mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files). This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908). Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838 Test Plan: CI. You can also run `flake8` locally. Reviewed By: jbschlosser Differential Revision: D27724232 Pulled By: samestep fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
102 lines
4.5 KiB
Python
102 lines
4.5 KiB
Python
from tools.codegen.model import (Argument, BaseTy, BaseType, ListType,
|
|
NativeFunctionsGroup, OptionalType,
|
|
SelfArgument, TensorOptionsArguments, Type,
|
|
assert_never)
|
|
|
|
from tools.codegen.api.types import (ArgName, BaseCType, Binding,
|
|
ConstRefCType, CType, OptionalCType)
|
|
from tools.codegen.api import cpp
|
|
|
|
from typing import Union, List
|
|
|
|
# This file describes the translation of JIT schema to the structured functions API.
|
|
# This is similar to native API, but a number of historical problems with native
|
|
# API have been fixed.
|
|
|
|
# Translation of types occuring in JIT arguments to a C++ argument type.
|
|
# NB: For now, mutable doesn't do anything; but it could if we make
|
|
# some more nominal types
|
|
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> CType:
|
|
# If it's a value type, do the value type translation
|
|
r = cpp.valuetype_type(t, binds=binds)
|
|
if r is not None:
|
|
return r
|
|
|
|
if isinstance(t, BaseType):
|
|
if t.name == BaseTy.Tensor:
|
|
return ConstRefCType(BaseCType('Tensor', binds))
|
|
elif t.name == BaseTy.Scalar:
|
|
return ConstRefCType(BaseCType('Scalar', binds))
|
|
else:
|
|
raise AssertionError(f"base type should have been value type {t}")
|
|
elif isinstance(t, OptionalType):
|
|
if t.elem == BaseType(BaseTy.Tensor):
|
|
raise AssertionError(
|
|
"optional tensor not supported by structured yet; to implement this "
|
|
"add OptionalTensor c.f. https://github.com/pytorch/pytorch/issues/51456"
|
|
)
|
|
elif t.elem == BaseType(BaseTy.Scalar):
|
|
raise AssertionError(
|
|
"optional scalar not supported by structured yet"
|
|
)
|
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
|
return OptionalCType(elem)
|
|
elif isinstance(t, ListType):
|
|
if t.elem == BaseType(BaseTy.Tensor):
|
|
raise AssertionError(
|
|
"list of tensor not supported by structured yet; to implement this "
|
|
"resolve torch::List issue, see "
|
|
"https://fb.workplace.com/groups/894363187646754/permalink/1149276442155426"
|
|
)
|
|
# TODO: delete these special cases; see tools.codegen.api.cpp--these
|
|
# must be changed in tandem, but there are problems; see
|
|
# https://github.com/pytorch/pytorch/pull/51485
|
|
elif str(t.elem) == 'int':
|
|
return BaseCType("IntArrayRef", binds)
|
|
elif str(t.elem) == 'Dimname':
|
|
return BaseCType("DimnameList", binds)
|
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
|
return BaseCType(f"ArrayRef<{elem.cpp_type()}>", binds)
|
|
else:
|
|
raise AssertionError(f"unrecognized type {repr(t)}")
|
|
|
|
def argument_type(a: Argument, *, binds: ArgName) -> CType:
|
|
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
|
|
|
|
# returns_type intentionally omitted, because structured kernels never "return";
|
|
# instead, they always indirectly report their outputs (in the case of a meta
|
|
# function, by calling set_output; in the case of an impl function, by writing
|
|
# directly into the provided out argument).
|
|
|
|
# Structured kernels are never defaulted
|
|
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments]) -> List[Binding]:
|
|
if isinstance(a, Argument):
|
|
return [Binding(
|
|
ctype=argument_type(a, binds=a.name),
|
|
name=a.name,
|
|
default=None,
|
|
argument=a,
|
|
)]
|
|
elif isinstance(a, SelfArgument):
|
|
return argument(a.argument)
|
|
elif isinstance(a, TensorOptionsArguments):
|
|
raise AssertionError("structured kernels don't support TensorOptions yet")
|
|
else:
|
|
assert_never(a)
|
|
|
|
def impl_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
args.extend(g.out.func.arguments.non_out)
|
|
args.extend(g.out.func.arguments.out)
|
|
return [r for arg in args for r in argument(arg)]
|
|
|
|
def meta_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
args.extend(g.functional.func.arguments.non_out)
|
|
return [r for arg in args for r in argument(arg)]
|
|
|
|
def out_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
|
args.extend(g.out.func.arguments.out)
|
|
return [r for arg in args for r in argument(arg)]
|