is to initialize all inputs with proxies as we
|
|
encounter them, and trace through the graph, only keeping values which take
|
|
in valid proxies. Then, all dead code is eliminated.
|
|
"""
|
|
new_graph = fx.Graph()
|
|
env = {}
|
|
|
|
# Add new placeholder nodes in the order specified by the inputs
|
|
for node in inputs:
|
|
new_node = new_graph.placeholder(node.name)
|
|
# Can't use node_copy here as we may be turning previous call_function into placeholders
|
|
new_node.meta = node.meta
|
|
env[node] = new_node
|
|
|
|
for node in joint_graph.nodes:
|
|
if _must_be_in_backward(node) and subgraph != "backward":
|
|
env[node] = InvalidNode # type: ignore[assignment]
|
|
continue
|
|
|
|
if node in env:
|
|
# Node must be one of our inputs. (Any member of env which wasn't an
|
|
# input to start must have been created by this loop and won't be in
|
|
# joint_graph.nodes).
|
|
continue
|
|
elif node.op == "placeholder":
|
|
env[node] = InvalidNode # type: ignore[assignment]
|
|
elif node.op == "call_function":
|
|
all_args = pytree.arg_tree_leaves(*node.args, **node.kwargs)
|
|
all_args = [
|
|
isinstance(env[x], InvalidNodeBase)
|
|
for x in all_args
|
|
if isinstance(x, fx.Node)
|
|
]
|
|
if any(all_args):
|
|
env[node] = InvalidNode # type: ignore[assignment]
|
|
continue
|
|
env[node] = new_graph.node_copy(node, lambda x: env[x])
|
|
elif node.op == "get_attr":
|
|
env[node] = new_graph.node_copy(node, lambda x: env[x])
|
|
elif node.op == "output":
|
|
pass
|
|
output_values = []
|
|
for x in outputs:
|
|
if isinstance(x, fx.Node):
|
|
if x not in env:
|
|
raise RuntimeError(f"Node {x} couldn't be found in env")
|
|
assert not isinstance(
|
|
env[x], InvalidNodeBase
|
|
), f"Node {x} was invalid, but is output"
|
|
output_values.append(env[x])
|
|
else:
|
|
output_values.append(x)
|
|
new_graph.output(tuple(output_values))
|
|
|
|
new_graph.eliminate_dead_code()
|
|
new_graph.lint()
|
|
return new_graph
|
|
|
|
|
|
def _is_primal(node: fx.Node) -> bool:
|
|
return (
|
|
node.op == "placeholder"
|
|
and "tangents" not in str(node.target)
|
|
and not _is_bwd_seed_offset(node)
|
|
and not _is_fwd_seed_offset(node)
|
|
)
|
|
|
|
|
|
def _is_tangent(node: fx.Node) -> bool:
|
|
return node.op == "placeholder" and "tangents" in str(node.target)
|
|
|
|
|
|
def _is_bwd_seed_offset(node: fx.Node) -> bool:
|
|
return node.op == "placeholder" and (
|
|
"bwd_seed" in str(node.target) or "bwd_base_offset" in str(node.target)
|
|
)
|
|
|
|
|
|
def _is_fwd_seed_offset(node: fx.Node) -> bool:
|
|
return node.op == "placeholder" and (
|
|
"fwd_seed" in str(node.target) or "fwd_base_offset" in str(node.target)
|
|
)
|
|
|
|
|
|
def _is_backward_state(node: fx.Node) -> bool:
|
|
return node.op == "placeholder" and isinstance(node.meta.get("val"), BackwardState)
|
|
|
|
|
|
def _has_tag_is_backward(node: fx.Node) -> bool:
|
|
return node.meta.get("partitioner_tag", None) == "is_backward"
|
|
|
|
|
|
def _has_tag_must_be_in_backward(node: fx.Node) -> bool:
|
|
return node.meta.get("partitioner_tag", None) == "must_be_in_backward"
|
|
|
|
|
|
def _must_be_in_backward(node: fx.Node) -> bool:
|
|
return _has_tag_must_be_in_backward(node) or (
|
|
_has_tag_is_backward(node) and is_with_effects(node)
|
|
)
|
|
|
|
|
|
def _extract_fwd_bwd_outputs(
|
|
joint_module: fx.GraphModule, *, num_fwd_outputs
|
|
) -> tuple[list[fx.Node], list[fx.Node]]:
|
|
outputs = pytree.arg_tree_leaves(
|
|
*(node.args for node in joint_module.graph.find_nodes(op="output"))
|
|
)
|
|
fwd_outputs = outputs[:num_fwd_outputs]
|
|
bwd_outputs = outputs[num_fwd_outputs:]
|
|
return fwd_outputs, bwd_outputs
|
|
|
|
|
|
def _remove_by_name(saved_values: list[fx.Node], name: str):
|
|
for saved_value in saved_values:
|
|
if saved_value.name == name:
|
|
saved_values.remove(saved_value)
|
|
break
|
|
|
|
|
|
def _extract_fwd_bwd_modules(
|
|
joint_module: fx.GraphModule,
|
|
saved_values: list[fx.Node],
|
|
saved_sym_nodes: list[fx.Node],
|
|
*,
|
|
num_fwd_outputs: int,
|
|
) -> tuple[fx.GraphModule, fx.GraphModule]:
|
|
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(
|
|
joint_module, num_fwd_outputs=num_fwd_outputs
|
|
)
|
|
placeholders = joint_module.graph.find_nodes(op="placeholder")
|
|
primal_inputs = [*filter(_is_primal, placeholders)]
|
|
tangent_inputs = [*filter(_is_tangent, placeholders)]
|
|
fwd_seed_offset_inputs = [*filter(_is_fwd_seed_offset, placeholders)]
|
|
bwd_seed_offset_inputs = [*filter(_is_bwd_seed_offset, placeholders)]
|
|
backward_state_inputs = [*filter(_is_backward_state, placeholders)]
|
|
|
|
bwd_graph = _extract_graph_with_inputs_outputs(
|
|
joint_module.graph,
|
|
saved_sym_nodes + saved_values + tangent_inputs + bwd_seed_offset_inputs,
|
|
bwd_outputs,
|
|
"backward",
|
|
)
|
|
|
|
for node in bwd_graph.find_nodes(op="placeholder"):
|
|
# This is to filter out saved values that don't actually end up being used by the backwards pass
|
|
if not node.users:
|
|
_remove_by_name(saved_values, node.name)
|
|
_remove_by_name(saved_sym_nodes, node.name)
|
|
elif _is_backward_state(node):
|
|
# BackwardState is saved directly
|
|
_remove_by_name(saved_values, node.name)
|
|
assert backward_state_inputs
|
|
|
|
# Now that we have the finalized list of saved values, we need to ensure
|
|
# we propagate all symbols which are referenced by backwards inputs.
|
|
# These are not directly used in the graph but are required for downstream
|
|
# sizevar assignment
|
|
saved_symbols: OrderedSet[sympy.Symbol] = OrderedSet()
|
|
saved_sym_nodes_binding = []
|
|
saved_sym_nodes_derived = []
|
|
|
|
# Some symbols may already be bound in the directly saved_sym_nodes,
|
|
# keep track of them so we don't re-bind them
|
|
for node in saved_sym_nodes:
|
|
symbol = is_symbol_binding_fx_node(node)
|
|
if symbol:
|
|
saved_symbols.add(symbol)
|
|
saved_sym_nodes_binding.append(node)
|
|
else:
|
|
saved_sym_nodes_derived.append(node)
|
|
|
|
# Now go through all of the prospective backward inputs and track any
|
|
# other symbols we need to bind
|
|
symbol_bindings = find_symbol_binding_fx_nodes(joint_module.graph)
|
|
for node in itertools.chain(saved_sym_nodes_derived, saved_values, tangent_inputs):
|
|
if "val" not in node.meta:
|
|
continue
|
|
new_symbols = free_symbols(node.meta["val"]) - saved_symbols
|
|
# NB: Deterministic order please!
|
|
for s in sorted(new_symbols, key=lambda s: s.name):
|
|
# NB: For well formed graphs, the symbol should always be present,
|
|
# but we also have ways to produce ill-formed graphs, e.g., direct
|
|
# make_fx usages, so don't choke in this case
|
|
if s not in symbol_bindings:
|
|
continue
|
|
saved_sym_nodes_binding.append(symbol_bindings[s])
|
|
saved_symbols |= new_symbols
|
|
|
|
# Update saved_sym_nodes that are now reordered to have all bindings at
|
|
# front. This can also be used later on to figure out the position of saved
|
|
# sym nodes in the output of fwd graph.
|
|
saved_sym_nodes.clear()
|
|
saved_sym_nodes.extend(saved_sym_nodes_binding + saved_sym_nodes_derived)
|
|
|
|
# Now, we re-generate the fwd/bwd graphs.
|
|
# NB: This might increase compilation time, but I doubt it matters
|
|
fwd_graph = _extract_graph_with_inputs_outputs(
|
|
joint_module.graph,
|
|
primal_inputs + fwd_seed_offset_inputs,
|
|
fwd_outputs + saved_values + saved_sym_nodes,
|
|
"forward",
|
|
)
|
|
bwd_graph = _extract_graph_with_inputs_outputs(
|
|
joint_module.graph,
|
|
saved_sym_nodes
|
|
+ saved_values
|
|
+ tangent_inputs
|
|
+ bwd_seed_offset_inputs
|
|
+ backward_state_inputs,
|
|
bwd_outputs,
|
|
"backward",
|
|
)
|
|
|
|
fwd_module = fx._lazy_graph_module._make_graph_module(joint_module, fwd_graph)
|
|
bwd_module = fx._lazy_graph_module._make_graph_module(joint_module, bwd_graph)
|
|
return fwd_module, bwd_module
|
|
|
|
|
|
def default_partition(
|
|
joint_module: fx.GraphModule, _joint_inputs, *, num_fwd_outputs
|
|
) -> tuple[fx.GraphModule, fx.GraphModule]:
|
|
"""
|
|
Partitions the :attr:`joint_module` in a manner that closely resembles the
|
|
behavior observed in the original ``.forward()`` and ``.backward()`` of the
|
|
callable, i.e., the resulting forward graph contains those operators that
|
|
are executed in the original ``.forward()`` callable passed to
|
|
:func:`aot_function`.
|
|
|
|
The default partitioner collects the operators that are between the forward
|
|
inputs and the forward outputs. This helps in finding the tensors which have
|
|
to be stashed for the backward pass. These stashed tensors become the output
|
|
of the generated forward graph. The remaining operators are then placed in
|
|
the backward graph.
|
|
|
|
.. warning::
|
|
This API is experimental and likely to change.
|
|
|
|
Args:
|
|
joint_module(fx.GraphModule): The joint forward and backward graph. This
|
|
is the result of AOT Autograd tracing.
|
|
|
|
Returns:
|
|
Returns the generated forward and backward Fx graph modules.
|
|
"""
|
|
if has_recomputable_ops(joint_module):
|
|
return min_cut_rematerialization_partition(
|
|
joint_module, _joint_inputs, num_fwd_outputs=num_fwd_outputs
|
|
)
|
|
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
|
|
fwd_seed_offset_inputs = list(filter(_is_fwd_seed_offset, joint_module.graph.nodes))
|
|
inputs = primal_inputs + fwd_seed_offset_inputs
|
|
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(
|
|
joint_module, num_fwd_outputs=num_fwd_outputs
|
|
)
|
|
forward_only_graph = _extract_graph_with_inputs_outputs(
|
|
joint_module.graph, inputs, fwd_outputs, "forward"
|
|
)
|
|
forward_node_names = OrderedSet(
|
|
node.name for node in forward_only_graph.nodes if node.op != "output"
|
|
)
|
|
saved_values = []
|
|
saved_sym_nodes = []
|
|
|
|
for node in joint_module.graph.nodes:
|
|
if node.name not in forward_node_names:
|
|
continue
|
|
if is_sym_node(node):
|
|
# Symints must be kept separate from tensors so that PythonFunction only calls
|
|
# save_for_backward on tensors and stashes symints in autograd .ctx
|
|
saved_sym_nodes.append(node)
|
|
elif "tensor_meta" not in node.meta and node.op == "call_function":
|
|
# Since we can't save tuple of tensor values, we need to flatten out what we're saving
|
|
users = node.users
|
|
assert all(user.target == operator.getitem for user in users)
|
|
saved_values.extend(users)
|
|
else:
|
|
backward_usages = [
|
|
n for n in node.users if n.name not in forward_node_names
|
|
]
|
|
if "tensor_meta" in node.meta and all(
|
|
is_sym_node(n) for n in backward_usages
|
|
):
|
|
# If we have a tensor in the forward, where only its sizes/strides are needed in the backward,
|
|
# and not the actual tensor data,
|
|
# then it will be a lot cheaper to save only the sizes/strides, and not the actual tensor.
|
|
#
|
|
# Note that saving the tensor could also cause compilation problems:
|
|
# If the user mutated an input in the forward and uses its sizes/strides in the backward,
|
|
# then we would be obligated to clone the input before saving it to appease autograd.
|
|
# (This is how we originally found this bug).
|
|
saved_sym_nodes.extend(backward_usages)
|
|
else:
|
|
saved_values.append(node)
|
|
saved_values = list(dict.fromkeys(saved_values).keys())
|
|
saved_sym_nodes = list(dict.fromkeys(saved_sym_nodes).keys())
|
|
|
|
return _extract_fwd_bwd_modules(
|
|
joint_module,
|
|
saved_values,
|
|
saved_sym_nodes=saved_sym_nodes,
|
|
num_fwd_outputs=num_fwd_outputs,
|
|
)
|
|
|
|
|
|
INT_INF = int(1e6)
|
|
|
|
|
|
def _tensor_nbytes(numel: int, dtype) -> int:
|
|
return numel * dtype.itemsize
|
|
|
|
|
|
def _size_of(node: fx.Node) -> int:
|
|
def object_nbytes(x) -> int:
|
|
if not isinstance(x, torch.Tensor):
|
|
return 0
|
|
return _tensor_nbytes(hint_int(x.numel(), fallback=4096), x.dtype)
|
|
|
|
if "val" in node.meta:
|
|
val = node.meta["val"]
|
|
if isinstance(val, py_sym_types):
|
|
return 1
|
|
# NB: The fallback values here are meaningless, maybe we should respect
|
|
# torch._inductor.config.unbacked_symint_fallback (but this is a
|
|
# layering violation)
|
|
elif isinstance(val, (list, tuple)):
|
|
return sum(object_nbytes(n) for n in val)
|
|
elif isinstance(val, dict):
|
|
return sum(object_nbytes(n) for _, n in val.items())
|
|
elif isinstance(val, torch.Tensor):
|
|
return object_nbytes(val)
|
|
|
|
raise RuntimeError(f"Unknown metadata type {type(val)} on node {node}")
|
|
if node.op == "get_attr" or node.target is torch.ops.aten._assert_scalar.default:
|
|
return 0
|
|
raise RuntimeError(
|
|
f"Node {node} didn't have `val` metadata; we should always have `val` metadata on the nodes."
|
|
)
|
|
|
|
|
|
# Used for some investigative purposes
|
|
def _count_ops(graph: fx.Graph):
|
|
from collections import defaultdict
|
|
|
|
cnt: dict[str, int] = defaultdict(int)
|
|
for node in graph.nodes:
|
|
if node.op == "call_function":
|
|
cnt[node.target.__name__] += 1
|
|
log.info("%s", sorted(cnt.items(), key=lambda x: x[1], reverse=True))
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def pointwise_ops():
|
|
ops = []
|
|
for attr_name in dir(torch.ops.aten):
|
|
opoverloadpacket = getattr(torch.ops.aten, attr_name)
|
|
if not isinstance(opoverloadpacket, torch._ops.OpOverloadPacket):
|
|
continue
|
|
|
|
for overload in opoverloadpacket.overloads():
|
|
op_overload = getattr(opoverloadpacket, overload)
|
|
if torch.Tag.pointwise in op_overload.tags:
|
|
# currently aot autograd uses packet not overload
|
|
ops.append(opoverloadpacket)
|
|
break
|
|
|
|
return ops
|
|
|
|
|
|
def sort_depths(args, depth_map: dict[fx.Node, int]) -> list[tuple[fx.Node, int]]:
|
|
arg_depths = {
|
|
arg: depth_map[arg] for arg in args if isinstance(arg, torch.fx.node.Node)
|
|
}
|
|
return sorted(arg_depths.items(), key=lambda x: x[1], reverse=True)
|
|
|
|
|
|
def reordering_to_mimic_autograd_engine(gm: fx.GraphModule) -> fx.GraphModule:
|
|
"""
|
|
This pass finds the first bwd node in the graph (by looking at users of
|
|
tangents) and then reorders the graph by walking from this node to all the
|
|
way to the end of the graph. At each op in this traveral, we insert this op
|
|
in a new graph and try to bring only the relevant subgraph from the other
|
|
non-bwd edges relevant for this op. This closely mimics the behavior of
|
|
autograd engine.
|
|
|
|
Why is this pass required in the first place?
|
|
|
|
This is an artifact of how partitioners work today. The starting point of
|
|
partitioner is a joint graph, which is fwd and then bwd graph. In the case
|
|
of checkpointing, we keep portions of fwd graph in their original place in
|
|
the joint graph, while obtaining a bwd graph. As a result, the resulting bwd
|
|
graph has copies of recomputed fwd subgraphs followed by the original bwd
|
|
graph. If we run this naively, this leads to bad memory footprint, because
|
|
the fwd subgraphs are live for way longer duration than necessary. This pass
|
|
reorders the operations such that we prioritize the ops for the original bwd
|
|
graph while only realizing those ops from the fwd graph that are necessary
|
|
at any given point in the graph.
|
|
"""
|
|
|
|
new_graph = fx.Graph()
|
|
env: dict[fx.Node, fx.Node] = {}
|
|
|
|
# Add new placeholder nodes in the order specified by the inputs
|
|
for node in gm.graph.find_nodes(op="placeholder"):
|
|
env[node] = new_graph.node_copy(node, lambda x: env[x])
|
|
|
|
order = {}
|
|
for idx, node in enumerate(gm.graph.nodes):
|
|
order[node] = idx
|
|
|
|
def insert_node_in_graph(node):
|
|
cur_nodes = [node]
|
|
insertable_nodes: OrderedSet[fx.Node] = OrderedSet()
|
|
while len(cur_nodes) > 0:
|
|
node = cur_nodes.pop()
|
|
if node in insertable_nodes or node in env:
|
|
continue
|
|
insertable_nodes.add(node)
|
|
|
|
# Bias traversal towards the nodes that have higher depth - prioritizes
|
|
# critical path first.
|
|
cur_nodes += node.all_input_nodes
|
|
|
|
insertable_nodes = sorted(insertable_nodes, key=lambda n: order[n])
|
|
for node in insertable_nodes:
|
|
env[node] = new_graph.node_copy(node, lambda x: env[x])
|
|
|
|
# Find first bwd node in the graph
|
|
tangent_inputs = list(filter(_is_tangent, gm.graph.nodes))
|
|
first_node_in_bwd = None
|
|
minimum_order = math.inf
|
|
for tangent in tangent_inputs:
|
|
for user in tangent.users:
|
|
if order[user] < minimum_order:
|
|
minimum_order = order[user]
|
|
first_node_in_bwd = user
|
|
|
|
# If gradInp does not depend upon gradOut, we may not find any nodes in the "backwards pass"
|
|
if first_node_in_bwd is None:
|
|
return gm
|
|
|
|
# Build the graph op-by-op by starting from the node all the way to the end
|
|
for node in list(gm.graph.nodes)[order[first_node_in_bwd] :]:
|
|
insert_node_in_graph(node)
|
|
|
|
# The output node is already built by the traversal.
|
|
new_gm = torch.fx.GraphModule(gm, new_graph)
|
|
return new_gm
|
|
|
|
|
|
def apply_graphsafe_rng_functionalization(
|
|
fw_module: torch.fx.GraphModule,
|
|
bw_module: torch.fx.GraphModule,
|
|
fw_node: torch.fx.Node,
|
|
bw_node: torch.fx.Node,
|
|
device: torch.device,
|
|
rng_count: int,
|
|
last_fwd_input: torch.fx.Node,
|
|
last_bwd_input: torch.fx.Node,
|
|
):
|
|
"""
|
|
Note [CUDA Graph Safe RNG Functionalization]
|
|
|
|
CUDA Graph capture doesn't work with get_rng_state and set_rng_state because these functions operate on CPU values,
|
|
while CUDA Graph RNG capture uses on-device CUDA tensors. To solve this, we use graphsafe_set_state with a
|
|
CUDA Generator registered to the CUDA Graph before capture begins. graphsafe_set_state updates the generator's pointer
|
|
to reference a different GeneratorImpl, ensuring subsequent calls are correctly forwarded to the desired generator
|
|
(and its cuda-tensor RNG state during graph capture).
|
|
|
|
For each RNG operation's forward/backward pair:
|
|
|
|
- We create two generators initialized with identical values
|
|
- Each forward and backward call advances its respective generator equally
|
|
- This keeps generators synchronized so forward and backward operations use matching RNG values
|
|
|
|
When forward is called multiple times before backward (causing desynchronization):
|
|
|
|
- We save the forward RNG state
|
|
- We update the backward Generator's state before executing backward
|
|
|
|
Before each CUDA Graph replay, replay_prologue updates captured RNG pointers with current states, ensuring backward Generator
|
|
changes are reflected during replay.
|
|
|
|
This function modifies both forward and backward computation graphs by:
|
|
|
|
Creating RNG state placeholders for both passes
|
|
Updating the forward node to use graph-safe RNG state
|
|
Updating the backward node to use graph-safe RNG state
|
|
|
|
For more details: https://github.com/pytorch/pytorch/issues/113541
|
|
"""
|
|
device_idx = device.index
|
|
assert device_idx is not None
|
|
fw_graph = fw_module.graph
|
|
bw_graph = bw_module.graph
|
|
graphsafe_run_with_rng_state = torch._prims.rng_prims.graphsafe_run_with_rng_state
|
|
|
|
# Handle forward pass
|
|
|
|
# Note: [Generator arguments in AOTDispatcher]
|
|
# Generator arguments in AOTDispatcher are added to support graphsafe rng
|
|
# functionalization. See note above [CUDA Graph Safe RNG Functionalization]
|
|
with fw_module.graph.inserting_after(last_fwd_input):
|
|
fwd_rng_state = fw_module.graph.placeholder(f"fwd_rng_state_{rng_count}")
|
|
fwd_rng_state.meta["val"] = get_cuda_generator_meta_val(device_idx)
|
|
last_fwd_input = fwd_rng_state
|
|
|
|
# Handle backward pass
|
|
with bw_module.graph.inserting_after(last_bwd_input):
|
|
bwd_rng_state = bw_module.graph.placeholder(f"bwd_rng_state_{rng_count}")
|
|
# as above, clone so that meta val generator will not contain tensors
|
|
bwd_rng_state.meta["val"] = get_cuda_generator_meta_val(device_idx)
|
|
last_bwd_input = bwd_rng_state
|
|
|
|
# Update forward node
|
|
fw_kwargs = dict(fw_node.kwargs)
|
|
fw_kwargs["rng_state"] = fwd_rng_state
|
|
with fw_module.graph.inserting_after(fw_node):
|
|
functional_fw_node = fw_graph.create_node(
|
|
"call_function",
|
|
graphsafe_run_with_rng_state,
|
|
args=(fw_node.target, *fw_node.args), # type: ignore[arg-type]
|
|
kwargs=fw_kwargs,
|
|
)
|
|
fw_node.replace_all_uses_with(functional_fw_node)
|
|
fw_graph.erase_node(fw_node)
|
|
|
|
# Update backward node
|
|
bwd_kwargs = dict(bw_node.kwargs)
|
|
bwd_kwargs["rng_state"] = bwd_rng_state
|
|
with bw_graph.inserting_before(bw_node):
|
|
rng_output = bw_graph.create_node(
|
|
"call_function",
|
|
graphsafe_run_with_rng_state,
|
|
args=(bw_node.target, *bw_node.args), # type: ignore[arg-type]
|
|
kwargs=bwd_kwargs,
|
|
)
|
|
bw_node.replace_all_uses_with(rng_output)
|
|
bw_graph.erase_node(bw_node)
|
|
|
|
return last_fwd_input, last_bwd_input
|
|
|
|
|
|
def functionalize_rng_ops(
|
|
joint_module: fx.GraphModule,
|
|
fw_module: fx.GraphModule,
|
|
bw_module: fx.GraphModule,
|
|
num_sym_nodes: int,
|
|
) -> tuple[fx.GraphModule, fx.GraphModule]:
|
|
# During user-driven activation checkpointing, we have to ensure that a rng
|
|
# op in fwd yields the same output as the recomputed rng op in the bwd. To
|
|
# do this, we use functionalize wrappers to wrap the random ops and share
|
|
# rng state between the fwd and bwd graphs.
|
|
|
|
# There are 3 main steps to do this
|
|
# Step 1 - Construct a mapping of rng node between the fwd and its counterpart in bwd.
|
|
# Step 2 - Modify the fwd pass such that
|
|
# 1) Replace rand with run_and_save_rng_state wrapper
|
|
# 2) Replace the users of the original op with the output[1] of this op.
|
|
# 3) Collect all the rng_state - output[0] of each op, and make them
|
|
# output nodes. Special care needs to be taken here because fwd outputs
|
|
# has symints at the very end.
|
|
# Step 3 - Modify the bwd pass such that
|
|
# 1) Add the input nodes just before the tangents for the stashed rng states
|
|
# 2) Replace rand with run_with_save_rng_state wrappers
|
|
# 3) Use the stashed states as inputs to these ops
|
|
|
|
# Unique id to generate name
|
|
uid = itertools.count()
|
|
|
|
def get_rng_ops(gmod):
|
|
random_nodes = {}
|
|
for node in gmod.graph.nodes:
|
|
if (
|
|
node.op == "call_function"
|
|
and hasattr(node.target, "tags")
|
|
and torch.Tag.nondeterministic_seeded in node.target.tags
|
|
):
|
|
random_nodes[node.name] = node
|
|
return random_nodes
|
|
|
|
def get_device(node) -> Optional[torch.device]:
|
|
"""
|
|
Check the example value of the node outputs to find the device type.
|
|
"""
|
|
if "val" not in node.meta:
|
|
return None
|
|
|
|
candidates = node.meta["val"]
|
|
if not isinstance(candidates, tuple):
|
|
candidates = (candidates,)
|
|
|
|
for candidate in candidates:
|
|
if isinstance(candidate, torch.Tensor):
|
|
if candidate.device.type == "cuda":
|
|
return candidate.device
|
|
|
|
return torch.device("cpu")
|
|
|
|
def get_sample_rng_state(device: Optional[torch.device]):
|
|
if device is not None and device.type == "cuda":
|
|
return torch.cuda.get_rng_state()
|
|
return torch.get_rng_state()
|
|
|
|
# Step 1 - Construct a mapping of rng node between the fwd and its counterpart in bwd.
|
|
joint_graph_rng_ops = get_rng_ops(joint_module)
|
|
fw_graph_rng_ops = get_rng_ops(fw_module)
|
|
bw_graph_rng_ops = get_rng_ops(bw_module)
|
|
recomputable_rng_ops_map = {}
|
|
for node in joint_module.graph.nodes:
|
|
if (
|
|
must_recompute(node)
|
|
and hasattr(node.target, "tags")
|
|
and torch.Tag.nondeterministic_seeded in node.target.tags
|
|
):
|
|
base_node = joint_graph_rng_ops[node.name]
|
|
fw_node = fw_graph_rng_ops[node.name]
|
|
bw_node = bw_graph_rng_ops[node.name]
|
|
recomputable_rng_ops_map[base_node] = {"fwd": fw_node, "bwd": bw_node}
|
|
|
|
run_and_save_rng = torch._prims.rng_prims.run_and_save_rng_state
|
|
run_with_rng_state = torch._prims.rng_prims.run_with_rng_state
|
|
|
|
bw_tangent_start_node = None
|
|
for node in bw_module.graph.find_nodes(op="placeholder"):
|
|
if "tangent" in node.name:
|
|
bw_tangent_start_node = node
|
|
break
|
|
if bw_tangent_start_node is None:
|
|
raise RuntimeError(
|
|
"Couldn't find tangent node in graph inputs. This is unexpected, please file a bug if you see this"
|
|
)
|
|
|
|
fw_rng_state_outputs = []
|
|
|
|
last_fwd_input = next(reversed(fw_module.graph.find_nodes(op="placeholder")))
|
|
last_bwd_input = next(reversed(bw_module.graph.find_nodes(op="placeholder")))
|
|
|
|
devices = OrderedSet(
|
|
get_device(node_pair["fwd"]) for node_pair in recomputable_rng_ops_map.values()
|
|
)
|
|
devices.discard(torch.device("cpu"))
|
|
# multiple cuda devices wont work with cudagraphs anyway,
|
|
# fallback to non graphsafe rng checkpointing
|
|
multi_cuda_devices = len(devices) > 1
|
|
|
|
# this changes numerics, so if fallback_random is set we will not use it
|
|
ind_config = torch._inductor.config
|
|
use_rng_graphsafe_rng_functionalization = (
|
|
config.graphsafe_rng_functionalization
|
|
and not multi_cuda_devices
|
|
and (
|
|
not ind_config.fallback_random
|
|
or ind_config.test_configs.graphsafe_rng_func_ignores_fallback_random
|
|
)
|
|
)
|
|
|
|
for rng_count, (base_node, node_pair) in enumerate(
|
|
recomputable_rng_ops_map.items()
|
|
):
|
|
# Step 2 - Modify the fwd pass such that
|
|
fw_node = node_pair["fwd"]
|
|
bw_node = node_pair["bwd"]
|
|
device = get_device(fw_node)
|
|
|
|
fw_graph = fw_module.graph
|
|
bw_graph = bw_module.graph
|
|
|
|
if (
|
|
use_rng_graphsafe_rng_functionalization
|
|
and device is not None
|
|
and device.type == "cuda"
|
|
):
|
|
last_fwd_input, last_bwd_input = apply_graphsafe_rng_functionalization(
|
|
fw_module,
|
|
bw_module,
|
|
fw_node,
|
|
bw_node,
|
|
device,
|
|
rng_count,
|
|
last_fwd_input,
|
|
last_bwd_input,
|
|
)
|
|
else:
|
|
with fw_graph.inserting_before(fw_node):
|
|
functional_fw_node = fw_graph.create_node(
|
|
"call_function",
|
|
run_and_save_rng,
|
|
args=(fw_node.target, *fw_node.args),
|
|
kwargs=fw_node.kwargs,
|
|
)
|
|
state = fw_graph.create_node(
|
|
"call_function",
|
|
operator.getitem,
|
|
args=(functional_fw_node, 0),
|
|
kwargs={},
|
|
)
|
|
rng_output = fw_graph.create_node(
|
|
"call_function",
|
|
operator.getitem,
|
|
args=(
|
|
functional_fw_node,
|
|
1,
|
|
),
|
|
kwargs={},
|
|
)
|
|
fw_node.replace_all_uses_with(rng_output)
|
|
fw_graph.erase_node(fw_node)
|
|
fw_rng_state_outputs.append(state)
|
|
|
|
# Step 3 - Modify the bwd pass such that
|
|
with bw_graph.inserting_before(bw_tangent_start_node):
|
|
state_name = f"rng_state_output_{next(uid)}"
|
|
bw_rng_state_node = bw_graph.placeholder(state_name)
|
|
bw_rng_state_node.meta["val"] = get_sample_rng_state(device)
|
|
|
|
with bw_graph.inserting_before(bw_node):
|
|
rng_output = bw_graph.create_node(
|
|
"call_function",
|
|
run_with_rng_state,
|
|
args=(bw_rng_state_node, bw_node.target, *bw_node.args),
|
|
kwargs=bw_node.kwargs,
|
|
)
|
|
|
|
bw_node.replace_all_uses_with(rng_output)
|
|
bw_graph.erase_node(bw_node)
|
|
|
|
# Add the rng states in the output of the fwd graph. AOT Autograd assumes
|
|
# that symints are at the end of forward graph outputs. So, insert the new
|
|
# rng states accordingly.
|
|
if fw_rng_state_outputs:
|
|
fw_output_node = next(iter(fw_module.graph.find_nodes(op="output")))
|
|
fw_outputs = fw_output_node.args[0]
|
|
sym_node_start_idx = len(fw_outputs) - num_sym_nodes
|
|
outputs = (
|
|
fw_outputs[:sym_node_start_idx]
|
|
+ tuple(fw_rng_state_outputs)
|
|
+ fw_outputs[sym_node_start_idx:]
|
|
)
|
|
fw_module.graph.output(outputs)
|
|
fw_module.graph.erase_node(fw_output_node)
|
|
fw_module.recompile()
|
|
bw_module.recompile()
|
|
return fw_module, bw_module
|
|
|
|
|
|
def cleanup_recompute_tags(joint_module: fx.GraphModule) -> fx.GraphModule:
|
|
"""
|
|
If there are two consecutive checkpointed blocks with no operator in
|
|
between, we would still want to stash the tensor at the boundary of
|
|
checkpointed blocks. The following pass makes the last output node
|
|
non-recomputable to allow for that.
|
|
"""
|
|
for node in joint_module.graph.nodes:
|
|
if must_recompute(node):
|
|
for user in node.users:
|
|
if (
|
|
must_recompute(user)
|
|
and user.meta["ac_graph_id"] > node.meta["ac_graph_id"]
|
|
):
|
|
node.meta["recompute"] = CheckpointPolicy.MUST_SAVE
|
|
if node.meta.get("has_backward_hook", False) and not any(
|
|
must_recompute(user) for user in node.users
|
|
):
|
|
# If node is AC region output and has a backward hook on it, we intentionally choose to save it.
|
|
# This is to work around circular dependencies in Traceable FSDP2+AC.
|
|
# Example:
|
|
# ```
|
|
# out = fully_shard(utils.checkpoint(module))(x)
|
|
# norm_out = layer_norm(out)
|
|
# ```
|
|
# Here there is a circular dependency:
|
|
# 1. In backward, grad_input of layer_norm aka. `out_grad` is actually dependent on `out`.
|
|
# 2. `out` depends on `out`'s backward hook created by FSDP2 (which does all-gather for `module` weights)
|
|
# in order to be recomputed.
|
|
# 3. `out`'s backward hook, as is the case for all eager backward hooks, depends on `out_grad`
|
|
# -> circular dependency with (1)!
|
|
#
|
|
# Solution: check whether `out` has a backward hook, and if so, intentionally save `out`
|
|
# in forward graph outputs. With this, we can break the above circular dependency.
|
|
node.meta["recompute"] = CheckpointPolicy.MUST_SAVE
|
|
return joint_module
|
|
|
|
|
|
def solve_min_cut(
|
|
joint_graph: fx.Graph,
|
|
node_info: NodeInfo,
|
|
min_cut_options: MinCutOptions,
|
|
dont_ban: Optional[OrderedSet[fx.Node]] = None,
|
|
):
|
|
if dont_ban is None:
|
|
dont_ban = OrderedSet()
|
|
op_types = get_default_op_list()
|
|
|
|
if AOT_PARTITIONER_DEBUG:
|
|
joint_module_ops = OrderedSet(
|
|
str(node.target._overloadpacket)
|
|
for node in joint_graph.nodes
|
|
if node.op == "call_function" and hasattr(node.target, "_overloadpacket")
|
|
)
|
|
ops_ignored = joint_module_ops - OrderedSet(
|
|
str(i) for i in op_types.recomputable_ops
|
|
)
|
|
log.info("Ops banned from re-materialization: %s", ops_ignored)
|
|
|
|
def can_fuse_into_auto_functionalized(a, b):
|
|
if b.target != torch.ops.higher_order.auto_functionalized:
|
|
return False
|
|
mutable_op = b.args[0]
|
|
(
|
|
mutable_arg_names,
|
|
_,
|
|
) = torch._higher_order_ops.auto_functionalize.get_mutable_args(mutable_op)
|
|
for name in mutable_arg_names:
|
|
arg = b.kwargs[name]
|
|
if a is arg:
|
|
return True
|
|
if isinstance(arg, list):
|
|
if a in arg:
|
|
return True
|
|
return False
|
|
|
|
def can_fuse_into_triton_kernel_wrapper_functional(a, b):
|
|
if b.target != torch.ops.higher_order.triton_kernel_wrapper_functional:
|
|
return False
|
|
mutable_arg_names = b.kwargs["tensors_to_clone"]
|
|
for name in mutable_arg_names:
|
|
arg = b.kwargs["kwargs"][name]
|
|
if a is arg:
|
|
return True
|
|
return False
|
|
|
|
def is_fusible(a, b):
|
|
# We can perform "memory fusion" into a cat, but cat cannot be a
|
|
# producer to a fusion
|
|
if get_aten_target(b) == aten.cat:
|
|
return True
|
|
if can_fuse_into_auto_functionalized(a, b):
|
|
return True
|
|
if can_fuse_into_triton_kernel_wrapper_functional(a, b):
|
|
return True
|
|
if (
|
|
a.target is operator.getitem
|
|
and a.args[0].target
|
|
is torch.ops.higher_order.triton_kernel_wrapper_functional
|
|
):
|
|
# if a is the output of a user triton kernel,
|
|
# then (by default) we will not be able to fuse b into it
|
|
return False
|
|
return op_types.is_fusible(a) and op_types.is_fusible(b)
|
|
|
|
try:
|
|
import networkx as nx
|
|
except ImportError as e:
|
|
raise RuntimeError(
|
|
"Need networkx installed to perform smart recomputation heuristics"
|
|
) from e
|
|
|
|
def is_materialized_backwards(node):
|
|
if op_types.is_view(node):
|
|
return False
|
|
cur_nodes = OrderedSet([node])
|
|
while len(cur_nodes) > 0:
|
|
cur = cur_nodes.pop()
|
|
for user in cur.users:
|
|
if not node_info.is_required_fw(user) and not is_fusible(cur, user):
|
|
return True
|
|
if op_types.is_view(user):
|
|
cur_nodes.add(user)
|
|
|
|
return False
|
|
|
|
def should_ban_recomputation(node):
|
|
if node.op != "call_function":
|
|
return False
|
|
if node.target == operator.getitem:
|
|
return False
|
|
if node.meta.get("recompute", None) == CheckpointPolicy.MUST_SAVE:
|
|
return True
|
|
if config.recompute_views and op_types.is_view(node):
|
|
return False
|
|
if node.target in [aten.lift_fresh_copy.default, aten.lift_fresh.default]:
|
|
return False
|
|
|
|
if min_cut_options.ban_if_not_in_allowlist:
|
|
if not op_types.is_recomputable(node):
|
|
return True
|
|
else:
|
|
if op_types.is_random(node) or op_types.is_compute_intensive(node):
|
|
return True
|
|
|
|
# If a node *must* be materialized in the backwards pass, then we
|
|
# should never recompute it. This is a pretty subtle point. In
|
|
# general, the assumption we make is that recomputing a node in the
|
|
# backwards pass is "free". However, if a node must be materialized
|
|
# in the backwards pass, then recomputing it is never free.
|
|
if min_cut_options.ban_if_materialized_backward and is_materialized_backwards(
|
|
node
|
|
):
|
|
log.debug("materialized backwards: %s %s", node, tuple(node.users))
|
|
return True
|
|
|
|
# Arbitrary hack that sometimes seems to help things. The above
|
|
# modification appears to have made this heuristic a lot less critical
|
|
# for performance.
|
|
# NB: As of PR #121692, this hack no longer seems necessary.
|
|
if node.dist_from_bw < 1000 and node.dist_from_bw > config.max_dist_from_bw:
|
|
return True
|
|
|
|
# If the output of an op is 4x smaller (arbitrary choice),
|
|
# then we don't allow recomputation. The idea here is that for
|
|
# things like reductions, saving the output of the reduction is very
|
|
# cheap/small, and it makes sure we don't do things like recompute
|
|
# normalizations in the backwards.
|
|
if min_cut_options.ban_if_reduction:
|
|
input_tensors_size = sum(
|
|
_size_of(i) for i in node.args if isinstance(i, fx.Node)
|
|
)
|
|
output_size = _size_of(node)
|
|
return output_size * 4 < input_tensors_size
|
|
return False
|
|
|
|
def is_materialized(node):
|
|
if node.op == "placeholder":
|
|
return True
|
|
|
|
return not all(is_fusible(node, user) for user in node.users)
|
|
|
|
def get_node_weight(node) -> float:
|
|
mem_sz = _size_of(node)
|
|
if config.recompute_views and op_types.is_view(node):
|
|
# If `config.recompute_views=True`, we don't save views. This is generally
|
|
# a good idea since views are free to recompute, and it makes it a bit simpler
|
|
# to analyze.
|
|
# NB: If they're not free to recompute (e.g. nested tensors)... I
|
|
# think we should modify checks for view_ops to `is_view` and check
|
|
# that. Basically, with nested tensors, `aten.view` is not a "view
|
|
# op".
|
|
return math.inf
|
|
|
|
if isinstance(node.meta["val"], py_sym_types):
|
|
# We never want to save symfloats
|
|
if not isinstance(node.meta["val"], torch.SymInt):
|
|
return INT_INF
|
|
|
|
# Heuristic to bias towards nodes closer to the backwards pass
|
|
# Complete guess about current value
|
|
mem_sz = int(mem_sz * (1.1 ** max(min(node.dist_from_bw, 100), 1)))
|
|
if is_materialized(node):
|
|
return mem_sz
|
|
else:
|
|
return mem_sz * 2
|
|
|
|
nx_graph = nx.DiGraph()
|
|
banned_nodes: OrderedSet[fx.Node] = OrderedSet()
|
|
|
|
def ban_recomputation_if_allowed(node):
|
|
if op_types.is_view(node):
|
|
return False
|
|
if node in dont_ban:
|
|
return False
|
|
# This bans recomputation of the node unless we've been forced not to by
|
|
# user annotation
|
|
if must_recompute(node):
|
|
return False
|
|
|
|
if "val" in node.meta and isinstance(node.meta["val"], torch.SymFloat):
|
|
return False
|
|
|
|
banned_nodes.add(node)
|
|
# A node will only ever be recomputed if there is a path from an
|
|
# ancestor of this node to the backwards path through this node that
|
|
# doesn't go through any saved value. If this node is saved, then that
|
|
# condition is not possible.
|
|
nx_graph.add_edge("source", node.name + "_in", capacity=math.inf)
|
|
return True
|
|
|
|
for node in joint_graph.nodes:
|
|
if node.op == "output":
|
|
continue
|
|
|
|
if node in node_info.required_bw_nodes:
|
|
if node not in node_info.inputs:
|
|
nx_graph.add_edge(node.name + "_in", "sink", capacity=math.inf)
|
|
continue
|
|
# If someone saves a input for backward as-is and backward
|
|
# returns that tensor as-is as a grad input, then the node x would
|
|
# be both a required_bw_node and an input. In this case we
|
|
# (1) connect x_in to to the source, (2) x_out to the sink, and
|
|
# (3) assign the proper weight to the x_in-x_out edge, so that
|
|
# x would be part of cut nodes. A case where this happens is if
|
|
# NestedTensor saves a offset tensor as part of the singleton int
|
|
# in sizes.
|
|
nx_graph.add_edge(node.name + "_out", "sink", capacity=math.inf)
|
|
|
|
if must_recompute(node):
|
|
# If user explicitly says they want to recompute a node, we honor it
|
|
# by adding an inf-capacity edge from X_in to the sink.
|
|
# This way, X_in node is guaranteed to be part of the subgraph that contains "sink"
|
|
# after the cut, thus guaranteeing that X op will be recomputed.
|
|
nx_graph.add_edge(node.name + "_in", "sink", capacity=math.inf)
|
|
continue
|
|
|
|
if _is_primal(node) or _is_fwd_seed_offset(node):
|
|
ban_recomputation_if_allowed(node)
|
|
|
|
# If a node can't be recomputed (too expensive or involves randomness),
|
|
# we prevent it from being recomputed by adding an inf edge to the source
|
|
# We only need to ban nodes in the fw pass, as those are the only ones that would be recomputed.
|
|
if node_info.is_required_fw(node) and should_ban_recomputation(node):
|
|
ban_recomputation_if_allowed(node)
|
|
|
|
# Checks if a node is actually a tuple. Can be simplified to just an isinstance check if we always use faketensors.
|
|
is_non_tensor_node = (
|
|
"val" not in node.meta and "tensor_meta" not in node.meta
|
|
) or ("val" in node.meta and not isinstance(node.meta["val"], torch.Tensor))
|
|
|
|
if is_sym_node(node):
|
|
weight = float(sym_node_size(node))
|
|
elif is_non_tensor_node:
|
|
weight = (
|
|
0.0 if isinstance(node.meta.get("val"), BackwardState) else math.inf
|
|
)
|
|
else:
|
|
weight = get_node_weight(node)
|
|
# Creates the weights on the "node" edge
|
|
nx_graph.add_edge(node.name + "_in", node.name + "_out", capacity=weight)
|
|
for user in node.users:
|
|
nx_graph.add_edge(node.name + "_out", user.name + "_in", capacity=math.inf)
|
|
|
|
# todo(chilli): This is the most questionable of the 3 heuristics for banning recompute.
|
|
# Some example models to look at where this helps perf: poolformer_m36,
|
|
# mixer_b16_224, cait_m36_384
|
|
|
|
# The "rough" idea here is that if you have some node that is used by both a
|
|
# node nearby downstream as well as a node far downstream, if we recompute
|
|
# both of the downstream nodes, we're unlikely to be able to fuse both
|
|
# downstream nodes together.
|
|
|
|
# Thus, we shouldn't aim to recompute far downstream nodes that depend on
|
|
# this node. That intuition of "far downstream" is captured by whether
|
|
# there's an unfusible op along the chain somewhere
|
|
|
|
# It could probably be improved by properly analyzing what's going on in the
|
|
# backwards pass instead of only relying on whether it's unfusible in the
|
|
# forwards.
|
|
|
|
def find_first_unfusible(start_nodes: list[fx.Node], max_range: int) -> int:
|
|
"""
|
|
Finds the first unfusible node in the chain of nodes starting from
|
|
`start_nodes` and returns its position.
|
|
"""
|
|
sorted_nodes: list[tuple[int, fx.Node, bool]] = []
|
|
for n in start_nodes:
|
|
heapq.heappush(sorted_nodes, (node_info.get_fw_order(n), n, True))
|
|
|
|
while len(sorted_nodes) > 0:
|
|
_, node, node_is_fusible = heapq.heappop(sorted_nodes)
|
|
if not node_is_fusible:
|
|
return node_info.get_fw_order(node)
|
|
for user in node.users:
|
|
if node_info.is_required_fw(user):
|
|
if node_info.get_fw_order(user) > max_range:
|
|
continue
|
|
val: tuple[int, fx.Node, bool] = (
|
|
node_info.get_fw_order(user),
|
|
user,
|
|
is_fusible(node, user),
|
|
)
|
|
if val not in sorted_nodes:
|
|
heapq.heappush(sorted_nodes, val)
|
|
return max_range
|
|
|
|
if min_cut_options.ban_if_used_far_apart:
|
|
for used_node in node_info.required_fw_nodes:
|
|
orders = [
|
|
node_info.get_fw_order(user)
|
|
for user in used_node.users
|
|
if node_info.is_required_fw(user)
|
|
]
|
|
fw_users = [
|
|
user for user in used_node.users if node_info.is_required_fw(user)
|
|
]
|
|
if len(orders) > 0:
|
|
first_unfusible_use = find_first_unfusible(fw_users, max(orders))
|
|
for user in tuple(used_node.users):
|
|
if (
|
|
node_info.is_required_fw(user)
|
|
and node_info.get_fw_order(user) > first_unfusible_use
|
|
and is_fusible(used_node, user)
|
|
):
|
|
if user in banned_nodes:
|
|
continue
|
|
log.info(
|
|
"used above/below fusible %s:(%s) -> %s -> %s:(%s)",
|
|
used_node,
|
|
node_info.get_fw_order(used_node),
|
|
first_unfusible_use,
|
|
user,
|
|
node_info.get_fw_order(user),
|
|
)
|
|
ban_recomputation_if_allowed(user)
|
|
|
|
# This heuristic is fairly straightforward. The idea is that although it is
|
|
# cheap to recompute bandwidth-bound ops, we don't want to end up in a situation
|
|
# where we have a long chain of pointwise ops from the beginning to the end
|
|
# of the model (like say, residual connections)
|
|
|
|
# todo: I'm not totally sure why this heuristic matters. It's possible that this is
|
|
# working around Inductor fusion decisions, or that it's a patch over
|
|
# suboptimal partitioning decisions
|
|
|
|
# Some models it improves perf on are cait_m36_384, mixer_b16_224, poolformer_m36
|
|
|
|
if min_cut_options.ban_if_long_fusible_chains:
|
|
visited: OrderedSet[fx.Node] = OrderedSet()
|
|
for start_node in joint_graph.nodes:
|
|
if not node_info.is_required_fw(start_node):
|
|
continue
|
|
fusible: list[tuple[int, fx.Node]] = [
|
|
(node_info.get_fw_order(start_node), start_node)
|
|
]
|
|
start_order = node_info.get_fw_order(start_node)
|
|
while len(fusible) > 0:
|
|
_, cur = heapq.heappop(fusible)
|
|
if cur in visited:
|
|
continue
|
|
visited.add(cur)
|
|
# 100 is arbitrary choice to try and prevent degenerate cases
|
|
if (
|
|
node_info.get_fw_order(cur) > start_order + 100
|
|
and len(fusible) == 0
|
|
):
|
|
log.info(
|
|
"too long %s %s %s %s",
|
|
cur,
|
|
start_node,
|
|
node_info.get_fw_order(cur),
|
|
node_info.get_fw_order(start_node),
|
|
)
|
|
ban_recomputation_if_allowed(cur)
|
|
break
|
|
|
|
for user in cur.users:
|
|
if (
|
|
node_info.is_required_fw(user)
|
|
and is_fusible(cur, user)
|
|
and user not in banned_nodes
|
|
):
|
|
heapq.heappush(fusible, (node_info.get_fw_order(user), user))
|
|
|
|
try:
|
|
cut_value, partition = nx.minimum_cut(nx_graph, "source", "sink")
|
|
except Exception:
|
|
log.info("Failed to compute min-cut on following graph:")
|
|
log.info("\n".join(nx.readwrite.edgelist.generate_edgelist(nx_graph)))
|
|
visualize_min_cut_graph(nx_graph)
|
|
raise
|
|
|
|
reachable, non_reachable = partition
|
|
cutset: OrderedSet[tuple[str, str]] = OrderedSet()
|
|
for u, nbrs in ((n, nx_graph[n]) for n in reachable):
|
|
cutset.update((u, v) for v in nbrs if v in non_reachable)
|
|
|
|
cut_nodes: OrderedSet[str] = OrderedSet()
|
|
for node_in, node_out in cutset:
|
|
assert node_in[:-3] == node_out[:-4]
|
|
node_name = node_in[:-3]
|
|
cut_nodes.add(node_name)
|
|
|
|
name_to_node = get_name_to_node(joint_graph)
|
|
# To make this stuff deterministic
|
|
node_idx = {node: idx for idx, node in enumerate(joint_graph.nodes)}
|
|
saved_values = sorted(
|
|
(name_to_node[node] for node in cut_nodes), key=lambda x: node_idx[x]
|
|
)
|
|
return saved_values, banned_nodes
|
|
|
|
|
|
def visualize_min_cut_graph(nx_graph):
|
|
import networkx as nx
|
|
import pydot
|
|
|
|
dot_format = nx.nx_pydot.to_pydot(nx_graph).to_string()
|
|
dot_graph = pydot.graph_from_dot_data(dot_format)[0]
|
|
for edge in dot_graph.get_edges():
|
|
weight = nx_graph[edge.get_source()][edge.get_destination()]["capacity"]
|
|
# Set edge label to weight
|
|
edge.set_label(str(weight))
|
|
# Color edges with weight 'inf' as red
|
|
if weight == float("inf"):
|
|
edge.set_color("red")
|
|
log.info("Visualizing the failed graph to min_cut_failed.svg")
|
|
dot_graph.write_svg("min_cut_failed.svg")
|
|
|
|
|
|
def get_default_op_list() -> OpTypes:
|
|
default_recomputable_ops: list[Callable] = [
|
|
aten.add,
|
|
aten.sub,
|
|
aten.div,
|
|
aten.atan2,
|
|
aten.mul,
|
|
aten.max,
|
|
aten.min,
|
|
aten.pow,
|
|
aten.remainder,
|
|
aten.fmod,
|
|
aten.__and__,
|
|
aten.__or__,
|
|
aten.__xor__,
|
|
aten.__lshift__,
|
|
aten.__rshift__,
|
|
aten.eq,
|
|
aten.ne,
|
|
aten.ge,
|
|
aten.gt,
|
|
aten.le,
|
|
aten.lt,
|
|
aten.abs,
|
|
aten.bitwise_not,
|
|
aten.ceil,
|
|
aten.floor,
|
|
aten.frac,
|
|
aten.neg,
|
|
aten.relu,
|
|
aten.round,
|
|
aten.silu,
|
|
aten.trunc,
|
|
aten.log,
|
|
aten.log10,
|
|
aten.log1p,
|
|
aten.log2,
|
|
aten.lgamma,
|
|
aten.exp,
|
|
aten.expm1,
|
|
aten.erf,
|
|
aten.erfc,
|
|
aten.cos,
|
|
aten.acos,
|
|
aten.cosh,
|
|
aten.sin,
|
|
aten.asin,
|
|
aten.sinh,
|
|
aten.tan,
|
|
aten.atan,
|
|
aten.tanh,
|
|
aten.atanh,
|
|
aten.sqrt,
|
|
aten.rsqrt,
|
|
aten.reciprocal,
|
|
aten.sigmoid,
|
|
aten.softplus,
|
|
aten.threshold,
|
|
aten.threshold_backward,
|
|
aten.clamp,
|
|
aten.where,
|
|
aten.lerp,
|
|
aten.addcmul,
|
|
aten.gelu,
|
|
aten.gelu_backward,
|
|
aten.sum,
|
|
aten.mean,
|
|
aten._grad_sum_to_size,
|
|
aten.sum_to_size,
|
|
aten.amax,
|
|
aten.to,
|
|
aten.type_as,
|
|
operator.getitem,
|
|
aten.squeeze,
|
|
aten.unsqueeze,
|
|
aten.rsub,
|
|
aten._to_copy,
|
|
] # noqa: E501,B950
|
|
recomputable_view_ops = [aten.squeeze, aten.unsqueeze, aten.alias]
|
|
recomputable_view_ops += [
|
|
aten.view,
|
|
aten.slice,
|
|
aten.t,
|
|
prims.broadcast_in_dim,
|
|
aten.expand,
|
|
aten.as_strided,
|
|
aten.permute,
|
|
aten.select,
|
|
]
|
|
view_ops = recomputable_view_ops
|
|
default_recomputable_ops += [
|
|
prims.div,
|
|
prims.convert_element_type,
|
|
aten.clone,
|
|
aten._to_copy,
|
|
aten.full_like,
|
|
prims.var,
|
|
prims.sum,
|
|
aten.var,
|
|
aten.std,
|
|
prims.broadcast_in_dim,
|
|
aten.select,
|
|
aten._unsafe_view,
|
|
aten.view,
|
|
aten.expand,
|
|
aten.slice,
|
|
aten.reshape,
|
|
aten.broadcast_tensors,
|
|
aten.scalar_tensor,
|
|
aten.ones,
|
|
aten.new_zeros,
|
|
aten.lift_fresh_copy,
|
|
aten.arange,
|
|
aten.triu,
|
|
aten.var_mean,
|
|
aten.isinf,
|
|
aten.any,
|
|
aten.full,
|
|
aten.as_strided,
|
|
aten.zeros,
|
|
aten.empty,
|
|
aten.empty_like,
|
|
aten.argmax,
|
|
aten.maximum,
|
|
prims.iota,
|
|
prims._low_memory_max_pool2d_offsets_to_indices,
|
|
] # noqa: E501,B950
|
|
# Natalia said that we should allow recomputing indexing :)
|
|
default_recomputable_ops += [aten.index, aten.gather]
|
|
default_recomputable_ops += view_ops
|
|
|
|
default_recomputable_ops += pointwise_ops()
|
|
|
|
default_recomputable_ops += [
|
|
aten.zeros_like,
|
|
]
|
|
|
|
default_recomputable_ops += [method_to_operator(m) for m in magic_methods]
|
|
recomputable_ops = OrderedSet(default_recomputable_ops)
|
|
|
|
random_ops = OrderedSet([aten.native_dropout, aten.rand_like, aten.randn_like])
|
|
compute_intensive_ops = [
|
|
aten.mm,
|
|
aten.convolution,
|
|
aten.convolution_backward,
|
|
aten.bmm,
|
|
aten.addmm,
|
|
aten._scaled_dot_product_flash_attention,
|
|
aten._scaled_dot_product_efficient_attention,
|
|
aten._flash_attention_forward,
|
|
aten._efficient_attention_forward,
|
|
aten.upsample_bilinear2d,
|
|
aten._scaled_mm,
|
|
] # noqa: E501,B950
|
|
|
|
fusible_ops = recomputable_ops | random_ops
|
|
return OpTypes(
|
|
fusible_ops,
|
|
OrderedSet(compute_intensive_ops),
|
|
random_ops,
|
|
OrderedSet(view_ops),
|
|
recomputable_ops,
|
|
)
|
|
|
|
|
|
def get_name_to_node(graph: fx.Graph):
|
|
name_to_node = {}
|
|
for node in graph.nodes:
|
|
name_to_node[node.name] = node
|
|
return name_to_node
|
|
|
|
|
|
def _optimize_runtime_with_given_memory(
|
|
joint_graph: fx.Graph,
|
|
memory: list[float],
|
|
runtimes: list[float],
|
|
max_memory: float,
|
|
node_info: NodeInfo,
|
|
all_recomputable_banned_nodes: list[fx.Node],
|
|
) -> tuple[float, list[int], list[int]]:
|
|
SOLVER = config.activation_memory_budget_solver
|
|
if SOLVER == "greedy":
|
|
return greedy_knapsack(memory, runtimes, max_memory)
|
|
elif SOLVER == "ilp":
|
|
return ilp_knapsack(memory, runtimes, max_memory)
|
|
elif SOLVER == "dp":
|
|
return dp_knapsack(memory, runtimes, max_memory)
|
|
elif SOLVER == "dynamic_memory_budget_dp":
|
|
log.warning(
|
|
"dynamic_memory_budget_dp is an experimental solver. "
|
|
"It does not guarantee performance improvements. "
|
|
"Additionally, it is not guaranteed to be stable."
|
|
)
|
|
graph_info_provider = GraphInfoProvider.inialize_from_graph(
|
|
joint_graph=joint_graph,
|
|
all_recomputable_banned_nodes=all_recomputable_banned_nodes,
|
|
recorded_knapsack_input_memories=memory,
|
|
recorded_knapsack_input_runtimes=runtimes,
|
|
)
|
|
return dp_knapsack(
|
|
memory,
|
|
runtimes,
|
|
KnapsackEvaluator(
|
|
graph_info_provider=graph_info_provider,
|
|
).get_knee_point_memory_budget(
|
|
knapsack_algo=dp_knapsack,
|
|
max_mem_budget=max_memory,
|
|
),
|
|
)
|
|
elif callable(SOLVER):
|
|
saved_node_idx, recomp_node_idx = SOLVER(
|
|
memory, joint_graph, max_memory, node_info, all_recomputable_banned_nodes
|
|
)
|
|
return (0.0, saved_node_idx, recomp_node_idx)
|
|
else:
|
|
raise RuntimeError(f"Not aware of memory budget knapsack solver: {SOLVER}")
|
|
|
|
|
|
from torch.utils._mode_utils import no_dispatch
|
|
|
|
|
|
# replace symbols in size and strides with their hints without guarding.
|
|
def _remove_symbols_without_guarding(x: torch.Tensor) -> torch.Tensor:
|
|
shape = list(x.shape)
|
|
|
|
def realize_symbol(d):
|
|
return hint_int(d, fallback=4096)
|
|
|
|
shape = [realize_symbol(s) for s in shape]
|
|
stride = [realize_symbol(s) for s in x.stride()]
|
|
return x.new_empty_strided(shape, stride=stride)
|
|
|
|
|
|
def estimate_runtime(node):
|
|
RUNTIME_MODE = config.activation_memory_budget_runtime_estimator
|
|
|
|
def materialize_arg(x):
|
|
if isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.Tensor):
|
|
return _remove_symbols_without_guarding(x.meta["val"])
|
|
elif isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.SymInt):
|
|
return hint_int(x.meta["val"], fallback=4096)
|
|
elif isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.SymFloat):
|
|
return 1.0
|
|
elif isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.SymBool):
|
|
return True
|
|
else:
|
|
return x
|
|
|
|
if RUNTIME_MODE == "testing":
|
|
return 1
|
|
|
|
elif RUNTIME_MODE == "profile":
|
|
with no_dispatch():
|
|
from torch._inductor.runtime.benchmarking import benchmarker
|
|
|
|
args, kwargs = pytree.tree_map(materialize_arg, (node.args, node.kwargs))
|
|
ms = benchmarker.benchmark_gpu(lambda: node.target(*args, **kwargs))
|
|
return ms
|
|
|
|
elif RUNTIME_MODE == "flops":
|
|
# todo(chilli): Normalize this to also return ms
|
|
from torch.utils.flop_counter import FlopCounterMode
|
|
|
|
args, kwargs = pytree.tree_map(materialize_arg, (node.args, node.kwargs))
|
|
with FlopCounterMode(display=False) as mode:
|
|
node.target(*args, **kwargs)
|
|
counted_flops = mode.get_total_flops()
|
|
return max(counted_flops, 1)
|
|
else:
|
|
raise RuntimeError(f"Not aware of runtime estimator: {RUNTIME_MODE}")
|
|
|
|
|
|
def choose_saved_values_set(
|
|
joint_graph: fx.Graph,
|
|
node_info: NodeInfo,
|
|
memory_budget=1,
|
|
) -> list[fx.Node]:
|
|
if memory_budget > 1 or memory_budget < 0:
|
|
raise RuntimeError(
|
|
f"The valid ranges for memory budget are 0 <= m <= 1. The provided value is {memory_budget}"
|
|
)
|
|
min_cut_options = MinCutOptions(
|
|
ban_if_used_far_apart=config.ban_recompute_used_far_apart,
|
|
ban_if_long_fusible_chains=config.ban_recompute_long_fusible_chains,
|
|
ban_if_materialized_backward=config.ban_recompute_materialized_backward,
|
|
ban_if_not_in_allowlist=config.ban_recompute_not_in_allowlist,
|
|
ban_if_reduction=config.ban_recompute_reductions,
|
|
)
|
|
|
|
if config.aggressive_recomputation:
|
|
min_cut_options = replace(
|
|
min_cut_options,
|
|
ban_if_used_far_apart=False,
|
|
ban_if_long_fusible_chains=False,
|
|
ban_if_materialized_backward=False,
|
|
ban_if_not_in_allowlist=False,
|
|
)
|
|
if memory_budget == 0:
|
|
return node_info.inputs
|
|
|
|
runtime_optimized_saved_values, _ = solve_min_cut(
|
|
joint_graph,
|
|
node_info,
|
|
min_cut_options,
|
|
)
|
|
# return runtime_optimized_saved_values
|
|
if memory_budget == 1:
|
|
return runtime_optimized_saved_values
|
|
|
|
def estimate_activations_size(saved_values: list[fx.Node]) -> float:
|
|
return sum(map(_size_of, saved_values)) / 1e9
|
|
|
|
min_act_size = estimate_activations_size(node_info.inputs)
|
|
max_act_size = estimate_activations_size(runtime_optimized_saved_values)
|
|
# The optimized choice is smaller than the inputs anyways
|
|
if max_act_size <= min_act_size:
|
|
return runtime_optimized_saved_values
|
|
|
|
def get_normalized_size(sz):
|
|
return (sz / 1e9) / (max_act_size - min_act_size)
|
|
|
|
def get_mem_ratio(activations: list[fx.Node]):
|
|
return (estimate_activations_size(activations) - min_act_size) / (
|
|
max_act_size - min_act_size
|
|
)
|
|
|
|
more_aggressive_options = replace(
|
|
min_cut_options,
|
|
ban_if_used_far_apart=False,
|
|
ban_if_long_fusible_chains=False,
|
|
ban_if_materialized_backward=False,
|
|
)
|
|
more_aggressive_saved_values, _ = solve_min_cut(
|
|
joint_graph, node_info, more_aggressive_options
|
|
)
|
|
if get_mem_ratio(more_aggressive_saved_values) < memory_budget:
|
|
return more_aggressive_saved_values
|
|
|
|
aggressive_options = replace(
|
|
more_aggressive_options,
|
|
ban_if_not_in_allowlist=False,
|
|
)
|
|
aggressive_recomputation_saved_values, banned_nodes = solve_min_cut(
|
|
joint_graph, node_info, aggressive_options
|
|
)
|
|
|
|
if get_mem_ratio(aggressive_recomputation_saved_values) < memory_budget:
|
|
return aggressive_recomputation_saved_values
|
|
|
|
from torch._inductor.fx_utils import get_node_storage
|
|
|
|
input_storages = OrderedSet(get_node_storage(node) for node in node_info.inputs)
|
|
|
|
def get_recomputable_banned_nodes(
|
|
banned_nodes: OrderedSet[fx.Node],
|
|
) -> list[fx.Node]:
|
|
return [
|
|
i
|
|
for i in banned_nodes
|
|
if (
|
|
# Only allow recomputing nodes that are actually required for BW
|
|
i.dist_from_bw < int(1e9) # type: ignore[attr-defined]
|
|
and get_node_storage(i) not in input_storages
|
|
)
|
|
]
|
|
|
|
recomputable_banned_nodes = get_recomputable_banned_nodes(banned_nodes)
|
|
# sort first by name, to ensure determinism when multiple nodes have same size
|
|
recomputable_banned_nodes = sorted(recomputable_banned_nodes, key=lambda x: x.name)
|
|
|
|
# default: runtime_optimized_saved_values
|
|
# more aggressive: more_aggressive_saved_values
|
|
# full aggressive: aggressive_recomputation_saved_values
|
|
|
|
all_recomputable_banned_nodes = sorted(
|
|
recomputable_banned_nodes, key=_size_of, reverse=True
|
|
)
|
|
if len(all_recomputable_banned_nodes) == 0:
|
|
return node_info.inputs
|
|
memories_banned_nodes = [
|
|
get_normalized_size(_size_of(i)) for i in all_recomputable_banned_nodes
|
|
]
|
|
runtimes_banned_nodes = [
|
|
estimate_runtime(node) for node in all_recomputable_banned_nodes
|
|
]
|
|
from torch.utils._mode_utils import no_dispatch
|
|
|
|
def get_saved_values_knapsack(memory_budget, node_info, joint_graph):
|
|
with no_dispatch():
|
|
(
|
|
expected_runtime,
|
|
saved_node_idxs,
|
|
recomputable_node_idxs,
|
|
) = _optimize_runtime_with_given_memory(
|
|
joint_graph,
|
|
memories_banned_nodes,
|
|
runtimes_banned_nodes,
|
|
max(memory_budget, 0),
|
|
node_info,
|
|
all_recomputable_banned_nodes,
|
|
)
|
|
dont_ban: OrderedSet[fx.Node] = OrderedSet()
|
|
for idx in recomputable_node_idxs:
|
|
# if idx in all_recomputable_banned_nodes:
|
|
try:
|
|
dont_ban.add(all_recomputable_banned_nodes[idx])
|
|
except BaseException:
|
|
pass
|
|
|
|
assert dont_ban.issubset(all_recomputable_banned_nodes)
|
|
|
|
saved_values, _ = solve_min_cut(
|
|
joint_graph,
|
|
node_info,
|
|
aggressive_options,
|
|
dont_ban,
|
|
)
|
|
if AOT_PARTITIONER_DEBUG:
|
|
create_structured_trace_for_min_cut_info(
|
|
joint_graph=joint_graph,
|
|
all_recomputable_banned_nodes=all_recomputable_banned_nodes,
|
|
saved_node_idxs=saved_node_idxs,
|
|
recomputable_node_idxs=recomputable_node_idxs,
|
|
expected_runtime=expected_runtime,
|
|
memories_banned_nodes=memories_banned_nodes,
|
|
runtimes_banned_nodes=runtimes_banned_nodes,
|
|
min_cut_saved_values=saved_values,
|
|
)
|
|
return saved_values, expected_runtime
|
|
|
|
if config.visualize_memory_budget_pareto:
|
|
options = []
|
|
for sweep_memory_budget in range(100, -1, -5):
|
|
saved_values, expected_runtime = get_saved_values_knapsack(
|
|
sweep_memory_budget / 100, node_info=node_info, joint_graph=joint_graph
|
|
)
|
|
options.append(
|
|
(
|
|
sweep_memory_budget,
|
|
sum(runtimes_banned_nodes) - expected_runtime,
|
|
get_mem_ratio(saved_values),
|
|
)
|
|
)
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
x_values = [item[2] for item in options]
|
|
y_values = [item[1] for item in options]
|
|
|
|
# Plotting the values with updated axis labels and chart title
|
|
plt.figure(figsize=(10, 6))
|
|
plt.plot(x_values, y_values, marker="o")
|
|
|
|
# Adding labels for each point
|
|
for i, txt in enumerate(x_values):
|
|
plt.annotate(
|
|
f"{txt:.2f}",
|
|
(txt, y_values[i]),
|
|
textcoords="offset points",
|
|
xytext=(0, 10),
|
|
ha="center",
|
|
)
|
|
|
|
plt.xlabel("Memory Budget")
|
|
plt.ylabel("Runtime of Recomputed Components")
|
|
plt.title("Pareto Frontier of Memory Budget vs. Recomputation Runtime")
|
|
plt.grid(True)
|
|
fig = plt.gcf()
|
|
plt.show()
|
|
fig_name = f"memory_budget_pareto_{get_aot_graph_name()}.png"
|
|
fig.savefig(fig_name)
|
|
log.warning("Generated Pareto frontier curve at %s", fig_name)
|
|
|
|
# todo(chilli): Estimated doesn't align exactly with actual - actual is
|
|
# usually less memory than estimated. i'm guessing (actually quite
|
|
# unsure about this) that's because estimated is just only including
|
|
# tensors we actually banned from recompute, but there may be other
|
|
# tensors that we choose to save.
|
|
|
|
return get_saved_values_knapsack(
|
|
memory_budget=memory_budget, node_info=node_info, joint_graph=joint_graph
|
|
)[0]
|
|
|
|
|
|
def min_cut_rematerialization_partition(
|
|
joint_module: fx.GraphModule,
|
|
_joint_inputs,
|
|
compiler="inductor",
|
|
*,
|
|
num_fwd_outputs,
|
|
) -> tuple[fx.GraphModule, fx.GraphModule]:
|
|
"""
|
|
Partitions the joint graph such that the backward recomputes the forward.
|
|
Recomputing helps in trading off memory bandwidth with computation.
|
|
|
|
To create the fwd and bwd graph, we copy the joint graph, manually set the
|
|
outputs to just original forward or backward outputs. And then we run the
|
|
resulting graphs through dead code elimination.
|
|
|
|
.. warning::
|
|
This API is experimental and likely to change.
|
|
|
|
Args:
|
|
joint_module(fx.GraphModule): The joint forward and backward graph. This
|
|
is the result of AOT Autograd tracing.
|
|
_joint_inputs: The inputs to the joint graph. This is unused.
|
|
compiler: This option determines the default set of recomputable ops.
|
|
Currently, there are two options: ``nvfuser`` and ``inductor``.
|
|
recomputable_ops: This is an optional set of recomputable ops. If this
|
|
is not None, then this set of ops will be used instead of the
|
|
default set of ops.
|
|
num_fwd_outputs: The number of outputs from the forward graph.
|
|
|
|
Returns:
|
|
Returns the generated forward and backward Fx graph modules.
|
|
"""
|
|
|
|
joint_module.graph.eliminate_dead_code()
|
|
joint_module.recompile()
|
|
|
|
fx_g = joint_module.graph
|
|
|
|
# add the CSE pass
|
|
if config.cse:
|
|
cse_graph = fx_graph_cse(fx_g)
|
|
joint_module.graph = cse_graph
|
|
joint_graph = joint_module.graph
|
|
|
|
graph_has_recomputable_ops = has_recomputable_ops(joint_module)
|
|
graph_has_recomputable_rng_ops = has_recomputable_rng_ops(joint_module)
|
|
if graph_has_recomputable_ops:
|
|
joint_module = cleanup_recompute_tags(joint_module)
|
|
|
|
def classify_nodes(joint_module):
|
|
name_to_node = get_name_to_node(joint_module.graph)
|
|
required_bw_nodes: OrderedSet[fx.Node] = OrderedSet()
|
|
for node in joint_module.graph.nodes:
|
|
if node.op == "placeholder" and "tangents" in node.target:
|
|
required_bw_nodes.add(node)
|
|
elif _must_be_in_backward(node):
|
|
required_bw_nodes.add(node)
|
|
|
|
if node in required_bw_nodes:
|
|
required_bw_nodes.update(node.users)
|
|
|
|
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
|
|
fwd_seed_offset_inputs = list(
|
|
filter(_is_fwd_seed_offset, joint_module.graph.nodes)
|
|
)
|
|
inputs = primal_inputs + fwd_seed_offset_inputs
|
|
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(
|
|
joint_module, num_fwd_outputs=num_fwd_outputs
|
|
)
|
|
required_bw_nodes.update(
|
|
o for o in bwd_outputs if o is not None and o.op != "output"
|
|
)
|
|
forward_only_graph = _extract_graph_with_inputs_outputs(
|
|
joint_module.graph, inputs, fwd_outputs, "forward"
|
|
)
|
|
required_fw_nodes: OrderedSet[fx.Node] = OrderedSet(
|
|
name_to_node[node.name]
|
|
for node in forward_only_graph.nodes
|
|
if node.op != "output"
|
|
)
|
|
unclaimed_nodes: OrderedSet[fx.Node] = OrderedSet(
|
|
node
|
|
for node in joint_module.graph.nodes
|
|
if node not in required_fw_nodes and node not in required_bw_nodes
|
|
)
|
|
fw_cnt = 0
|
|
fw_order = {}
|
|
for node in joint_module.graph.nodes:
|
|
if node in required_fw_nodes:
|
|
fw_order[node] = fw_cnt
|
|
fw_cnt += 1
|
|
return NodeInfo(
|
|
inputs, required_fw_nodes, required_bw_nodes, unclaimed_nodes, fw_order
|
|
)
|
|
|
|
node_info = classify_nodes(joint_module)
|
|
|
|
# networkx blows up on graphs with no required backward nodes
|
|
# Since there's nothing to partition anyway, and the default partitioner can "handle"
|
|
# this case, send our graph over to the default partitioner.
|
|
if len(node_info.required_bw_nodes) == 0:
|
|
return default_partition(
|
|
joint_module, _joint_inputs, num_fwd_outputs=num_fwd_outputs
|
|
)
|
|
|
|
for node in reversed(joint_module.graph.nodes):
|
|
if node.op == "output":
|
|
node.dist_from_bw = int(1e9)
|
|
elif not node_info.is_required_fw(node):
|
|
node.dist_from_bw = 0
|
|
else:
|
|
node.dist_from_bw = int(1e9)
|
|
for user in node.users:
|
|
node.dist_from_bw = min(node.dist_from_bw, user.dist_from_bw + 1)
|
|
|
|
memory_budget = config.activation_memory_budget
|
|
for node in joint_graph.nodes:
|
|
if isinstance(node.meta.get("memory_budget", None), float):
|
|
memory_budget = node.meta["memory_budget"]
|
|
break
|
|
saved_values = choose_saved_values_set(
|
|
joint_graph,
|
|
node_info,
|
|
memory_budget=memory_budget,
|
|
)
|
|
# save_for_backward on tensors and stashes symints in autograd .ctx
|
|
saved_sym_nodes = list(filter(is_sym_node, saved_values))
|
|
saved_values = list(filter(lambda n: not is_sym_node(n), saved_values))
|
|
|
|
# NB: saved_sym_nodes will be mutated to reflect the actual saved symbols
|
|
fw_module, bw_module = _extract_fwd_bwd_modules(
|
|
joint_module,
|
|
saved_values,
|
|
saved_sym_nodes=saved_sym_nodes,
|
|
num_fwd_outputs=num_fwd_outputs,
|
|
)
|
|
if graph_has_recomputable_ops:
|
|
if graph_has_recomputable_rng_ops:
|
|
fw_module, bw_module = functionalize_rng_ops(
|
|
joint_module, fw_module, bw_module, len(saved_sym_nodes)
|
|
)
|
|
bw_module = reordering_to_mimic_autograd_engine(bw_module)
|
|
|
|
if AOT_PARTITIONER_DEBUG:
|
|
# Calculate sorted sizes of saved values
|
|
sorted_sizes = sorted([(_size_of(i), str(i)) for i in saved_values])
|
|
|
|
# Log total theoretical activations stored
|
|
total_activations_size_gb = sum(_size_of(i) for i in saved_values) / 1e9
|
|
log.info("Theoretical Activations Stored: %.2f GB", total_activations_size_gb)
|
|
|
|
# Log theoretical per activation storage sizes
|
|
log.info("Theoretical Per Activation Storage Sizes: %s", sorted_sizes)
|
|
fw_module_nodes = OrderedSet(
|
|
node.name for node in fw_module.graph.nodes if node.op == "call_function"
|
|
)
|
|
bw_module_nodes = OrderedSet(
|
|
node.name for node in bw_module.graph.nodes if node.op == "call_function"
|
|
)
|
|
remat_nodes = fw_module_nodes & bw_module_nodes
|
|
|
|
counts: dict[str, int] = defaultdict(int)
|
|
for node in fw_module.graph.nodes:
|
|
if node.name in remat_nodes and hasattr(node.target, "_overloadpacket"):
|
|
counts[str(node.target._overloadpacket)] += 1
|
|
log.info(
|
|
"# remat/fw/bw: %d/%d/%d",
|
|
len(remat_nodes),
|
|
len(fw_module_nodes),
|
|
len(bw_module_nodes),
|
|
)
|
|
rematerialized_ops = sorted(counts.items(), key=lambda x: x[1], reverse=True)
|
|
log.info("Count of Ops Rematerialized: %s", rematerialized_ops)
|
|
return fw_module, bw_module
|
|
|
|
|
|
def draw_graph(
|
|
traced: torch.fx.GraphModule,
|
|
fname: str,
|
|
figname: str = "fx_graph",
|
|
clear_meta: bool = True,
|
|
prog: Optional[Union[str, list[str]]] = None,
|
|
parse_stack_trace: bool = False,
|
|
dot_graph_shape: Optional[str] = None,
|
|
) -> None:
|
|
if clear_meta:
|
|
new_graph = copy.deepcopy(traced.graph)
|
|
traced = fx.GraphModule(traced, new_graph)
|
|
for node in traced.graph.nodes:
|
|
node.meta = {}
|
|
base, ext = os.path.splitext(fname)
|
|
if not ext:
|
|
ext = "." + config.torch_compile_graph_format
|
|
log.info("Writing FX graph to file: %s%s", base, ext)
|
|
g = graph_drawer.FxGraphDrawer(
|
|
traced,
|
|
figname,
|
|
parse_stack_trace=parse_stack_trace,
|
|
dot_graph_shape=dot_graph_shape,
|
|
)
|
|
x = g.get_main_dot_graph()
|
|
write_method = getattr(x, "write_" + ext.lstrip("."))
|
|
fname = f"{base}{ext}"
|
|
if prog is None:
|
|
write_method(fname)
|
|
else:
|
|
write_method(fname, prog=prog)
|