Files
pytorch/tools/codegen/api/native.py
Sam Estep 4753100a3b Un-ignore F403 in .flake8 (#55838)
Summary:
Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html

This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files).

This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838

Test Plan: CI. You can also run `flake8` locally.

Reviewed By: jbschlosser

Differential Revision: D27724232

Pulled By: samestep

fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34
2021-04-13 09:24:07 -07:00

110 lines
4.4 KiB
Python

from tools.codegen.model import (Argument, FunctionSchema, Return,
SelfArgument, TensorOptionsArguments, Type,
assert_never)
from tools.codegen.api.types import (ArgName, BaseCType, Binding,
ConstRefCType, CType, MutRefCType,
OptionalCType)
from tools.codegen.api import cpp
from typing import Union, Sequence, List, Optional
# This file describes the translation of JIT schema to the native functions API.
# This looks a lot like the C++ API (which makes historical sense, because the
# idea was you wrote native functions to implement functions in the C++ API),
# but over time we have evolved the C++ API without actually changing our
# native:: kernels. The intention is to make native API and dispatcher API
# line up as closely as possible, since this results in the least overhead
# (no translation is needed from dispatcher API to native API).
def name(func: FunctionSchema) -> str:
name = str(func.name.name)
# TODO: delete this!
if func.is_out_fn():
name += '_out'
if func.name.overload_name:
name += f'_{func.name.overload_name}'
return name
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> CType:
if str(t) == 'Tensor?':
tensor_type: OptionalCType = OptionalCType(BaseCType('Tensor', binds))
if mutable:
return MutRefCType(tensor_type)
else:
return ConstRefCType(tensor_type)
elif str(t) == 'Tensor?[]':
return ConstRefCType(BaseCType("c10::List<c10::optional<Tensor>>", binds))
elif str(t) == 'Scalar':
return ConstRefCType(BaseCType('Scalar', binds))
elif str(t) == 'Scalar?':
return ConstRefCType(OptionalCType(BaseCType('Scalar', binds)))
return cpp.argumenttype_type(t, mutable=mutable, binds=binds)
def returns_type(rs: Sequence[Return]) -> str:
return cpp.returns_type(rs)
def argument_type(a: Argument, *, binds: ArgName) -> CType:
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments], *, is_out: bool) -> List[Binding]:
# Ideally, we NEVER default native functions. However, there are a number
# of functions that call native:: directly and rely on the defaulting
# existing. So for BC, we generate defaults for non-out variants (but not
# for out variants, where it is impossible to generate an appropriate
# default)
should_default = not is_out
if isinstance(a, Argument):
default: Optional[str] = None
if should_default and a.default is not None:
default = cpp.default_expr(a.default, a.type)
return [Binding(
ctype=argument_type(a, binds=a.name),
name=a.name,
default=default,
argument=a,
)]
elif isinstance(a, SelfArgument):
# Erase SelfArgument from the distinction
return argument(a.argument, is_out=is_out)
elif isinstance(a, TensorOptionsArguments):
default = None
if should_default:
default = '{}'
# TODO: Not sure why the arguments assigned here are for
# TensorOptionsArguments and not the constituent pieces. It seems
# to matter
return [
Binding(
ctype=OptionalCType(BaseCType('ScalarType', 'dtype')),
name='dtype',
default=default,
argument=a,
),
Binding(
ctype=OptionalCType(BaseCType('Layout', 'layout')),
name='layout',
default=default,
argument=a,
),
Binding(
ctype=OptionalCType(BaseCType('Device', 'device')),
name='device',
default=default,
argument=a,
),
Binding(
ctype=OptionalCType(BaseCType('bool', 'pin_memory')),
name='pin_memory',
default=default,
argument=a,
)]
else:
assert_never(a)
def arguments(func: FunctionSchema) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
args.extend(func.arguments.non_out)
args.extend(func.arguments.out)
return [r for arg in args for r in argument(arg, is_out=func.is_out_fn())]