Files
pytorch/c10/core/StorageImpl.h
PyTorch MergeBot 406f2943d2 Revert "Rework PyObject preservation (#166342)"
This reverts commit 6ca8cc6edf30b5ca882d4871af617e674b6cdd47.

Reverted https://github.com/pytorch/pytorch/pull/166342 on behalf of https://github.com/jeanschmidt due to seems to have introduced test/test_reductions.py::TestReductionsCPU::test_dim_reduction_fns_fn_name_var_cpu_int8 [GH job link](https://github.com/pytorch/pytorch/actions/runs/19247187935/job/55027440149) [HUD commit link](6ca8cc6edf) ([comment](https://github.com/pytorch/pytorch/pull/166342#issuecomment-3514771276))
2025-11-11 02:54:00 +00:00

374 lines
11 KiB
C++

#pragma once
#include <c10/core/Allocator.h>
#include <c10/core/Device.h>
#include <c10/core/DeviceType.h>
#include <c10/core/SymInt.h>
#include <c10/core/impl/COW.h>
#include <c10/core/impl/COWDeleter.h>
#include <c10/core/impl/PyObjectSlot.h>
#include <c10/macros/Export.h>
#include <c10/util/Exception.h>
#include <c10/util/UniqueVoidPtr.h>
#include <c10/util/intrusive_ptr.h>
#include <cstddef>
#include <utility>
namespace c10 {
[[noreturn]] C10_API void throwNullDataPtrError();
C10_API void warnDeprecatedDataPtr();
// Used in StorageImpl to store extra metadata.
// Currently used only for storing a custom error message
// used when throwing an exception when data_ptr is accessed.
struct C10_API StorageExtraMeta {
std::optional<std::string> custom_data_ptr_error_msg_ = std::nullopt;
};
// A storage represents the underlying backing data buffer for a
// tensor. This concept was inherited from the original Torch7
// codebase; we'd kind of like to get rid of the concept
// (see https://github.com/pytorch/pytorch/issues/14797) but
// it's hard work and no one has gotten around to doing it.
//
// NB: storage is supposed to uniquely own a data pointer; e.g.,
// two non-null data pointers alias if and only if they are from
// the same storage. Technically you can violate this invariant
// (e.g., you can create a non-owning StorageImpl with at::from_blob)
// but a lot of things won't work correctly, including:
//
// - An ordinary deleter on such a storage is wrong, because normal deleters
// assume unique ownership, but if you have two storages at the same data,
// that implies there is some sort of shared ownership. So your deleter would
// have to actually be internally doing some sort of refcount thing
// - Deepcopy in Python side relies on storage equality and not data pointer
// equality; so if there are two separate storages pointing to the same data,
// the data will actually get duplicated in that case (one data ptr before,
// two data ptrs after)
// - Version counts won't work correctly, because we do all VC tracking at the
// level of storages (unless you explicitly disconnect the VC with detach);
// mutation because data pointers are the same are totally untracked
struct C10_API StorageImpl : public c10::intrusive_ptr_target {
public:
struct use_byte_size_t {};
StorageImpl(
use_byte_size_t /*use_byte_size*/,
SymInt size_bytes,
at::DataPtr data_ptr,
at::Allocator* allocator,
bool resizable)
: data_ptr_(std::move(data_ptr)),
size_bytes_(std::move(size_bytes)),
size_bytes_is_heap_allocated_(size_bytes_.is_heap_allocated()),
resizable_(resizable),
received_cuda_(false),
allocator_(allocator) {
if (resizable) {
TORCH_INTERNAL_ASSERT(
allocator_, "For resizable storage, allocator must be provided");
}
refresh_has_data_ptr_check();
}
StorageImpl(
use_byte_size_t /*use_byte_size*/,
const SymInt& size_bytes,
at::Allocator* allocator,
bool resizable)
: StorageImpl(
use_byte_size_t(),
size_bytes,
size_bytes.is_heap_allocated()
? allocator->allocate(0)
: allocator->allocate(size_bytes.as_int_unchecked()),
allocator,
resizable) {}
StorageImpl& operator=(StorageImpl&& other) = delete;
StorageImpl& operator=(const StorageImpl&) = delete;
StorageImpl() = delete;
StorageImpl(StorageImpl&& other) = delete;
StorageImpl(const StorageImpl&) = delete;
~StorageImpl() override = default;
void reset() {
data_ptr_.clear();
size_bytes_ = 0;
size_bytes_is_heap_allocated_ = false;
}
// Destructor doesn't call release_resources because it's
// unnecessary; don't forget to change that if needed!
void release_resources() override {
data_ptr_.clear();
}
size_t nbytes() const {
// OK to do this instead of maybe_as_int as nbytes is guaranteed positive
TORCH_CHECK(!size_bytes_is_heap_allocated_);
return size_bytes_.as_int_unchecked();
}
SymInt sym_nbytes() const {
return size_bytes_;
}
// TODO: remove later
void set_nbytes(size_t size_bytes) {
size_bytes_ = static_cast<int64_t>(size_bytes);
size_bytes_is_heap_allocated_ = false;
}
void unsafe_set_nbytes(size_t size_bytes) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!size_bytes_is_heap_allocated_);
size_bytes_.unsafe_set_data(size_bytes);
}
void set_nbytes(c10::SymInt size_bytes) {
size_bytes_ = std::move(size_bytes);
}
bool resizable() const {
return resizable_;
}
const at::DataPtr& data_ptr() const {
if (C10_UNLIKELY(throw_on_immutable_data_ptr_)) {
throw_data_ptr_access_error();
}
return data_ptr_;
}
at::DataPtr& mutable_data_ptr() {
if (C10_UNLIKELY(has_mutable_data_ptr_check_)) {
if (throw_on_immutable_data_ptr_) {
throw_data_ptr_access_error();
}
if (throw_on_mutable_data_ptr_) {
throwNullDataPtrError();
}
if (warn_deprecated_on_mutable_data_ptr_) {
warnDeprecatedDataPtr();
}
maybe_materialize_cow();
}
return data_ptr_;
}
// Returns the data_ptr. Bypasses all checks.
at::DataPtr& _mutable_data_ptr_no_checks() {
return data_ptr_;
}
// Returns the previous data_ptr
at::DataPtr set_data_ptr(at::DataPtr&& data_ptr) {
// We need to materialize the old COW DataPtr because it is
// being returned as mutable.
maybe_materialize_cow();
return set_data_ptr_no_materialize_cow(std::move(data_ptr));
}
void set_data_ptr_noswap(at::DataPtr&& data_ptr) {
data_ptr_ = std::move(data_ptr);
refresh_has_data_ptr_check();
}
const void* data() const {
if (C10_UNLIKELY(throw_on_immutable_data_ptr_)) {
throw_data_ptr_access_error();
}
return data_ptr_.get();
}
void* mutable_data() {
if (C10_UNLIKELY(has_mutable_data_ptr_check_)) {
if (throw_on_immutable_data_ptr_) {
throw_data_ptr_access_error();
}
if (throw_on_mutable_data_ptr_) {
throwNullDataPtrError();
}
if (warn_deprecated_on_mutable_data_ptr_) {
warnDeprecatedDataPtr();
}
maybe_materialize_cow();
}
return data_ptr_.mutable_get();
}
at::DeviceType device_type() const {
return data_ptr_.device().type();
}
at::Allocator* allocator() {
return allocator_;
}
const at::Allocator* allocator() const {
return allocator_;
}
// You generally shouldn't use this method, but it is occasionally
// useful if you want to override how a tensor will be reallocated,
// after it was already allocated (and its initial allocator was
// set)
void set_allocator(at::Allocator* allocator) {
allocator_ = allocator;
}
Device device() const {
return data_ptr_.device();
}
void set_resizable(bool resizable) {
if (resizable) {
// We need an allocator to be resizable
AT_ASSERT(allocator_);
}
resizable_ = resizable;
}
/**
* Can only be called when use_count is 1
*/
void UniqueStorageShareExternalPointer(
void* src,
size_t size_bytes,
DeleterFnPtr d = nullptr) {
UniqueStorageShareExternalPointer(
at::DataPtr(src, src, d, data_ptr_.device()), size_bytes);
}
/**
* Can only be called when use_count is 1
*/
void UniqueStorageShareExternalPointer(
at::DataPtr&& data_ptr,
size_t size_bytes) {
data_ptr_ = std::move(data_ptr);
size_bytes_ = static_cast<int64_t>(size_bytes);
size_bytes_is_heap_allocated_ = false;
allocator_ = nullptr;
resizable_ = false;
}
// This method can be used only after storage construction and cannot be used
// to modify storage status
void set_received_cuda(bool received_cuda) {
received_cuda_ = received_cuda;
}
bool received_cuda() {
return received_cuda_;
}
impl::PyObjectSlot* pyobj_slot() {
return &pyobj_slot_;
}
const impl::PyObjectSlot* pyobj_slot() const {
return &pyobj_slot_;
}
StorageExtraMeta& get_extra_meta() {
if (!extra_meta_) {
extra_meta_ = std::make_unique<StorageExtraMeta>();
}
return *extra_meta_;
}
[[noreturn]] void throw_data_ptr_access_error() const;
void release_data_and_set_meta_custom_data_ptr_error_msg_(
std::optional<std::string> s) {
throw_on_immutable_data_ptr_ = true;
get_extra_meta().custom_data_ptr_error_msg_ = std::move(s);
refresh_has_data_ptr_check();
}
void set_throw_on_mutable_data_ptr() {
throw_on_mutable_data_ptr_ = true;
refresh_has_data_ptr_check();
}
void set_warn_deprecated_on_mutable_data_ptr() {
warn_deprecated_on_mutable_data_ptr_ = true;
refresh_has_data_ptr_check();
}
protected:
// materialize_cow_storage needs to call set_data_ptr_no_materlize_cow
friend void c10::impl::cow::materialize_cow_storage(StorageImpl& storage);
// Returns the previous data_ptr. If the old data_ptr was COW,
// this avoids materializing it
at::DataPtr set_data_ptr_no_materialize_cow(at::DataPtr&& data_ptr) {
at::DataPtr old_data_ptr(std::move(data_ptr_));
data_ptr_ = std::move(data_ptr);
refresh_has_data_ptr_check();
return old_data_ptr;
}
private:
void refresh_has_data_ptr_check() {
has_mutable_data_ptr_check_ = is_cow() || throw_on_mutable_data_ptr_ ||
warn_deprecated_on_mutable_data_ptr_ || throw_on_immutable_data_ptr_;
}
inline bool is_cow() const {
return c10::impl::cow::is_cow_data_ptr(data_ptr_);
}
// Triggers a copy if this is a copy-on-write tensor.
void maybe_materialize_cow() {
if (is_cow()) {
impl::cow::materialize_cow_storage(*this);
}
}
DataPtr data_ptr_;
SymInt size_bytes_;
bool size_bytes_is_heap_allocated_;
bool resizable_;
// Identifies that Storage was received from another process and doesn't have
// local to process cuda memory allocation
bool received_cuda_;
// All special checks in data/data_ptr calls are guarded behind this single
// boolean. This is for performance: .data/.data_ptr calls are commonly in the
// hot-path.
bool has_mutable_data_ptr_check_ = false;
// If we should throw when mutable_data_ptr() or mutable_data() is called.
bool throw_on_mutable_data_ptr_ = false;
// If we should throw when data_ptr() or data() is called.
bool throw_on_immutable_data_ptr_ = false;
// If we warn when mutable_data_ptr() or mutable_data() is called.
bool warn_deprecated_on_mutable_data_ptr_ = false;
Allocator* allocator_;
impl::PyObjectSlot pyobj_slot_;
std::unique_ptr<StorageExtraMeta> extra_meta_ = nullptr;
};
// Declare StorageImpl create function pointer types.
using StorageImplCreateHelper = intrusive_ptr<StorageImpl> (*)(
StorageImpl::use_byte_size_t,
SymInt size_bytes,
DataPtr data_ptr,
Allocator* allocator,
bool resizable);
C10_API void SetStorageImplCreate(DeviceType t, StorageImplCreateHelper fptr);
C10_API StorageImplCreateHelper GetStorageImplCreate(DeviceType t);
C10_API c10::intrusive_ptr<c10::StorageImpl> make_storage_impl(
c10::StorageImpl::use_byte_size_t use_byte_size,
c10::SymInt size_bytes,
c10::DataPtr data_ptr,
c10::Allocator* allocator,
bool resizable,
std::optional<at::Device> device_opt);
} // namespace c10