Files
pytorch/torch/distributed/tensor/experimental/_attention.py
Chien-Chin Huang 4740ce7787 [CP] Fix load balancer incorrectly assuming batch dimension exists (#165792)
https://github.com/pytorch/pytorch/pull/163617 removes the if/else statement to check if the input buffers have the batch dimension.

This PR fixes the issue and also adds a test.

In the future, we should explicitly ask users to unsqueeze the batch dimension. This is a BC of the existing contract but implicitly infers the batch dimension existence is not safe.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165792
Approved by: https://github.com/XilunWu
2025-10-18 09:11:16 +00:00

1652 lines
58 KiB
Python

import contextlib
import itertools
import logging
import types
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from dataclasses import dataclass
from enum import auto, Enum
from functools import partial
from typing import Any, cast, Mapping, Optional, Protocol, Sequence, TypeAlias
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed.distributed_c10d as c10d
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor import distribute_tensor, DTensor, Shard
from torch.distributed.tensor.experimental._load_balancer import (
_create_default_load_balancer,
_LoadBalancer,
)
from torch.distributed.tensor.parallel import ParallelStyle
from torch.nn.attention.flex_attention import (
_mask_mod_signature,
BlockMask,
create_block_mask,
)
from torch.utils._pytree import tree_flatten, tree_unflatten
from ._cp_custom_ops import flex_cp_allgather
__all__ = ["context_parallel", "set_rotate_method"]
class _CausalBehavior(Enum):
SKIP = None
NOT_IS_CAUSAL = False
IS_CAUSAL = True
class _RotateMethod(Enum):
ALL_TO_ALL = auto()
ALL_GATHER = auto()
aten = torch.ops.aten
logger = logging.getLogger(__name__)
class _DispatchMode(Enum):
MONKEY_PATCH = auto()
MODULE_WRAPPER = auto()
_dispatch_mode: _DispatchMode = _DispatchMode.MONKEY_PATCH
@dataclass
class _ContextParallelOptions:
# Whether to upcast parameters and gradients to float32 to avoid accumulation
# errors. It is likely this is always True, but we currently keep this variable
# for experimental purposes.
convert_to_f32: bool = True
enable_load_balance: bool = True
rotate_method: _RotateMethod = _RotateMethod.ALL_GATHER
_cp_options = _ContextParallelOptions()
def _is_causal_behavior(
rank: int, world_size: int, i: int, is_causal: bool
) -> _CausalBehavior:
"""
Calculate is_causal behavior for each KV block. The attention can either be
calculated in full, not at all or with the causal mask applied.
"""
if not is_causal:
return _CausalBehavior.NOT_IS_CAUSAL
if i == 0:
return _CausalBehavior.IS_CAUSAL
source_rank = (rank - i) % world_size
if source_rank < rank or _cp_options.enable_load_balance:
return _CausalBehavior.NOT_IS_CAUSAL
else:
return _CausalBehavior.SKIP
def _maybe_wait(tensor: torch.Tensor) -> torch.Tensor:
"""
When tracing the code, the result tensor is not an AsyncCollectiveTensor,
so we cannot call ``wait()``.
"""
if isinstance(tensor, ft_c.AsyncCollectiveTensor):
return tensor.wait()
return tensor
def _partial_update(
original: torch.Tensor,
new: torch.Tensor,
dim: int,
n_chunks: int,
idx: int,
add: bool,
) -> torch.Tensor:
"""
This API partially updates a chunk of ``original`` tensor. The ``original``
tensor will be first chunked along ``dim`` dimension, then the ``idx`` chunk
will be updated with ``new``. If ``add`` is True, the chunk will be added
with ``new``, otherwise the chunk will be replaced by ``new``.
The result is a tensor that is the same size as ``original``.
"""
chunks = list(original.chunk(n_chunks, dim=dim))
assert chunks[idx].shape == new.shape, (original.shape, new.shape, idx)
if add:
chunks[idx] += new
else:
chunks[idx] = new
return torch.cat(chunks, dim=dim)
class _SDPAMerger:
"""A class to help merge the local SDPA result."""
def __init__(self, convert_to_f32: bool, seq_dim: int):
self._seq_dim = seq_dim
self._out: Optional[torch.Tensor] = None
self._lse: Optional[torch.Tensor] = None
self._should_lse_squeeze = False
self._convert_to_f32 = convert_to_f32
self._out_dtype = torch.float32
self._lse_dtype = torch.float32
def _merge_one(
self, block_out: torch.Tensor, block_lse: torch.Tensor, partial: bool
) -> None:
# The cuDNN backend preserves the last dimension for LSE.
# Apply unsqueeze only if the input does not already have
# the required dimensionality.
if len(block_lse.shape) < len(block_out.shape):
block_lse = block_lse.unsqueeze(dim=-1)
self._should_lse_squeeze = True
assert len(block_lse.shape) == len(block_out.shape)
if self._lse is None:
self._lse = block_lse
self._out = block_out
else:
ROUND_ROBIN_CYCLE = 2
assert self._lse is not None
assert self._out is not None
lse = (
self._lse.chunk(ROUND_ROBIN_CYCLE, dim=self._seq_dim)[1]
if partial
else self._lse
)
out = (
self._out.chunk(ROUND_ROBIN_CYCLE, dim=self._seq_dim)[1]
if partial
else self._out
)
# The algorithm from
# github.com/zhuzilin/ring-flash-attention/pull/34#issuecomment-2076126795
# gives a relatively stable result.
out = out - F.sigmoid(block_lse - lse) * (out - block_out)
lse = lse - F.logsigmoid(lse - block_lse)
if partial:
self._lse = _partial_update(
self._lse,
lse,
dim=self._seq_dim,
n_chunks=ROUND_ROBIN_CYCLE,
idx=1,
add=False,
)
self._out = _partial_update(
self._out,
out,
dim=self._seq_dim,
n_chunks=ROUND_ROBIN_CYCLE,
idx=1,
add=False,
)
else:
self._lse = lse
self._out = out
def step(self, out: torch.Tensor, lse: torch.Tensor, partial: bool) -> None:
self._out_dtype = out.dtype
self._lse_dtype = lse.dtype
if self._convert_to_f32:
out = out.to(torch.float32)
lse = lse.to(torch.float32)
self._merge_one(out, lse, partial)
def results(self) -> tuple[torch.Tensor, torch.Tensor]:
assert self._out is not None
assert self._lse is not None
out = self._out.to(self._out_dtype)
if self._should_lse_squeeze:
lse = self._lse.squeeze(-1).to(self._lse_dtype)
else:
lse = self._lse.to(self._lse_dtype)
return out, lse
class _AttentionOp(Protocol):
def __call__(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
**kwargs: object,
) -> tuple[torch.Tensor, ...]: ...
class _RingRotater(ABC):
@abstractmethod
def __init__(self, pg: dist.ProcessGroup, seq_dim: int) -> None: ...
@abstractmethod
def exchange_buffers(self, curr_buffer: torch.Tensor) -> None: ...
@abstractmethod
def next_buffer(self) -> torch.Tensor: ...
class _AllToAllRotater(_RingRotater):
"""Use all_to_all to send the kv to the next rank."""
def __init__(self, pg: dist.ProcessGroup, seq_dim: int) -> None:
self._pg = pg
self._seq_dim = seq_dim
self._buffer: Optional[torch.Tensor] = None
def exchange_buffers(self, curr_buffer: torch.Tensor) -> None:
curr_buffer = curr_buffer.contiguous()
size = dist.get_world_size(self._pg)
dsts = list(range(1, size)) + [0]
self._buffer = ft_c.permute_tensor(curr_buffer, dsts, self._pg)
def next_buffer(self) -> torch.Tensor:
assert self._buffer is not None
return _maybe_wait(self._buffer)
class _AllGatherRotater(_RingRotater):
"""
Allgather the kv and return only the required kv.
Only one communication will be done.
"""
def __init__(self, pg: dist.ProcessGroup, seq_dim: int) -> None:
self._pg = pg
self._seq_dim = seq_dim
self._aggregated_buffer: Optional[torch.Tensor] = None
self._idx = 0
def exchange_buffers(self, curr_buffer: torch.Tensor) -> None:
# We only need to perform allgather once.
self._idx += 1
if self._aggregated_buffer is None:
self._aggregated_buffer = ft_c.all_gather_tensor(
curr_buffer.contiguous(), gather_dim=0, group=self._pg
)
def next_buffer(self) -> torch.Tensor:
rank = dist.get_rank(self._pg)
idx = rank - self._idx
assert self._aggregated_buffer is not None
self._aggregated_buffer = _maybe_wait(self._aggregated_buffer)
return self._aggregated_buffer.chunk(dist.get_world_size(self._pg))[idx]
def _create_rotater(
pg: dist.ProcessGroup, seq_dim: int, method: Optional[_RotateMethod] = None
) -> _RingRotater:
if method is None:
method = _cp_options.rotate_method
if method == _RotateMethod.ALL_TO_ALL:
return _AllToAllRotater(pg, seq_dim)
elif method == _RotateMethod.ALL_GATHER:
return _AllGatherRotater(pg, seq_dim)
else:
raise NotImplementedError(f"Unknown method {method}")
def _templated_ring_attention(
group: dist.ProcessGroup,
seq_dim: int,
op: _AttentionOp,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
**kwargs: object,
) -> tuple[torch.Tensor, ...]:
"""
A generalized ring attention implementation that can support multiple attention ops.
Note [Context parallelism load balance algorithm for causal masking]
=====================
This explanation uses an example to illustrate the CP algorithm with causal
masking.
Consider a scenario where the sequence length of q, k, and v is 4 (e.g.,
q = (q0, q1, q2, q3)), and there are two ranks. For simplicity, we will discuss
only q and k, as v follows the same pattern as k.
The diagram below represents a complete QK^T operation without parallelism.
The `****` entries indicate that the result is not required due to causal
masking (e.g., q0k1 is marked as `****`).
+----+------------------------+
| | k0 k1 k2 k3 |
+----+------------------------+
| q0 | q0k0, ****, ****, **** |
| q1 | q1k0, q1k1, ****, **** |
| q2 | q2k0, q2k1, q2k2, **** |
| q3 | q3k0, q3k1, q3k2, q3k3 |
+----+------------------------+
### No Load Balance:
In this scenario, each rank owns a local chunk of q, k, and v, with each chunk
containing two elements. Rank0 is responsible for managing (q0, q1) and (k0, k1),
while rank1 manages (q2, q3) and (k2, k3).
First Iteration: Both rank0 and rank1 perform SDPA with their local qkv pairs.
Causal masking is enabled as some results are not required (e.g., q0k1).
Second Iteration: Local queries remain the same, but local kv pairs are exchanged.
Rank0 now has (q0, q1) and (k2, k3); rank1 has (q2, q3) and (k0, k1). Rank0 performs
no computation, while rank1 computes locally without causal masking since all results
(q2k0, q2k1, q3k0, q3k1) are needed.
### Round-robin Load Balance:
In this setup, each rank owns two local chunks of q, k, and v, with each chunk
containing one element. Rank0 manages (q0, q3) and (k0, k3); Rank1 manages (q1, q2)
and (k1, k2). Although the local chunks are not consecutive, they are concatenated to
enable SDPA to be performed in a single call for each step. Consequently, the chunk()
function may be required to prepare the correct q, k, and v configurations.
First Iteration: Both ranks perform SDPA with their local qkv pairs, similar to the
no-load-balance case. This iteration corresponds to the `if` of the
(`if, `elif`, `else`) in the implementation.
Second Iteration: Rank0 now has (q0, q3) and (k1, k2); rank1 has (q1, q2) and
(k0, k3). For rank0, no computation is needed for q0. However, computations for
q3k1 and q3k2 are required, so only q3 is used for SDPA. This corresponds to the
`else` of the (`if`, `elif`, `else`) in the implementation.
For rank1, k3 is not needed for q1 and q2, so only k0 is used for SDPA. This
corresponds to the `elif` of (`if`, `elif`, `else`) in the implementation.
Parameters
----------
op:
The attention op to use
*args:
additional args are passed to the op
**kwargs:
additional kwargs are passed to the op
Returns
-------
out:
The merged attention output
softmax_lse:
The logsumexp of the merged attention output
"""
if is_causal and (query.size(2) != key.size(2)):
raise NotImplementedError(
"is_causal requires the same query and context sequence lengths"
)
if not is_causal and _cp_options.enable_load_balance:
raise RuntimeError("Load balancing requires `is_causal=True`.")
assert isinstance(group, dist.ProcessGroup), (
"process group must be single dimension"
)
rank = dist.get_rank(group)
size = dist.get_world_size(group)
next_kv = None
# Without making key and value contiguous(), the loss curve is bad.
# TODO(fegin): figure out why this is a requirement since SDPA does not have
# this requirement.
key = key.contiguous()
value = value.contiguous()
sdpa_merger = _SDPAMerger(_cp_options.convert_to_f32, seq_dim=seq_dim)
rest: list[Any]
out: torch.Tensor
logsumexp: torch.Tensor
rotater = _create_rotater(group, 2)
for i in range(size):
if i > 0:
# Wait for the kv from the (cp_rank - 1) rank.
next_kv = rotater.next_buffer()
key = next_kv[: key.numel()].reshape(key.shape)
value = next_kv[key.numel() :].reshape(value.shape)
if i < (size - 1):
# Send the k, v to the next rank
next_kv = torch.cat([key.flatten(), value.flatten()])
next_kv = rotater.exchange_buffers(next_kv)
is_causal_behavior = _is_causal_behavior(
rank=rank, world_size=size, i=i, is_causal=is_causal
)
# For a detailed understanding of the load balancing algorithm, see
# Note [Context parallelism load balance algorithm for causal masking]
if is_causal_behavior == _CausalBehavior.SKIP:
# If i > rank and load balancing is not turned on.
continue
if i == 0 or (not _cp_options.enable_load_balance or not is_causal):
# When local balance is enabled, we still need to do SDPA with
# the both local chunks of q, k, v for the first iteration.
q, k, v, partial = (query, key, value, False)
elif i <= rank:
# Round-robin load balancing case, and i <= rank.
# We need to do SDPA with only the first local chunk of k, v.
# Note that q, k, v each contains two local chunks.
ROUND_ROBIN_CYCLE = 2
q, k, v, partial = (
query,
key.chunk(ROUND_ROBIN_CYCLE, dim=2)[0],
value.chunk(ROUND_ROBIN_CYCLE, dim=2)[0],
False,
)
else:
# Round-robin load balancing case, and i > rank.
# We need to do SDPA with only the second half of q, and update
# only the second part of logsumexp. So partial is True.
# Note that q, k, v each contains two chunks.
q, k, v, partial = query.chunk(2, dim=2)[1], key, value, True
# See https://github.com/pytorch/pytorch/blob/release/2.4/aten/src/ATen/native/native_functions.yaml#L14695
# for the SDPA kernel definitions.
out, logsumexp, *rest = op(
q,
k,
v,
is_causal=is_causal_behavior.value,
**kwargs,
)
sdpa_merger.step(out, logsumexp, partial)
# pyrefly: ignore # unbound-name
return *sdpa_merger.results(), *rest
def _templated_ring_attention_backward(
group: dist.ProcessGroup,
seq_dim: int,
op: _AttentionOp,
grad_out: torch.Tensor,
grad_out_name: str,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
is_causal: bool,
**kwargs: Any,
) -> tuple[torch.Tensor, ...]:
"""This API implements the backward pass of the ring attention."""
if not is_causal and _cp_options.enable_load_balance:
raise RuntimeError("Load balancing requires `is_causal=True`.")
rank = dist.get_rank(group)
size = dist.get_world_size(group)
next_kv = None
next_grad_kv = None
rest: list[Any]
grad_query_, grad_key_, grad_value_ = None, None, None
accum_dtype = torch.float32 if _cp_options.convert_to_f32 else query.dtype
grad_query = torch.zeros_like(query, dtype=accum_dtype)
grad_key = torch.zeros_like(key, dtype=accum_dtype)
grad_value = torch.zeros_like(value, dtype=accum_dtype)
key = key.contiguous()
value = value.contiguous()
kv_rotater = _create_rotater(group, 2)
dkv_rotater = _create_rotater(group, 2, method=_RotateMethod.ALL_TO_ALL)
for i in range(size):
if i > 0:
# Wait for the kv from the (cp_rank - 1) rank.
buffer = kv_rotater.next_buffer()
pointer = 0
key = buffer[pointer : pointer + key.numel()].reshape(key.shape)
pointer += key.numel()
value = buffer[pointer : pointer + value.numel()].reshape(value.shape)
pointer += value.numel()
if i != size - 1:
# Send the kv to the next rank.
next_kv = torch.cat([key.flatten(), value.flatten()])
kv_rotater.exchange_buffers(next_kv)
is_causal_behavior = _is_causal_behavior(
rank=rank, world_size=size, i=i, is_causal=is_causal
)
if is_causal_behavior != _CausalBehavior.SKIP:
if i == 0 or (not _cp_options.enable_load_balance or not is_causal):
# We need to do SDPA with the full local q, k, v.
q, k, v, out_, dout, lse = (query, key, value, out, grad_out, logsumexp)
elif i <= rank:
# Round-robin load balancing case, and i <= rank.
# We need to do SDPA with only the first half of k, v.
# Note that q, k, v each contains two chunks.
q, k, v, out_, dout, lse = (
query,
key.chunk(2, dim=seq_dim)[0],
value.chunk(2, dim=seq_dim)[0],
out,
grad_out,
logsumexp,
)
else:
# Round-robin load balancing case, and i > rank.
# We need to do SDPA with only the second half of q.
# Note that q, k, v each contains two chunks.
q, k, v, out_, dout, lse = (
query.chunk(2, dim=seq_dim)[1],
key,
value,
out.chunk(2, dim=seq_dim)[1],
grad_out.chunk(2, dim=seq_dim)[1],
# Need to make logsumexp contiguous, otherwise there will
# be numerical error.
logsumexp.chunk(2, dim=seq_dim)[1].contiguous(),
)
kwargs[grad_out_name] = dout
# See https://github.com/pytorch/pytorch/blob/release/2.4/aten/src/ATen/native/native_functions.yaml#L14695
# for the SDPA kernel definitions.
grad_query_, grad_key_, grad_value_, *rest = op(
query=q,
key=k,
value=v,
out=out_,
logsumexp=lse,
is_causal=is_causal_behavior.value,
**kwargs,
)
else:
grad_query_ = torch.zeros_like(query, dtype=accum_dtype)
grad_key_ = torch.zeros_like(key, dtype=accum_dtype)
grad_value_ = torch.zeros_like(value, dtype=accum_dtype)
ROUND_ROBIN_CYCLE = 2
if i == 0:
grad_key += grad_key_
grad_value += grad_value_
else:
pointer = 0
# Wait for the kv gradient from (cp_rank - 1) rank.
next_grad_kv = dkv_rotater.next_buffer()
grad_key = next_grad_kv[pointer : pointer + grad_key.numel()].reshape(
grad_key.shape
)
pointer += grad_key.numel()
grad_value = next_grad_kv[pointer : pointer + grad_value.numel()].reshape(
grad_value.shape
)
if i <= rank and _cp_options.enable_load_balance:
grad_key = _partial_update(
grad_key,
grad_key_,
dim=seq_dim,
n_chunks=ROUND_ROBIN_CYCLE,
idx=0,
add=True,
)
grad_value = _partial_update(
grad_value,
grad_value_,
dim=seq_dim,
n_chunks=ROUND_ROBIN_CYCLE,
idx=0,
add=True,
)
else:
grad_key += grad_key_
grad_value += grad_value_
next_grad_kv = torch.cat([grad_key.flatten(), grad_value.flatten()])
# Send the grad key and grad value to the next rank.
dkv_rotater.exchange_buffers(next_grad_kv)
if i <= rank or not _cp_options.enable_load_balance:
grad_query += grad_query_
else:
grad_query = _partial_update(
grad_query,
grad_query_,
dim=seq_dim,
n_chunks=ROUND_ROBIN_CYCLE,
idx=1,
add=True,
)
assert grad_key_ is not None
assert grad_value_ is not None
grad_query = grad_query.to(query.dtype)
next_grad_kv = dkv_rotater.next_buffer().to(key.dtype)
grad_key = next_grad_kv[: grad_key.numel()].reshape(grad_key.shape)
grad_value = next_grad_kv[grad_key.numel() :].reshape(grad_value.shape)
return (
grad_query,
grad_key,
grad_value,
# pyrefly: ignore # unbound-name
*rest,
)
def _scaled_dot_product_ring_flash_attention(
mesh: DeviceMesh,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
is_causal: bool = False,
return_debug_mask: bool = False,
*,
scale: Optional[float] = None,
) -> tuple[torch.Tensor, ...]:
if return_debug_mask:
raise NotImplementedError("return_debug_mask is not supported yet")
# TODO: remove this hardcoding
seq_dim = 2
group = mesh.get_group()
return _templated_ring_attention(
group,
seq_dim,
aten._scaled_dot_product_flash_attention,
query=query,
key=key,
value=value,
is_causal=is_causal,
dropout_p=dropout_p,
scale=scale,
)
def _scaled_dot_product_ring_efficient_attention(
mesh: DeviceMesh,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
compute_log_sumexp: bool = True,
dropout_p: float = 0.0,
is_causal: bool = False,
*,
scale: Optional[float] = None,
) -> tuple[torch.Tensor, ...]:
if attn_bias is not None:
raise NotImplementedError("attn_bias is not supported yet")
if not compute_log_sumexp:
# CP requires compute_log_sumexp to be True because it always merges LSE
compute_log_sumexp = True
# TODO: remove this hardcoding
seq_dim = 2
group = mesh.get_group()
return _templated_ring_attention(
group,
seq_dim,
aten._scaled_dot_product_efficient_attention,
query=query,
key=key,
value=value,
is_causal=is_causal,
attn_bias=attn_bias,
dropout_p=dropout_p,
scale=scale,
compute_log_sumexp=compute_log_sumexp,
)
def _scaled_dot_product_ring_cudnn_attention(
mesh: DeviceMesh,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
compute_log_sumexp: bool = True,
dropout_p: float = 0.0,
is_causal: bool = False,
return_debug_mask: bool = False,
*,
scale: Optional[float] = None,
) -> tuple[torch.Tensor, ...]:
if attn_bias is not None:
raise NotImplementedError("attn_bias is not supported yet")
if not compute_log_sumexp:
# CP requires compute_log_sumexp to be True because it always merges LSE
compute_log_sumexp = True
# TODO: remove this hardcoding
seq_dim = 2
group = mesh.get_group()
return _templated_ring_attention(
group,
seq_dim,
aten._scaled_dot_product_cudnn_attention,
query=query,
key=key,
value=value,
attn_bias=attn_bias,
compute_log_sumexp=compute_log_sumexp,
dropout_p=dropout_p,
is_causal=is_causal,
return_debug_mask=return_debug_mask,
scale=scale,
)
def _scaled_dot_product_ring_flash_attention_backward(
mesh: DeviceMesh,
grad_out: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
cum_seq_q: torch.Tensor,
cum_seq_k: torch.Tensor,
max_q: int,
max_k: int,
dropout_p: float,
is_causal: bool,
philox_seed: torch.Tensor,
philox_offset: torch.Tensor,
*,
scale: Optional[float] = None,
) -> tuple[torch.Tensor, ...]:
# TODO: remove this hardcoding
seq_dim = 2
group = mesh.get_group()
return _templated_ring_attention_backward(
group,
seq_dim,
aten._scaled_dot_product_flash_attention_backward.default,
grad_out=grad_out,
grad_out_name="grad_out",
query=query,
key=key,
value=value,
out=out,
logsumexp=logsumexp,
is_causal=is_causal,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=max_q,
max_k=max_k,
dropout_p=dropout_p,
philox_seed=philox_seed,
philox_offset=philox_offset,
scale=scale,
)
def _scaled_dot_product_ring_efficient_attention_backward(
mesh: DeviceMesh,
grad_out: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
bias: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
philox_seed: torch.Tensor,
philox_offset: torch.Tensor,
dropout_p: float,
grad_input_mask: tuple[bool, ...],
is_causal: bool = False,
*,
scale: Optional[float] = None,
) -> tuple[torch.Tensor, ...]:
# TODO: remove this hardcoding
seq_dim = 2
group = mesh.get_group()
return _templated_ring_attention_backward(
group,
seq_dim,
aten._scaled_dot_product_efficient_attention_backward.default,
grad_out=grad_out,
grad_out_name="grad_out_",
query=query,
key=key,
value=value,
attn_bias=bias,
out=out,
logsumexp=logsumexp,
philox_seed=philox_seed,
philox_offset=philox_offset,
dropout_p=dropout_p,
grad_input_mask=grad_input_mask,
is_causal=is_causal,
scale=scale,
)
def _scaled_dot_product_ring_cudnn_attention_backward(
mesh: DeviceMesh,
grad_out: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
philox_seed: torch.Tensor,
philox_offset: torch.Tensor,
attn_bias: torch.Tensor,
cum_seq_q: torch.Tensor,
cum_seq_k: torch.Tensor,
max_q: int,
max_k: int,
dropout_p: float,
is_causal: bool,
*,
scale: Optional[float] = None,
) -> tuple[torch.Tensor, ...]:
# TODO: remove this hardcoding
seq_dim = 2
group = mesh.get_group()
return _templated_ring_attention_backward(
group,
seq_dim,
aten._scaled_dot_product_cudnn_attention_backward.default,
grad_out=grad_out,
grad_out_name="grad_out",
query=query,
key=key,
value=value,
out=out,
logsumexp=logsumexp,
philox_seed=philox_seed,
philox_offset=philox_offset,
attn_bias=attn_bias,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=max_q,
max_k=max_k,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
)
def _sdpa_handler(
op_call: torch._ops.OpOverload,
args: tuple[object, ...],
kwargs: dict[str, object],
) -> object:
# extract local tensor and sharding infos to a OpInfo
op_info = DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
logger.debug("Dispatching op_call: %s", op_info.schema)
# sharding propagation
# TODO: remove the context parallel strategy from the default propagation
# rule. Either figure out how to dynamically enable it or just don't call
# propagate.
DTensor._op_dispatcher.sharding_propagator.propagate(op_info)
output_sharding = op_info.output_sharding
assert output_sharding is not None, "output sharding should not be None"
assert not output_sharding.needs_redistribute, "inputs need to be redistributed"
call_maps: dict[torch._ops.OpOverload, Callable] = {
aten._scaled_dot_product_flash_attention.default: _scaled_dot_product_ring_flash_attention,
aten._scaled_dot_product_efficient_attention.default: _scaled_dot_product_ring_efficient_attention,
aten._scaled_dot_product_cudnn_attention.default: _scaled_dot_product_ring_cudnn_attention,
aten._scaled_dot_product_flash_attention_backward.default: _scaled_dot_product_ring_flash_attention_backward,
aten._scaled_dot_product_efficient_attention_backward.default: _scaled_dot_product_ring_efficient_attention_backward,
aten._scaled_dot_product_cudnn_attention_backward.default: _scaled_dot_product_ring_cudnn_attention_backward,
}
if op_call in call_maps:
local_results = call_maps[op_call](
op_info.compute_mesh,
*op_info.local_args, # type: ignore[arg-type]
**op_info.local_kwargs, # type: ignore[arg-type]
)
else:
raise NotImplementedError(
"CP only supports flash attention and memory efficient attention now."
)
return DTensor._op_dispatcher.wrap(local_results, output_sharding.output_spec)
custom_ops = {
aten._scaled_dot_product_flash_attention.default: _sdpa_handler,
aten._scaled_dot_product_flash_attention_backward.default: _sdpa_handler,
aten._scaled_dot_product_efficient_attention.default: _sdpa_handler,
aten._scaled_dot_product_efficient_attention_backward.default: _sdpa_handler,
aten._scaled_dot_product_cudnn_attention.default: _sdpa_handler,
aten._scaled_dot_product_cudnn_attention_backward.default: _sdpa_handler,
}
exitsing_custom_ops = DTensor._op_dispatcher._custom_op_handlers
ArgsType = tuple[Any, ...]
KwargsType = dict[str, Any]
InputFnType = Callable[[Optional[nn.Module], ArgsType, KwargsType, DeviceMesh], Any]
OutputFnType = Callable[[Optional[nn.Module], Any, Any, DeviceMesh], Any]
_replaced_functions: dict[Callable, tuple[str, Callable]] = {}
def _distribute_function(
fn: Callable,
fn_module: types.ModuleType,
device_mesh: DeviceMesh,
input_fn: InputFnType,
output_fn: OutputFnType,
) -> None:
"""
A helper function to replace a function with a distributed version by
using the monkey patching approach.
This function is for the CP internal usage only.
"""
def wrapper(
target_fn: Callable, input_fn: InputFnType, output_fn: OutputFnType
) -> Callable:
def inner_fn(*args: ArgsType, **kwargs: KwargsType) -> Any:
args, kwargs = input_fn(None, args, kwargs, device_mesh)
outputs = target_fn(*args, **kwargs)
return output_fn(None, (args, kwargs), outputs, device_mesh)
return inner_fn
global _replaced_functions
if fn in _replaced_functions:
return
wrapper_fn = wrapper(fn, input_fn, output_fn)
setattr(fn_module, fn.__name__, wrapper_fn)
_replaced_functions[wrapper_fn] = (fn.__name__, fn)
def _restore_function(fn: Callable, fn_module: types.ModuleType) -> None:
"""Restore the function that is replaced by _distribute_function."""
if fn not in _replaced_functions:
return
original_name, original_fn = _replaced_functions[fn]
setattr(fn_module, original_name, original_fn)
def _enable_cp_dtensor_dispatcher() -> None:
"""Enables DTensor dispatcher to dispatch SDPA to CP."""
DTensor._op_dispatcher._custom_op_handlers = {
**exitsing_custom_ops,
**custom_ops,
}
def _disable_cp_dtensor_dispatcher() -> None:
"""Disables DTensor dispatcher to dispatch SDPA to CP."""
DTensor._op_dispatcher._custom_op_handlers = exitsing_custom_ops
def _enable_context_parallel_dispatcher_impl(seq_dim: int, mesh: DeviceMesh) -> None:
sdpa_cp = _ContextParallel(
seq_dim=seq_dim,
attention_type=_ContextParallel.AttentionType.SDPA,
)
if _dispatch_mode == _DispatchMode.MONKEY_PATCH:
_distribute_function(
F.scaled_dot_product_attention,
F,
mesh,
sdpa_cp.sdpa_input_fn,
sdpa_cp.sdpa_output_fn,
)
_enable_cp_dtensor_dispatcher()
elif _dispatch_mode == _DispatchMode.MODULE_WRAPPER:
_enable_cp_dtensor_dispatcher()
else:
raise ValueError(f"Unknown dispatch mode: {_dispatch_mode}")
def _disable_context_parallel_dispatcher_impl() -> None:
if _dispatch_mode == _DispatchMode.MONKEY_PATCH:
_restore_function(F.scaled_dot_product_attention, F)
elif _dispatch_mode == _DispatchMode.MODULE_WRAPPER:
pass
else:
raise NotImplementedError(f"Unknown dispatch mode: {_dispatch_mode}")
_disable_cp_dtensor_dispatcher()
_compiled_create_block_mask = torch.compile(
create_block_mask, dynamic=False, fullgraph=True
)
def _context_parallel_buffers(
mesh: DeviceMesh,
buffers: list[torch.Tensor | BlockMask],
buffer_seq_dims: list[int],
load_balancer: Optional[_LoadBalancer] = None,
) -> list[torch.Tensor | BlockMask]:
"""
Shard the buffers along the sequence dimensions according to CP rules.
Args:
mesh (:class:`DeviceMesh`): the device mesh for the context parallelism.
buffers (List[torch.Tensor]): the buffers to be sharded.
seq_dims (List[int]): the sequence dimensions of ``buffers``. This list
must have the same length as ``buffers``.
load_balancer (Optional[:class:`_LoadBalancer`]): an optional `_LoadBalancer`
object. If this argument is `None`, it means the `buffers` need no
rearrangement before being sharded. If this argument is a `_LoadBalancer`
object, call its `_generate_indices(restore=False)` to generate the
rearrangement indices such that each shard of `buffer[rearrange_idx]` is
well-balanced (i.e., having close sparsities).
Returns:
List[torch.Tensor]: the sharded buffers.
Note:
For `_context_parallel_shard` we require a non-None `load_balancer` object to be
explicitly passed if load-balancing is needed.
"""
# generate the index tensor for rearranging the buffer if a load-balance
# is available
load_balance_indices = load_balancer._generate_indices() if load_balancer else None
assert load_balance_indices is None or load_balance_indices.ndim == 2, (
"load balance index expects shape (1, seq_len) or (B, seq_len) "
f"but got {load_balance_indices.shape}."
)
new_buffers = []
sharded_buffer: torch.Tensor | BlockMask
for buffer, seq_dim in zip(buffers, buffer_seq_dims):
if isinstance(buffer, torch.Tensor):
# TODO: the load balance doesn't perform error handling.
# NOTE: assuming batch dim is 0
if load_balance_indices is not None:
# TODO: we should expclitly ask users to unsqueeze the batch dim.
# But this is a BC breaking ask.
# However, what we have done today is also not very safe.
idx_batch_size = load_balance_indices.size(0)
data_batch_size = buffer.size(0) if seq_dim > 0 else 1
if idx_batch_size != 1 and idx_batch_size != data_batch_size:
raise ValueError(
"Cannot rearrange buffer: "
f"load_balance_indices has shape {load_balance_indices.shape}, "
f"but buffer has shape {buffer.shape}."
)
if seq_dim == 0:
buffer = torch.index_select(
buffer, dim=0, index=load_balance_indices[0]
)
else:
indices = load_balance_indices
if idx_batch_size == 1:
size = [data_batch_size] + list(indices.size())[1:]
indices = indices.expand(*size)
for i in range(data_batch_size):
buffer[i] = torch.index_select(
buffer[i], dim=seq_dim - 1, index=indices[i]
)
# use DTensor to shard the buffer on sequence dimension, retain the local tensor
sharded_buffer = distribute_tensor(
buffer, mesh, [Shard(seq_dim)], src_data_rank=None
).to_local()
elif isinstance(buffer, BlockMask):
sharded_buffer = _create_cp_block_mask(
mask_mod=buffer.mask_mod,
B=buffer.kv_num_blocks.shape[0],
H=buffer.kv_num_blocks.shape[1],
Q_LEN=buffer.seq_lengths[0],
KV_LEN=buffer.seq_lengths[1],
device_mesh=mesh,
load_balancer=load_balancer,
)
else:
raise ValueError(f"Unknown buffer type: {type(buffer)}")
new_buffers.append(sharded_buffer)
return new_buffers
def _create_cp_block_mask(
mask_mod: _mask_mod_signature,
B: int,
H: int,
Q_LEN: int,
KV_LEN: int,
device_mesh: DeviceMesh,
load_balancer: Optional[_LoadBalancer] = None,
) -> BlockMask:
"""
Creates a specialized BlockMask for Context Parallel FlexAttention.
This function creates a BlockMask that enables computation of attention results
for sharded Q attending to global KV. The mask appropriately handles the query
index offset required when each rank operates on a shard of the query sequence
while accessing the full key-value sequence.
The function internally rewrites the provided mask_mod function to translate local
query indices to global query indices, ensuring that the masking logic is applied
correctly across the distributed computation.
Args:
mask_mod (Callable): Mask function that operates on global attention indices.
B (int): Batch size.
H (int): Number of query heads.
Q_LEN (int): Global sequence length of the query.
KV_LEN (int): Global sequence length of the key/value.
device_mesh (DeviceMesh): Device mesh used for context parallelism.
load_balancer (Optional[:class:`_LoadBalancer`]): The load-balancer used to rearrange
QKV before sharding. This will be used to modify the block_mask generated.
Returns:
BlockMask: A block mask configured for the local query shard that can be used
with flex_attention() for the given cp_mesh.
Raises:
NotImplementedError: If Q_LEN is not divisible by (CP world size * BLOCK_SIZE).
Warning:
Currently requires Q_LEN to be divisible by CP mesh world size * BLOCK_SIZE
(BLOCK_SIZE defaults to 128). This constraint exists because the BlockMask
must handle both padding and offsets correctly. For example, if Q_LEN is 384,
CP world size is 2, and BLOCK_SIZE is 128, the local Q_LEN would be 192. In
such cases, both rank0 and rank1 would have paddings in their local BlockMasks.
Support for padding in this scenario is planned for future work.
"""
from torch.nn.attention.flex_attention import _DEFAULT_SPARSE_BLOCK_SIZE
if Q_LEN % (device_mesh.size() * _DEFAULT_SPARSE_BLOCK_SIZE) != 0:
raise NotImplementedError(
f"Q_LEN {Q_LEN} is not divisible by CP mesh world size {device_mesh.size()} * "
f"BLOCK_SIZE {_DEFAULT_SPARSE_BLOCK_SIZE}. This is not supported yet. "
)
compiled_create_block_mask = torch.compile(
create_block_mask, dynamic=False, fullgraph=True
)
def _rewrite_mask_mod(
mask_mod: _mask_mod_signature,
rank: int,
block_size: int,
local_q_size: int,
qkv_rearrange_indices: Optional[torch.Tensor] = None,
) -> _mask_mod_signature:
assert qkv_rearrange_indices is None or qkv_rearrange_indices.ndim == 2, (
"load balance index expects shape (1, seq_len) or (B, seq_len) "
f"but got {qkv_rearrange_indices.shape}."
)
def qkv_idx_restore(
b: torch.Tensor, idx_post_rearrange: torch.Tensor
) -> torch.Tensor:
if qkv_rearrange_indices is not None:
if (
qkv_rearrange_indices.size(0) == 1
): # identical load-balance in batch
idx_pre_rearrange = qkv_rearrange_indices[0][idx_post_rearrange]
else:
idx_pre_rearrange = qkv_rearrange_indices[b][idx_post_rearrange]
else:
idx_pre_rearrange = idx_post_rearrange
return idx_pre_rearrange
def local_q_idx_to_q_idx(local_q_idx: torch.Tensor) -> torch.Tensor:
# calculate local block_idx and block_offset
local_blk_idx, local_blk_offset = (
local_q_idx // block_size,
local_q_idx % block_size,
)
# NOTE: load balancing is not used
local_num_blocks = local_q_size // block_size
blk_idx = local_num_blocks * rank + local_blk_idx
return blk_idx * block_size + local_blk_offset
return lambda b, h, q_idx, kv_idx: mask_mod(
b,
h,
qkv_idx_restore(b, local_q_idx_to_q_idx(q_idx)),
qkv_idx_restore(b, kv_idx),
)
cp_rank = device_mesh.get_local_rank()
cp_group_size = device_mesh.size()
load_balancer = load_balancer or _create_default_load_balancer(
Q_LEN, cp_group_size, device_mesh.device_type
)
Q_SHARD_LEN = Q_LEN // cp_group_size
block_size = _DEFAULT_SPARSE_BLOCK_SIZE
rearrange_indices = (
load_balancer._generate_indices(restore=False) if load_balancer else None
)
block_mask = compiled_create_block_mask(
_rewrite_mask_mod(
mask_mod,
cp_rank,
block_size,
Q_SHARD_LEN,
qkv_rearrange_indices=rearrange_indices,
),
B,
H,
Q_SHARD_LEN,
KV_LEN,
device=device_mesh.device_type,
BLOCK_SIZE=(block_size, block_size),
)
return block_mask
#####################
# Experimental APIs
#####################
class _ContextParallel(ParallelStyle):
class AttentionType(Enum):
FLEX = "flex_attention"
SDPA = "scaled_dot_product_attention"
def __init__(
self,
seq_dim: int,
attention_type: AttentionType,
) -> None:
super().__init__()
self.seq_dim = seq_dim
self.attention_type = attention_type
def _apply(self, module: nn.Module, mesh: DeviceMesh) -> nn.Module:
if self.attention_type == self.AttentionType.FLEX:
module.register_forward_pre_hook(
partial(self.flex_input_fn, mesh=mesh), with_kwargs=True
)
return module
elif self.attention_type == self.AttentionType.SDPA:
module.register_forward_pre_hook(
partial(self.sdpa_input_fn, mesh=mesh), with_kwargs=True
)
module.register_forward_hook(partial(self.sdpa_output_fn, mesh=mesh))
return module
else:
raise ValueError(f"Unknown attention type: {self.attention_type}")
def flex_input_fn(
self, module: Optional[nn.Module], args: Any, kwargs: Any, mesh: DeviceMesh
) -> Any:
args_list = list(args)
for idx, name in enumerate(
("query", "key", "value", "score_mod", "block_mask")
):
if idx >= len(args):
args_list.append(kwargs.pop(name, None))
query, key, value, score_mod, block_mask = args_list[:5]
assert isinstance(query, torch.Tensor)
assert isinstance(key, torch.Tensor)
assert isinstance(value, torch.Tensor)
assert isinstance(block_mask, BlockMask | tuple)
key = key.contiguous()
value = value.contiguous()
global_key, global_value = flex_cp_allgather(
key, value, self.seq_dim, c10d._get_process_group_name(mesh.get_group())
)
args_list[1] = global_key
args_list[2] = global_value
return tuple(args_list), kwargs
def sdpa_input_fn(
self,
module: Optional[nn.Module],
args: tuple[Any, ...],
kwargs: dict[str, Any],
mesh: DeviceMesh,
) -> tuple[tuple[Any, ...], dict[str, Any]]:
placement = [Shard(self.seq_dim)]
all_args = []
# pyrefly: ignore # bad-assignment, bad-argument-type
for arg in itertools.chain(args, kwargs.values()):
if isinstance(arg, torch.Tensor):
if isinstance(arg, DTensor):
assert arg._spec.placements == placement
else:
arg = DTensor.from_local(arg, mesh, placement, run_check=False)
all_args.append(arg)
new_args = tuple(all_args[0 : len(args)])
new_kwargs = dict(zip(kwargs.keys(), all_args[len(args) :]))
return new_args, new_kwargs
def sdpa_output_fn(
self, module: Optional[nn.Module], inputs: Any, outputs: Any, mesh: DeviceMesh
) -> Any:
new_outputs = []
for output in [outputs] if isinstance(outputs, torch.Tensor) else outputs:
output = output.to_local() if isinstance(output, DTensor) else output
new_outputs.append(output)
if isinstance(outputs, torch.Tensor):
return new_outputs[0]
return tuple(new_outputs)
CPBuffer: TypeAlias = torch.Tensor | BlockMask
CPBufferContainer: TypeAlias = Sequence[CPBuffer] | Mapping[str, CPBuffer]
CPBufferSeqDims: TypeAlias = Sequence[int] | Mapping[str, int]
def _context_parallel_shard(
mesh: DeviceMesh,
buffers: CPBufferContainer,
seq_dims: CPBufferSeqDims,
load_balancer: Optional[_LoadBalancer] = None,
) -> list[torch.Tensor | BlockMask]:
"""
Shard the buffers along the specified sequence dimensions (`seq_dims`), so that each
rank retains only its corresponding shard according to the provided `mesh`. If a
`load_balancer` is provided, the buffers will be rearranged by the load balancer
before sharding to improve load balance. Buffers can be either tensors or `BlockMask`
objects. If a buffer is a `BlockMask`, its sharding dimension is determined by the
`BlockMask` implementation, and the corresponding `seq_dim` is ignored.
Note:
For `_context_parallel_shard`, a non-None `load_balancer` must be explicitly passed
if load balancing is required.
Args:
mesh (DeviceMesh): The device mesh used for context parallelism.
buffers (List[torch.Tensor | BlockMask]): Buffers whose usage depends on the sequence
dimension. Examples include input batches, labels, and positional embedding buffers.
These buffers must be sharded along the sequence dimension to ensure correctness.
seq_dims (List[int]): The sequence dimensions for each buffer in `buffers`. Must have
the same length as `buffers`.
load_balancer (Optional[_LoadBalancer]): An optional load balancer object. If provided,
it rearranges the buffers before sharding to achieve better load balance. If not
provided, no rearrangement is performed.
Returns:
List[torch.Tensor | BlockMask]: The sharded buffers, each corresponding to the local
shard for the current rank.
"""
# TODO: these global variables are going to bite us someday.
# We will have to remove them soon.
# For the new API, we only support the module wrapper mode.
global _dispatch_mode
_dispatch_mode = _DispatchMode.MODULE_WRAPPER
global _cp_options
if load_balancer is not None:
_cp_options.enable_load_balance = True
else:
_cp_options.enable_load_balance = False
if len(buffers) != len(seq_dims):
raise ValueError(
"`seq_dims` must have the same number of elements as `buffers`."
)
flat_buffers, spec = tree_flatten(buffers)
flat_seq_dims, _ = tree_flatten(seq_dims)
if len(flat_buffers) != len(flat_seq_dims):
raise ValueError("`seq_dims` must have the pytree structure as `buffers`.")
if isinstance(flat_buffers[0], torch.Tensor):
device = flat_buffers[0].device
else:
device = flat_buffers[0].kv_num_blocks.device
for buffer in flat_buffers:
if isinstance(buffer, torch.Tensor):
assert device == buffer.device, "All buffers must be on the same device"
else:
assert device == buffer.kv_num_blocks.device, (
"All buffers must be on the same device"
)
flat_sharded_buffers = _context_parallel_buffers(
mesh, flat_buffers, flat_seq_dims, load_balancer
)
return tree_unflatten(flat_sharded_buffers, spec)
def _enable_context_parallel_dispatcher() -> None:
"""
Enable the context parallel dispatcher. This API is experimental and subject to change.
"""
_enable_cp_dtensor_dispatcher()
def _disable_context_parallel_dispatcher() -> None:
"""
Disable the context parallel dispatcher. This API is experimental and subject to change.
"""
_disable_cp_dtensor_dispatcher()
#####################################################
# Current public APIs, but are also subject to change
#####################################################
@contextlib.contextmanager
@torch.no_grad()
def context_parallel(
mesh: DeviceMesh,
*,
buffers: Optional[list[torch.Tensor]] = None,
buffer_seq_dims: Optional[list[int]] = None,
no_restore_buffers: Optional[set[torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
``context_parallel`` is an experimental API to enable context
parallelism (CP). This API performs two actions: 1) patch the SDPA
(``torch.nn.functional.scaled_dot_product_attention``) with the CP-enabled
one, 2) shard ``buffers`` along the sequence dimension and each rank will
preserve the corresponding shard according ``mesh``.
Args:
mesh (:class:`DeviceMesh`): the device mesh for the context parallelism.
buffers (Optional[List[torch.Tensor]]): buffers that the usage depend
on the sequence dimension. Examples are input batch, labels and
positional embedding buffers. These buffers must be sharded along
the sequence dimension to ensure the accuracy. The sharding will
happen in-place, the buffer's shape will change within the context.
The buffers will be restored after the context finishes.
``no_restore_buffers`` can be used to specify which buffers don't
need to be restored. Note that ``buffers`` should not contain any
nn.Parameter.
buffer_seq_dims (Optional[List[int]]): the sequence dimensions of ``buffers``.
no_restore_buffers (Optional[Set[torch.Tensor]]): buffers in these set
won't be restored after the context exits. This set must be a subset
of ``buffers``. If the buffers won't be used after the context exits,
these buffers can be put in this list to avoid extra restore time.
.. warning::
`torch.distributed.tensor.experimental.context_parallel` is a
prototype feature in PyTorch. The API is subject to change.
"""
# For the legacy API, we only support the monkey-patch mode.
# We will deprecate this API once the new API is widely used.
global _dispatch_mode
_dispatch_mode = _DispatchMode.MONKEY_PATCH
buffers = [] if buffers is None else buffers
buffer_seq_dims = [] if buffer_seq_dims is None else buffer_seq_dims
no_restore_buffers = set() if no_restore_buffers is None else no_restore_buffers
if len(buffers) != len(buffer_seq_dims):
raise ValueError(
"`seq_dims` must have the same number of elements as `buffers`."
)
for buffer in no_restore_buffers:
# Cannot use `if not buffer in buffers` which will incur tensor comparison.
if not any(b is buffer for b in buffers):
raise ValueError("`no_restore_buffers` must be a subset of `buffers`.")
original_buffers = [None if b in no_restore_buffers else b.clone() for b in buffers]
device = buffers[0].device
seq_length = buffers[0].shape[buffer_seq_dims[0]]
cp_world_size = mesh.size()
# If `enable_load_balance` is True, the default Head-tail load balancer
# (:class:`_HeadTailLoadBalancer`) is used to rearrange the buffers before
# sharding. Otherwise, we don't do any load-balance rearrange by passing
# `None` to `_context_parallel_shard()`.
load_balancer = _create_default_load_balancer(seq_length, cp_world_size, device)
shards = _context_parallel_buffers(
mesh,
cast(list[torch.Tensor | BlockMask], buffers),
buffer_seq_dims,
load_balancer,
)
for buffer, shard in zip(buffers, shards):
assert isinstance(shard, torch.Tensor), "ContextParallel only supports Tensor"
shard = shard.clone()
buffer.resize_(shard.shape)
buffer.copy_(shard)
_enable_context_parallel_dispatcher_impl(seq_dim=2, mesh=mesh)
yield
_disable_context_parallel_dispatcher_impl()
for buffer, original_buffer in zip(buffers, original_buffers):
if original_buffer is not None:
buffer.resize_(original_buffer.shape)
buffer.copy_(original_buffer)
@torch.no_grad()
def context_parallel_unshard(
mesh: DeviceMesh,
buffers: list[torch.Tensor],
seq_dims: list[int],
load_balancer: Optional[_LoadBalancer] = None,
) -> list[torch.Tensor]:
"""
Unshard the tensors (e.g., output) that are sharded due to context parallelism.
Args:
mesh (:class:`DeviceMesh`): the device mesh for the context parallelism.
buffers (List[torch.Tensor]): the buffers to be unsharded.
seq_dims (List[int]): the sequence dimensions of ``buffers``. This list
must have the same length as ``buffers``.
load_balancer (Optional[:class:`_Loadbalancer`]): an optional `_LoadBalancer`
object. If this argument is `None`, it means the `buffers` were not
rearranged when being sharded and there's no need to put it back to order
after unsharding. If this argument is a `_LoadBalancer` object, call
its `_generate_indices(restore=True)` to generate the restore indices such
that `unsharded[restore_idx]` is the original buffer.
Returns:
List[torch.Tensor]: the unsharded buffers.
Note:
For `context_parallel_unshard` we require not-None `load_balancer` object be
explicitly passed if flex_attention() is to be used and load-balancing is needed.
This is different from the case of SDPA though we strongly suggest users follow
the same convention.
"""
device = buffers[0].device
cp_world_size = mesh.size()
seq_length = buffers[0].shape[seq_dims[0]] * cp_world_size
# If users don't pass in a `load_balancer`:
# - if `enable_load_balance` is True, we use the default round-robin
# load balancer.
# - if `enable_load_balance` is False, we don't do any load balancing
# by passing in `None` as `restore_indices`.
load_balancer = load_balancer or _create_default_load_balancer(
seq_length, cp_world_size, device
)
restore_indices = (
load_balancer._generate_indices(restore=True) if load_balancer else None
)
assert restore_indices is None or restore_indices.ndim == 2, (
"load balance restore index expects shape (1, seq_len) or (B, seq_len) "
f"but got {restore_indices.shape}."
)
unsharded_buffers = []
for b, dim in zip(buffers, seq_dims):
b = b.contiguous()
unsharded_b = _maybe_wait(ft_c.all_gather_tensor(b, dim, mesh))
if restore_indices is not None:
# NOTE: assuming batch dim is 0
idx_batch_size = restore_indices.size(0)
data_batch_size = unsharded_b.size(0)
if idx_batch_size != 1 and idx_batch_size != data_batch_size:
raise ValueError(
"Cannot restore buffer: "
f"restore_indices has shape {restore_indices.shape}, "
f"but unsharded_b has shape {unsharded_b.shape}."
)
for i in range(data_batch_size):
index = (
restore_indices[0] # identical load-balance in batch
if idx_batch_size == 1
else restore_indices[i]
)
unsharded_b_batch_i = torch.index_select(
unsharded_b[i], dim=dim - 1, index=index
)
unsharded_b[i] = unsharded_b_batch_i
unsharded_buffers.append(unsharded_b)
return unsharded_buffers
def set_rotate_method(rotate_method: str) -> None:
"""
Context Parallel SDPA requires the rotation of kv shards. Users can call this
API to specify which rotation method to use. "alltoall" shuffles the kv shards
using all-to-all collective. While "allgather" gathers the kv shards using
all-gather collective after the first sub-SDPA computation. If this API has not
been called, the default rotate method is "allgather".
Args:
rotate_method (str): the rotate method to use. Currently only supports
"allgather" and "alltoall". If a different string other than these two
is passed in, the function will raise an error.
Returns:
None
"""
logger.info("Note that FlexAttention CP doesn't support alltoall yet.")
if rotate_method == "allgather":
_cp_options.rotate_method = _RotateMethod.ALL_GATHER
elif rotate_method == "alltoall":
_cp_options.rotate_method = _RotateMethod.ALL_TO_ALL
else:
raise NotImplementedError(
"Context Parallel does not support "
f"using {rotate_method} for kv shards rotation"
)