mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
1721 lines
35 KiB
Python
1721 lines
35 KiB
Python
"""Adds docstrings to Tensor functions"""
|
|
|
|
import torch._C
|
|
from torch._C import _add_docstr as add_docstr
|
|
|
|
add_docstr(torch._C.FloatTensorBase.abs,
|
|
"""
|
|
abs() -> Tensor
|
|
|
|
See :func:`torch.abs`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.abs_,
|
|
"""
|
|
abs_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.abs`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.acos,
|
|
"""
|
|
acos() -> Tensor
|
|
|
|
See :func:`torch.acos`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.acos_,
|
|
"""
|
|
acos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.acos`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.add,
|
|
"""
|
|
add(value)
|
|
|
|
See :func:`torch.add`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.add_,
|
|
"""
|
|
add_(value)
|
|
|
|
In-place version of :meth:`~Tensor.add`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addbmm,
|
|
"""
|
|
addbmm(beta=1, mat, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
See :func:`torch.addbmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addbmm_,
|
|
"""
|
|
addbmm_(beta=1, mat, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addbmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addcdiv,
|
|
"""
|
|
addcdiv(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
See :func:`torch.addcdiv`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addcdiv_,
|
|
"""
|
|
addcdiv_(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addcdiv`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addcmul,
|
|
"""
|
|
addcmul(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
See :func:`torch.addcmul`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addcmul_,
|
|
"""
|
|
addcmul_(value=1, tensor1, tensor2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addcmul`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addmm,
|
|
"""
|
|
addmm(beta=1, mat, alpha=1, mat1, mat2) -> Tensor
|
|
|
|
See :func:`torch.addmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addmm_,
|
|
"""
|
|
addmm_(beta=1, mat, alpha=1, mat1, mat2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addmv,
|
|
"""
|
|
addmv(beta=1, tensor, alpha=1, mat, vec) -> Tensor
|
|
|
|
See :func:`torch.addmv`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addmv_,
|
|
"""
|
|
addmv_(beta=1, tensor, alpha=1, mat, vec) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addmv`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addr,
|
|
"""
|
|
addr(beta=1, alpha=1, vec1, vec2) -> Tensor
|
|
|
|
See :func:`torch.addr`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.addr_,
|
|
"""
|
|
addr_(beta=1, alpha=1, vec1, vec2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.addr`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.apply_,
|
|
"""
|
|
apply_(callable) -> Tensor
|
|
|
|
Applies the function :attr:`callable` to each element in the tensor, replacing
|
|
each element with the value returned by :attr:`callable`.
|
|
|
|
.. note::
|
|
|
|
This function only works with CPU tensors and should not be used in code
|
|
sections that require high performance.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.asin,
|
|
"""
|
|
asin() -> Tensor
|
|
|
|
See :func:`torch.asin`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.asin_,
|
|
"""
|
|
asin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.asin`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.atan,
|
|
"""
|
|
atan() -> Tensor
|
|
|
|
See :func:`torch.atan`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.atan2,
|
|
"""
|
|
atan2(other) -> Tensor
|
|
|
|
See :func:`torch.atan2`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.atan2_,
|
|
"""
|
|
atan2_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atan2`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.atan_,
|
|
"""
|
|
atan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.atan`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.baddbmm,
|
|
"""
|
|
baddbmm(beta=1, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
See :func:`torch.baddbmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.baddbmm_,
|
|
"""
|
|
baddbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.baddbmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.bernoulli,
|
|
"""
|
|
bernoulli() -> Tensor
|
|
|
|
See :func:`torch.bernoulli`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.bernoulli_,
|
|
"""
|
|
bernoulli_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.bernoulli`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.bmm,
|
|
"""
|
|
bmm(batch2) -> Tensor
|
|
|
|
See :func:`torch.bmm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cauchy_,
|
|
"""
|
|
cauchy_(median=0, sigma=1, *, generator=None) -> Tensor
|
|
|
|
Fills the tensor with numbers drawn from the Cauchy distribution:
|
|
|
|
.. math::
|
|
|
|
P(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2}
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ceil,
|
|
"""
|
|
ceil() -> Tensor
|
|
|
|
See :func:`torch.ceil`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ceil_,
|
|
"""
|
|
ceil_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ceil`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.clamp,
|
|
"""
|
|
clamp(min, max) -> Tensor
|
|
|
|
See :func:`torch.clamp`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.clamp_,
|
|
"""
|
|
clamp_(min, max) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.clamp`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.clone,
|
|
"""
|
|
clone() -> Tensor
|
|
|
|
Returns a copy of the tensor. The copy has the same size and data type as the
|
|
original tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.contiguous,
|
|
"""
|
|
contiguous() -> Tensor
|
|
|
|
Returns a contiguous Tensor containing the same data as this tensor. If this
|
|
tensor is contiguous, this function returns the original tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.copy_,
|
|
"""
|
|
copy_(src, async=False) -> Tensor
|
|
|
|
Copies the elements from :attr:`src` into this tensor and returns this tensor.
|
|
|
|
The source tensor should have the same number of elements as this tensor. It
|
|
may be of a different data type or reside on a different device.
|
|
|
|
Args:
|
|
src (Tensor): Source tensor to copy
|
|
async (bool): If True and this copy is between CPU and GPU, then the copy
|
|
may occur asynchronously with respect to the host. For other
|
|
copies, this argument has no effect.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cos,
|
|
"""
|
|
cos() -> Tensor
|
|
|
|
See :func:`torch.cos`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cos_,
|
|
"""
|
|
cos_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cos`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cosh,
|
|
"""
|
|
cosh() -> Tensor
|
|
|
|
See :func:`torch.cosh`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cosh_,
|
|
"""
|
|
cosh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.cosh`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cross,
|
|
"""
|
|
cross(other, dim=-1) -> Tensor
|
|
|
|
See :func:`torch.cross`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cumprod,
|
|
"""
|
|
cumprod(dim) -> Tensor
|
|
|
|
See :func:`torch.cumprod`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.cumsum,
|
|
"""
|
|
cumsum(dim) -> Tensor
|
|
|
|
See :func:`torch.cumsum`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.data_ptr,
|
|
"""
|
|
data_ptr() -> int
|
|
|
|
Returns the address of the first element of this tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.diag,
|
|
"""
|
|
diag(diagonal=0) -> Tensor
|
|
|
|
See :func:`torch.diag`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.dim,
|
|
"""
|
|
dim() -> int
|
|
|
|
Returns the number of dimensions of this tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.dist,
|
|
"""
|
|
dist(other, p=2) -> float
|
|
|
|
See :func:`torch.dist`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.div,
|
|
"""
|
|
div(value)
|
|
|
|
See :func:`torch.div`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.div_,
|
|
"""
|
|
div_(value)
|
|
|
|
In-place version of :meth:`~Tensor.div`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.dot,
|
|
"""
|
|
dot(tensor2) -> float
|
|
|
|
See :func:`torch.dot`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.eig,
|
|
"""
|
|
eig(eigenvectors=False) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.eig`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.element_size,
|
|
"""
|
|
element_size() -> int
|
|
|
|
Returns the size in bytes of an individual element.
|
|
|
|
Example:
|
|
>>> torch.FloatTensor().element_size()
|
|
4
|
|
>>> torch.ByteTensor().element_size()
|
|
1
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.eq,
|
|
"""
|
|
eq(other) -> Tensor
|
|
|
|
See :func:`torch.eq`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.eq_,
|
|
"""
|
|
eq_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.eq`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.equal,
|
|
"""
|
|
equal(other) -> bool
|
|
|
|
See :func:`torch.equal`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.exp,
|
|
"""
|
|
exp() -> Tensor
|
|
|
|
See :func:`torch.exp`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.exp_,
|
|
"""
|
|
exp_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.exp`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.exponential_,
|
|
"""
|
|
exponential_(lambd=1, *, generator=None) -> Tensor
|
|
|
|
Fills this tensor with elements drawn from the exponential distribution:
|
|
|
|
.. math::
|
|
|
|
P(x) = \lambda e^{-\lambda x}
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.fill_,
|
|
"""
|
|
fill_(value) -> Tensor
|
|
|
|
Fills this tensor with the specified value.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.floor,
|
|
"""
|
|
floor() -> Tensor
|
|
|
|
See :func:`torch.floor`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.floor_,
|
|
"""
|
|
floor_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.floor`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.fmod,
|
|
"""
|
|
fmod(divisor) -> Tensor
|
|
|
|
See :func:`torch.fmod`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.fmod_,
|
|
"""
|
|
fmod_(divisor) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.fmod`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.frac,
|
|
"""
|
|
frac() -> Tensor
|
|
|
|
See :func:`torch.frac`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.frac_,
|
|
"""
|
|
frac_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.frac`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.gather,
|
|
"""
|
|
gather(dim, index) -> Tensor
|
|
|
|
See :func:`torch.gather`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ge,
|
|
"""
|
|
ge(other) -> Tensor
|
|
|
|
See :func:`torch.ge`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ge_,
|
|
"""
|
|
ge_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ge`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.gels,
|
|
"""
|
|
gels(A) -> Tensor
|
|
|
|
See :func:`torch.gels`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.geometric_,
|
|
"""
|
|
geometric_(p, *, generator=None) -> Tensor
|
|
|
|
Fills this tensor with elements drawn from the geometric distribution:
|
|
|
|
.. math::
|
|
|
|
P(X=k) = (1 - p)^{k - 1} p
|
|
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.geqrf,
|
|
"""
|
|
geqrf() -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.geqrf`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ger,
|
|
"""
|
|
ger(vec2) -> Tensor
|
|
|
|
See :func:`torch.ger`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.gesv,
|
|
"""
|
|
gesv(A) -> Tensor, Tensor
|
|
|
|
See :func:`torch.gesv`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.gt,
|
|
"""
|
|
gt(other) -> Tensor
|
|
|
|
See :func:`torch.gt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.gt_,
|
|
"""
|
|
gt_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.gt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.histc,
|
|
"""
|
|
histc(bins=100, min=0, max=0) -> Tensor
|
|
|
|
See :func:`torch.histc`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.index,
|
|
"""
|
|
index(m) -> Tensor
|
|
|
|
Selects elements from this tensor using a binary mask or along a given
|
|
dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``.
|
|
|
|
Args:
|
|
m (int or ByteTensor or slice): The dimension or mask used to select elements
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.index_add_,
|
|
"""
|
|
index_add_(dim, index, tensor) -> Tensor
|
|
|
|
Accumulate the elements of tensor into the original tensor by adding to the
|
|
indices in the order given in index. The shape of tensor must exactly match the
|
|
elements indexed or an error will be raised.
|
|
|
|
Args:
|
|
dim (int): Dimension along which to index
|
|
index (LongTensor): Indices to select from tensor
|
|
tensor (Tensor): Tensor containing values to add
|
|
|
|
Example:
|
|
>>> x = torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
|
|
>>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> index = torch.LongTensor([0, 2, 1])
|
|
>>> x.index_add_(0, index, t)
|
|
>>> x
|
|
2 3 4
|
|
8 9 10
|
|
5 6 7
|
|
[torch.FloatTensor of size 3x3]
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.index_copy_,
|
|
"""
|
|
index_copy_(dim, index, tensor) -> Tensor
|
|
|
|
Copies the elements of tensor into the original tensor by selecting the
|
|
indices in the order given in index. The shape of tensor must exactly match the
|
|
elements indexed or an error will be raised.
|
|
|
|
Args:
|
|
dim (int): Dimension along which to index
|
|
index (LongTensor): Indices to select from tensor
|
|
tensor (Tensor): Tensor containing values to copy
|
|
|
|
Example:
|
|
>>> x = torch.Tensor(3, 3)
|
|
>>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> index = torch.LongTensor([0, 2, 1])
|
|
>>> x.index_copy_(0, index, t)
|
|
>>> x
|
|
1 2 3
|
|
7 8 9
|
|
4 5 6
|
|
[torch.FloatTensor of size 3x3]
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.index_fill_,
|
|
"""
|
|
index_fill_(dim, index, val) -> Tensor
|
|
|
|
Fills the elements of the original tensor with value :attr:`val` by selecting
|
|
the indices in the order given in index.
|
|
|
|
Args:
|
|
dim (int): Dimension along which to index
|
|
index (LongTensor): Indices
|
|
val (float): Value to fill
|
|
|
|
Example:
|
|
>>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> index = torch.LongTensor([0, 2])
|
|
>>> x.index_fill_(1, index, -1)
|
|
>>> x
|
|
-1 2 -1
|
|
-1 5 -1
|
|
-1 8 -1
|
|
[torch.FloatTensor of size 3x3]
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.index_select,
|
|
"""
|
|
index_select(dim, index) -> Tensor
|
|
|
|
See :func:`torch.index_select`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.inverse,
|
|
"""
|
|
inverse() -> Tensor
|
|
|
|
See :func:`torch.inverse`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.is_contiguous,
|
|
"""
|
|
is_contiguous() -> bool
|
|
|
|
Returns True if this tensor is contiguous in memory in C order.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.is_set_to,
|
|
"""
|
|
is_set_to(tensor) -> bool
|
|
|
|
Returns True if this object refers to the same ``THTensor`` object from the
|
|
Torch C API as the given tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.kthvalue,
|
|
"""
|
|
kthvalue(k, dim=None) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.kthvalue`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.le,
|
|
"""
|
|
le(other) -> Tensor
|
|
|
|
See :func:`torch.le`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.le_,
|
|
"""
|
|
le_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.le`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.lerp,
|
|
"""
|
|
lerp(start, end, weight)
|
|
|
|
See :func:`torch.lerp`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.lerp_,
|
|
"""
|
|
lerp_(start, end, weight)
|
|
|
|
In-place version of :meth:`~Tensor.lerp`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.log,
|
|
"""
|
|
log() -> Tensor
|
|
|
|
See :func:`torch.log`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.log1p,
|
|
"""
|
|
log1p() -> Tensor
|
|
|
|
See :func:`torch.log1p`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.log1p_,
|
|
"""
|
|
log1p_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log1p`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.log_, """
|
|
log_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.log`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.log_normal_, u"""
|
|
log_normal_(mean=1, std=2, *, generator=None)
|
|
|
|
Fills this tensor with numbers samples from the log-normal distribution
|
|
parameterized by the given mean (\u00B5) and standard deviation (\u03C3). Note that
|
|
:attr:`mean` and :attr:`stdv` are the mean and standard deviation of the
|
|
underlying normal distribution, and not of the returned distribution:
|
|
|
|
.. math::
|
|
|
|
P(x) = \\dfrac{1}{x \\sigma \\sqrt{2\\pi}} e^{-\\dfrac{(\\ln x - \\mu)^2}{2\\sigma^2}}
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.lt,
|
|
"""
|
|
lt(other) -> Tensor
|
|
|
|
See :func:`torch.lt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.lt_,
|
|
"""
|
|
lt_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.lt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.map_,
|
|
"""
|
|
map_(tensor, callable)
|
|
|
|
Applies :attr:`callable` for each element in this tensor and the given tensor
|
|
and stores the results in this tensor. The :attr:`callable` should have the
|
|
signature::
|
|
|
|
def callable(a, b) -> number
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.masked_scatter_,
|
|
"""
|
|
masked_scatter_(mask, source)
|
|
|
|
Copies elements from :attr:`source` into this tensor at positions where the
|
|
:attr:`mask` is one. The :attr:`mask` should have the same number of elements
|
|
as this tensor. The :attr:`source` should have at least as many elements as the
|
|
number of ones in :attr:`mask`
|
|
|
|
Args:
|
|
mask (ByteTensor): The binary mask
|
|
source (Tensor): The tensor to copy from
|
|
|
|
.. note::
|
|
|
|
The :attr:`mask` operates on the :attr:`self` tensor, not on the given
|
|
:attr:`source` tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.masked_fill_,
|
|
"""
|
|
masked_fill_(mask, value)
|
|
|
|
Fills elements of this tensor with :attr:`value` where :attr:`mask` is one.
|
|
The :attr:`mask` should have the same number of elements as this tensor, but
|
|
the shape may differ.
|
|
|
|
Args:
|
|
mask (ByteTensor): The binary mask
|
|
value (float): The value to fill
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.masked_select,
|
|
"""
|
|
masked_select(mask) -> Tensor
|
|
|
|
See :func:`torch.masked_select`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.max,
|
|
"""
|
|
max(dim=None) -> float or (Tensor, Tensor)
|
|
|
|
See :func:`torch.max`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.mean,
|
|
"""
|
|
mean(dim=None) -> float or (Tensor, Tensor)
|
|
|
|
See :func:`torch.mean`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.median,
|
|
"""
|
|
median(dim=-1, values=None, indices=None) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.median`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.min,
|
|
"""
|
|
min(dim=None) -> float or (Tensor, Tensor)
|
|
|
|
See :func:`torch.min`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.mm,
|
|
"""
|
|
mm(mat2) -> Tensor
|
|
|
|
See :func:`torch.mm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.mode,
|
|
"""
|
|
mode(dim=-1, values=None, indices=None) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.mode`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.mul,
|
|
"""
|
|
mul(value) -> Tensor
|
|
|
|
See :func:`torch.mul`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.mul_,
|
|
"""
|
|
mul_(value)
|
|
|
|
In-place version of :meth:`~Tensor.mul`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.multinomial,
|
|
"""
|
|
multinomial(num_samples, replacement=False, *, generator=None)
|
|
|
|
See :func:`torch.multinomial`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.mv,
|
|
"""
|
|
mv(vec) -> Tensor
|
|
|
|
See :func:`torch.mv`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.narrow,
|
|
"""
|
|
narrow(dimension, start, length) -> Tensor
|
|
|
|
Returns a new tensor that is a narrowed version of this tensor. The dimension
|
|
:attr:`dim` is narrowed from :attr:`start` to :attr:`start + length`. The
|
|
returned tensor and this tensor share the same underlying storage.
|
|
|
|
Args:
|
|
dimension (int): The dimension along which to narrow
|
|
start (int): The starting dimension
|
|
length (int):
|
|
|
|
Example:
|
|
>>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> x.narrow(0, 0, 2)
|
|
1 2 3
|
|
4 5 6
|
|
[torch.FloatTensor of size 2x3]
|
|
>>> x.narrow(1, 1, 2)
|
|
2 3
|
|
5 6
|
|
8 9
|
|
[torch.FloatTensor of size 3x2]
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ndimension,
|
|
"""
|
|
ndimension() -> int
|
|
|
|
Alias for :meth:`~Tensor.dim()`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ne,
|
|
"""
|
|
ne(other) -> Tensor
|
|
|
|
See :func:`torch.ne`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ne_,
|
|
"""
|
|
ne_(other) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.ne`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.neg,
|
|
"""
|
|
neg() -> Tensor
|
|
|
|
See :func:`torch.neg`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.neg_,
|
|
"""
|
|
neg_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.neg`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.nelement,
|
|
"""
|
|
nelement() -> int
|
|
|
|
Alias for :meth:`~Tensor.numel`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.nonzero,
|
|
"""
|
|
nonzero() -> LongTensor
|
|
|
|
See :func:`torch.nonzero`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.norm,
|
|
"""
|
|
norm(p=2) -> float
|
|
|
|
See :func:`torch.norm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.normal_,
|
|
"""
|
|
normal_(mean=0, std=1, *, generator=None)
|
|
|
|
Fills this tensor with elements samples from the normal distribution
|
|
parameterized by :attr:`mean` and :attr:`std`.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.numel,
|
|
"""
|
|
numel() -> int
|
|
|
|
See :func:`torch.numel`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.numpy,
|
|
"""
|
|
numpy() -> ndarray
|
|
|
|
Returns this tensor as a NumPy :class:`ndarray`. This tensor and the returned
|
|
:class:`ndarray` share the same underlying storage. Changes to this tensor will
|
|
be reflected in the :class:`ndarray` and vice versa.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.orgqr,
|
|
"""
|
|
orgqr(input2) -> Tensor
|
|
|
|
See :func:`torch.orgqr`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.ormqr,
|
|
"""
|
|
ormqr(input2, input3, left=True, transpose=False) -> Tensor
|
|
|
|
See :func:`torch.ormqr`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.potrf,
|
|
"""
|
|
potrf(upper=True) -> Tensor
|
|
|
|
See :func:`torch.potrf`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.potri,
|
|
"""
|
|
potri(upper=True) -> Tensor
|
|
|
|
See :func:`torch.potri`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.potrs,
|
|
"""
|
|
potrs(input2, upper=True) -> Tensor
|
|
|
|
See :func:`torch.potrs`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.pow,
|
|
"""
|
|
pow(exponent)
|
|
|
|
See :func:`torch.pow`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.pow_,
|
|
"""
|
|
pow_(exponent)
|
|
|
|
In-place version of :meth:`~Tensor.pow`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.prod,
|
|
"""
|
|
prod() -> float
|
|
|
|
See :func:`torch.prod`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.pstrf,
|
|
"""
|
|
pstrf(upper=True, tol=-1) -> (Tensor, IntTensor)
|
|
|
|
See :func:`torch.pstrf`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.qr,
|
|
"""
|
|
qr() -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.qr`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.random_,
|
|
"""
|
|
random_(from=0, to=None, *, generator=None)
|
|
|
|
Fills this tensor with numbers sampled from the uniform distribution or
|
|
discrete uniform distribution over [from, to - 1]. If not specified, the
|
|
values are only bounded by this tensor's data type.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.reciprocal,
|
|
"""
|
|
reciprocal() -> Tensor
|
|
|
|
See :func:`torch.reciprocal`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.reciprocal_,
|
|
"""
|
|
reciprocal_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.reciprocal`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.remainder,
|
|
"""
|
|
remainder(divisor) -> Tensor
|
|
|
|
See :func:`torch.remainder`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.remainder_,
|
|
"""
|
|
remainder_(divisor) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.remainder`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.renorm,
|
|
"""
|
|
renorm(p, dim, maxnorm) -> Tensor
|
|
|
|
See :func:`torch.renorm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.renorm_,
|
|
"""
|
|
renorm_(p, dim, maxnorm) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.renorm`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.resize_,
|
|
"""
|
|
resize_(*sizes)
|
|
|
|
Resizes this tensor to the specified size. If the number of elements is
|
|
larger than the current storage size, then the underlying storage is resized
|
|
to fit the new number of elements. If the number of elements is smaller, the
|
|
underlying storage is not changed. Existing elements are preserved but any new
|
|
memory is uninitialized.
|
|
|
|
Args:
|
|
sizes (torch.Size or int...): The desired size
|
|
|
|
Example:
|
|
>>> x = torch.Tensor([[1, 2], [3, 4], [5, 6]])
|
|
>>> x.resize_(2, 2)
|
|
>>> x
|
|
1 2
|
|
3 4
|
|
[torch.FloatTensor of size 2x2]
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.resize_as_,
|
|
"""
|
|
resize_as_(tensor)
|
|
|
|
Resizes the current tensor to be the same size as the specified tensor. This is
|
|
equivalent to::
|
|
|
|
self.resize_(tensor.size())
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.round,
|
|
"""
|
|
round() -> Tensor
|
|
|
|
See :func:`torch.round`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.round_,
|
|
"""
|
|
round_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.round`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.rsqrt,
|
|
"""
|
|
rsqrt() -> Tensor
|
|
|
|
See :func:`torch.rsqrt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.rsqrt_,
|
|
"""
|
|
rsqrt_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.rsqrt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.scatter_,
|
|
"""
|
|
scatter_(dim, index, src) -> Tensor
|
|
|
|
Writes all values from the Tensor :attr:`src` into self at the indices specified
|
|
in the :attr:`index` Tensor. The indices are specified with respect to the
|
|
given dimension, dim, in the manner described in :meth:`~Tensor.gather`.
|
|
|
|
Note that, as for gather, the values of index must be between `0` and `(self.size(dim) -1)`
|
|
inclusive and all values in a row along the specified dimension must be unique.
|
|
|
|
Args:
|
|
input (Tensor): The source tensor
|
|
dim (int): The axis along which to index
|
|
index (LongTensor): The indices of elements to scatter
|
|
src (Tensor or float): The source element(s) to scatter
|
|
|
|
Example::
|
|
|
|
>>> x = torch.rand(2, 5)
|
|
>>> x
|
|
|
|
0.4319 0.6500 0.4080 0.8760 0.2355
|
|
0.2609 0.4711 0.8486 0.8573 0.1029
|
|
[torch.FloatTensor of size 2x5]
|
|
|
|
>>> torch.zeros(3, 5).scatter_(0, torch.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)
|
|
|
|
0.4319 0.4711 0.8486 0.8760 0.2355
|
|
0.0000 0.6500 0.0000 0.8573 0.0000
|
|
0.2609 0.0000 0.4080 0.0000 0.1029
|
|
[torch.FloatTensor of size 3x5]
|
|
|
|
>>> z = torch.zeros(2, 4).scatter_(1, torch.LongTensor([[2], [3]]), 1.23)
|
|
>>> z
|
|
|
|
0.0000 0.0000 1.2300 0.0000
|
|
0.0000 0.0000 0.0000 1.2300
|
|
[torch.FloatTensor of size 2x4]
|
|
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.select,
|
|
"""
|
|
select(dim, index) -> Tensor or number
|
|
|
|
Slices the tensor along the selected dimension at the given index. If this
|
|
tensor is one dimensional, this function returns a number. Otherwise, it
|
|
returns a tensor with the given dimension removed.
|
|
|
|
Args:
|
|
dim (int): Dimension to slice
|
|
index (int): Index to select
|
|
|
|
.. note::
|
|
|
|
:meth:`select` is equivalent to slicing. For example, ``tensor.select(0, index)``
|
|
is equivalent to ``tensor[index]`` and ``tensor.select(2, index)`` is equivalent
|
|
to ``tensor[:,:,index]``.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.set_,
|
|
"""
|
|
set_(source=None, storage_offset=0, size=None, stride=None)
|
|
|
|
Sets the underlying storage, size, and strides. If :attr:`source` is a tensor,
|
|
this tensor will share the same storage and have the same size and strides
|
|
as the given tensor. Changes to elements in one tensor will be reflected in the
|
|
other.
|
|
|
|
If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying
|
|
storage, offset, size, and stride.
|
|
|
|
Args:
|
|
source (Tensor or Storage): The tensor or storage to use
|
|
storage_offset (int): The offset in the storage
|
|
size (torch.Size): The desired size. Defaults to the size of the source.
|
|
stride (tuple): The desired stride. Defaults to C-contiguous strides.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sigmoid,
|
|
"""
|
|
sigmoid() -> Tensor
|
|
|
|
See :func:`torch.sigmoid`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sigmoid_,
|
|
"""
|
|
sigmoid_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sigmoid`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sign,
|
|
"""
|
|
sign() -> Tensor
|
|
|
|
See :func:`torch.sign`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sign_,
|
|
"""
|
|
sign_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sign`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sin,
|
|
"""
|
|
sin() -> Tensor
|
|
|
|
See :func:`torch.sin`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sin_,
|
|
"""
|
|
sin_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sin`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sinh,
|
|
"""
|
|
sinh() -> Tensor
|
|
|
|
See :func:`torch.sinh`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sinh_,
|
|
"""
|
|
sinh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sinh`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.size,
|
|
"""
|
|
size() -> torch.Size
|
|
|
|
Returns the size of the tensor. The returned value is a subclass of
|
|
:class:`tuple`.
|
|
|
|
Example:
|
|
>>> torch.Tensor(3, 4, 5).size()
|
|
torch.Size([3, 4, 5])
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sort,
|
|
"""
|
|
sort(dim=None, descending=False) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.sort`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sqrt,
|
|
"""
|
|
sqrt() -> Tensor
|
|
|
|
See :func:`torch.sqrt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sqrt_,
|
|
"""
|
|
sqrt_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sqrt`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.squeeze,
|
|
"""
|
|
squeeze(dim=None)
|
|
|
|
See :func:`torch.squeeze`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.squeeze_,
|
|
"""
|
|
squeeze_(dim=None)
|
|
|
|
In-place version of :meth:`~Tensor.squeeze`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.std,
|
|
"""
|
|
std() -> float
|
|
|
|
See :func:`torch.std`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.storage,
|
|
"""
|
|
storage() -> torch.Storage
|
|
|
|
Returns the underlying storage
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.storage_offset,
|
|
"""
|
|
storage_offset() -> int
|
|
|
|
Returns this tensor's offset in the underlying storage in terms of number of
|
|
storage elements (not bytes).
|
|
|
|
Example:
|
|
>>> x = torch.Tensor([1, 2, 3, 4, 5])
|
|
>>> x.storage_offset()
|
|
0
|
|
>>> x[3:].storage_offset()
|
|
3
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.stride,
|
|
"""
|
|
stride() -> tuple
|
|
|
|
Returns the stride of the tensor.
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sub,
|
|
"""
|
|
sub(value, other) -> Tensor
|
|
|
|
Subtracts a scalar or tensor from this tensor. If both :attr:`value` and
|
|
:attr:`other` are specified, each element of :attr:`other` is scaled by
|
|
:attr:`value` before being used.
|
|
|
|
When :attr:`other` is a tensor, the shape of :attr:`other` must be :ref:`broadcastable <broadcasting-semantics>`
|
|
with the shape of the underlying tensor.
|
|
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sub_,
|
|
"""
|
|
sub_(x) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.sub`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.sum,
|
|
"""
|
|
sum(dim=None) -> float
|
|
|
|
See :func:`torch.sum`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.svd,
|
|
"""
|
|
svd(some=True) -> (Tensor, Tensor, Tensor)
|
|
|
|
See :func:`torch.svd`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.symeig,
|
|
"""
|
|
symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.symeig`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.t,
|
|
"""
|
|
t() -> Tensor
|
|
|
|
See :func:`torch.t`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.t_,
|
|
"""
|
|
t_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.t`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.tan,
|
|
"""
|
|
tan() -> Tensor
|
|
|
|
See :func:`torch.tan`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.tan_,
|
|
"""
|
|
tan_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tan`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.tanh,
|
|
"""
|
|
tanh() -> Tensor
|
|
|
|
See :func:`torch.tanh`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.tanh_,
|
|
"""
|
|
tanh_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tanh`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.topk,
|
|
"""
|
|
topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor)
|
|
|
|
See :func:`torch.topk`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.trace,
|
|
"""
|
|
trace() -> float
|
|
|
|
See :func:`torch.trace`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.transpose,
|
|
"""
|
|
transpose(dim0, dim1) -> Tensor
|
|
|
|
See :func:`torch.transpose`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.transpose_,
|
|
"""
|
|
transpose_(dim0, dim1) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.transpose`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.tril,
|
|
"""
|
|
tril(k=0) -> Tensor
|
|
|
|
See :func:`torch.tril`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.tril_,
|
|
"""
|
|
tril_(k=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.tril`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.triu,
|
|
"""
|
|
triu(k=0) -> Tensor
|
|
|
|
See :func:`torch.triu`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.triu_,
|
|
"""
|
|
triu_(k=0) -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.triu`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.trtrs,
|
|
"""
|
|
trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
|
|
|
|
See :func:`torch.trtrs`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.trunc,
|
|
"""
|
|
trunc() -> Tensor
|
|
|
|
See :func:`torch.trunc`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.trunc_,
|
|
"""
|
|
trunc_() -> Tensor
|
|
|
|
In-place version of :meth:`~Tensor.trunc`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.unfold,
|
|
"""
|
|
unfold(dim, size, step) -> Tensor
|
|
|
|
Returns a tensor which contains all slices of size :attr:`size` in
|
|
the dimension :attr:`dim`.
|
|
|
|
Step between two slices is given by :attr:`step`.
|
|
|
|
If `sizedim` is the original size of dimension dim, the size of dimension `dim`
|
|
in the returned tensor will be `(sizedim - size) / step + 1`
|
|
|
|
An additional dimension of size size is appended in the returned tensor.
|
|
|
|
Args:
|
|
dim (int): dimension in which unfolding happens
|
|
size (int): size of each slice that is unfolded
|
|
step (int): the step between each slice
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(1, 8)
|
|
>>> x
|
|
|
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
7
|
|
[torch.FloatTensor of size 7]
|
|
|
|
>>> x.unfold(0, 2, 1)
|
|
|
|
1 2
|
|
2 3
|
|
3 4
|
|
4 5
|
|
5 6
|
|
6 7
|
|
[torch.FloatTensor of size 6x2]
|
|
|
|
>>> x.unfold(0, 2, 2)
|
|
|
|
1 2
|
|
3 4
|
|
5 6
|
|
[torch.FloatTensor of size 3x2]
|
|
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.uniform_,
|
|
"""
|
|
uniform_(from=0, to=1) -> Tensor
|
|
|
|
Fills this tensor with numbers sampled from the uniform distribution:
|
|
|
|
.. math:
|
|
|
|
P(x) = \dfrac{1}{to - from}
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.unsqueeze,
|
|
"""
|
|
unsqueeze(dim)
|
|
|
|
See :func:`torch.unsqueeze`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.unsqueeze_,
|
|
"""
|
|
unsqueeze_(dim)
|
|
|
|
In-place version of :meth:`~Tensor.unsqueeze`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.var,
|
|
"""
|
|
var() -> float
|
|
|
|
See :func:`torch.var`
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.view,
|
|
"""
|
|
view(*args) -> Tensor
|
|
|
|
Returns a new tensor with the same data but different size.
|
|
|
|
The returned tensor shares the same data and must have the same number
|
|
of elements, but may have a different size. A tensor must be
|
|
:func:`contiguous` to be viewed.
|
|
|
|
Args:
|
|
args (torch.Size or int...): Desired size
|
|
|
|
Example:
|
|
>>> x = torch.randn(4, 4)
|
|
>>> x.size()
|
|
torch.Size([4, 4])
|
|
>>> y = x.view(16)
|
|
>>> y.size()
|
|
torch.Size([16])
|
|
>>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions
|
|
>>> z.size()
|
|
torch.Size([2, 8])
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.expand,
|
|
"""
|
|
expand(tensor, sizes) -> Tensor
|
|
|
|
Returns a new view of the tensor with singleton dimensions expanded
|
|
to a larger size.
|
|
|
|
Tensor can be also expanded to a larger number of dimensions, and the
|
|
new ones will be appended at the front.
|
|
|
|
Expanding a tensor does not allocate new memory, but only creates a
|
|
new view on the existing tensor where a dimension of size one is
|
|
expanded to a larger size by setting the ``stride`` to 0. Any dimension
|
|
of size 1 can be expanded to an arbitrary value without allocating new
|
|
memory.
|
|
|
|
Args:
|
|
*sizes (torch.Size or int...): The desired expanded size
|
|
|
|
Example:
|
|
>>> x = torch.Tensor([[1], [2], [3]])
|
|
>>> x.size()
|
|
torch.Size([3, 1])
|
|
>>> x.expand(3, 4)
|
|
1 1 1 1
|
|
2 2 2 2
|
|
3 3 3 3
|
|
[torch.FloatTensor of size 3x4]
|
|
""")
|
|
|
|
add_docstr(torch._C.FloatTensorBase.zero_,
|
|
"""
|
|
zero_()
|
|
|
|
Fills this tensor with zeros.
|
|
""")
|