mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 08:00:58 +08:00 
			
		
		
		
	Summary: Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files). This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908). Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838 Test Plan: CI. You can also run `flake8` locally. Reviewed By: jbschlosser Differential Revision: D27724232 Pulled By: samestep fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
		
			
				
	
	
		
			61 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from .quantize import *  # noqa: F403
 | 
						|
from .observer import *  # noqa: F403
 | 
						|
from .qconfig import *  # noqa: F403
 | 
						|
from .fake_quantize import *  # noqa: F403
 | 
						|
from .fuse_modules import fuse_modules
 | 
						|
from .stubs import *  # noqa: F403
 | 
						|
from .quant_type import *  # noqa: F403
 | 
						|
from .quantize_jit import *  # noqa: F403
 | 
						|
# from .quantize_fx import *
 | 
						|
from .quantization_mappings import *  # noqa: F403
 | 
						|
from .fuser_method_mappings import *  # noqa: F403
 | 
						|
 | 
						|
def default_eval_fn(model, calib_data):
 | 
						|
    r"""
 | 
						|
    Default evaluation function takes a torch.utils.data.Dataset or a list of
 | 
						|
    input Tensors and run the model on the dataset
 | 
						|
    """
 | 
						|
    for data, target in calib_data:
 | 
						|
        model(data)
 | 
						|
 | 
						|
_all__ = [
 | 
						|
    'QuantWrapper', 'QuantStub', 'DeQuantStub',
 | 
						|
    # Top level API for eager mode quantization
 | 
						|
    'quantize', 'quantize_dynamic', 'quantize_qat',
 | 
						|
    'prepare', 'convert', 'prepare_qat',
 | 
						|
    # Top level API for graph mode quantization on TorchScript
 | 
						|
    'quantize_jit', 'quantize_dynamic_jit',
 | 
						|
    # Top level API for graph mode quantization on GraphModule(torch.fx)
 | 
						|
    # 'fuse_fx', 'quantize_fx',  # TODO: add quantize_dynamic_fx
 | 
						|
    # 'prepare_fx', 'prepare_dynamic_fx', 'convert_fx',
 | 
						|
    'QuantType', 'quant_type_to_str',  # quantization type
 | 
						|
    # custom module APIs
 | 
						|
    'get_default_static_quant_module_mappings', 'get_static_quant_module_class',
 | 
						|
    'get_default_dynamic_quant_module_mappings',
 | 
						|
    'get_default_qat_module_mappings',
 | 
						|
    'get_default_qconfig_propagation_list',
 | 
						|
    'get_default_compare_output_module_list',
 | 
						|
    'get_quantized_operator',
 | 
						|
    'get_fuser_method',
 | 
						|
    # Sub functions for `prepare` and `swap_module`
 | 
						|
    'propagate_qconfig_', 'add_quant_dequant', 'add_observer_', 'swap_module',
 | 
						|
    'default_eval_fn', 'get_observer_dict',
 | 
						|
    'register_activation_post_process_hook',
 | 
						|
    # Observers
 | 
						|
    'ObserverBase', 'WeightObserver', 'observer', 'default_observer',
 | 
						|
    'default_weight_observer', 'default_placeholder_observer',
 | 
						|
    # FakeQuantize (for qat)
 | 
						|
    'default_fake_quant', 'default_weight_fake_quant',
 | 
						|
    'default_symmetric_fixed_qparams_fake_quant',
 | 
						|
    'default_affine_fixed_qparams_fake_quant',
 | 
						|
    'default_per_channel_weight_fake_quant',
 | 
						|
    'default_histogram_fake_quant',
 | 
						|
    # QConfig
 | 
						|
    'QConfig', 'default_qconfig', 'default_dynamic_qconfig', 'float16_dynamic_qconfig',
 | 
						|
    'float_qparams_weight_only_qconfig',
 | 
						|
    # QAT utilities
 | 
						|
    'default_qat_qconfig', 'prepare_qat', 'quantize_qat',
 | 
						|
    # module transformations
 | 
						|
    'fuse_modules',
 | 
						|
]
 |