mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Previous full PR https://github.com/pytorch/pytorch/pull/115248 is failed to merge due to fb_code is hard to debug. I also tried to submit them as two pieces, https://github.com/pytorch/pytorch/pull/118514 https://github.com/pytorch/pytorch/pull/118515. And they have passed PreCI at that time. Now I tried to split https://github.com/pytorch/pytorch/pull/115248 into smaller piece, and it is the first step of RFC https://github.com/pytorch/pytorch/issues/124245. Changes: 1. Add cpp builder code, the new cpp_builder support Windows OS. 2. Add CPU ISA checker which is cross OS and exported from backend cpuinfo. 3. Switch compiler ISA checker to new cpp builder. 4. CppCodeCache use the new ISA checker. 5. Add temprary `test_new_cpp_build_logical` UT to help on transfer to new code. <img width="1853" alt="Image" src="https://github.com/pytorch/pytorch/assets/8433590/ce6519ab-ba92-4204-b1d6-7d15d2ba2cbe"> Pull Request resolved: https://github.com/pytorch/pytorch/pull/124045 Approved by: https://github.com/jgong5, https://github.com/jansel
3281 lines
116 KiB
Python
3281 lines
116 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import copyreg
|
|
import ctypes
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import importlib
|
|
import io
|
|
import json
|
|
import logging
|
|
import multiprocessing
|
|
import os
|
|
import pickle
|
|
import pkgutil
|
|
import platform
|
|
import re
|
|
import shlex
|
|
import shutil
|
|
import signal
|
|
import struct
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
import tempfile
|
|
import textwrap
|
|
import threading
|
|
import warnings
|
|
from bisect import bisect_right
|
|
from concurrent.futures import Future, ProcessPoolExecutor, ThreadPoolExecutor
|
|
from copy import copy
|
|
from ctypes import c_void_p, cdll, CDLL
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from threading import Thread
|
|
from time import sleep, time, time_ns
|
|
from types import ModuleType
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
cast,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
Optional,
|
|
Set,
|
|
Tuple,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
|
|
import torch
|
|
from torch._dynamo.device_interface import get_registered_device_interfaces
|
|
from torch._dynamo.utils import counters, dynamo_timed
|
|
from torch._inductor import config, exc, metrics
|
|
from torch._inductor.codegen.cuda import cuda_env
|
|
from torch._inductor.runtime.compile_tasks import (
|
|
_module_to_triton_kernel,
|
|
_reload_python_module,
|
|
_reload_python_module_in_subproc,
|
|
_set_triton_ptxas_path,
|
|
_worker_compile_triton,
|
|
)
|
|
from torch._inductor.runtime.runtime_utils import cache_dir
|
|
from torch._inductor.utils import clear_on_fresh_inductor_cache, is_linux
|
|
|
|
from torch._logging import trace_structured
|
|
from torch._subclasses.fake_tensor import (
|
|
extract_tensor_metadata,
|
|
FakeTensor,
|
|
TensorMetadata,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._inductor.graph import GraphLowering
|
|
from torch._inductor.ir import ChoiceCaller
|
|
|
|
from torch.hub import _Faketqdm, tqdm
|
|
|
|
_HERE = os.path.abspath(__file__)
|
|
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
|
|
_LINKER_SCRIPT = os.path.join(_TORCH_PATH, "_inductor/script.ld")
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
if config.is_fbcode():
|
|
from triton.fb import build_paths
|
|
from triton.fb.build import _run_build_command
|
|
|
|
from torch._inductor.fb.utils import (
|
|
log_global_cache_errors,
|
|
log_global_cache_stats,
|
|
log_global_cache_vals,
|
|
use_global_cache,
|
|
)
|
|
else:
|
|
|
|
def log_global_cache_errors(*args, **kwargs):
|
|
pass
|
|
|
|
def log_global_cache_stats(*args, **kwargs):
|
|
pass
|
|
|
|
def log_global_cache_vals(*args, **kwargs):
|
|
pass
|
|
|
|
def use_global_cache() -> bool:
|
|
return False
|
|
|
|
|
|
output_code_log = torch._logging.getArtifactLogger(__name__, "output_code")
|
|
|
|
LOCK_TIMEOUT = 600
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
# timing metrics for time spent in the compilation
|
|
_cumulative_compile_time = 0.0
|
|
_t0: Optional[float] = None
|
|
|
|
|
|
def _compile_start() -> None:
|
|
global _t0
|
|
if _t0 is None:
|
|
_t0 = time()
|
|
|
|
|
|
def _compile_end() -> None:
|
|
global _cumulative_compile_time, _t0
|
|
if _t0 is not None:
|
|
t1 = time()
|
|
_cumulative_compile_time += t1 - _t0
|
|
_t0 = None
|
|
# print("CUMULATIVE COMPILE TIME", _cumulative_compile_time)
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def cpp_wrapper_cache_dir(name: str) -> str:
|
|
cu_str = (
|
|
"cpu"
|
|
if torch.version.cuda is None
|
|
else f'cu{torch.version.cuda.replace(".", "")}'
|
|
)
|
|
python_version = f"py{sys.version_info.major}{sys.version_info.minor}"
|
|
build_folder = f"{python_version}_{cu_str}"
|
|
|
|
cpp_wrapper_dir = os.path.join(cache_dir(), build_folder)
|
|
cpp_wrapper_build_directory = os.path.join(cpp_wrapper_dir, name)
|
|
os.makedirs(cpp_wrapper_build_directory, exist_ok=True)
|
|
return cpp_wrapper_build_directory
|
|
|
|
|
|
def get_cpp_wrapper_cubin_path_name():
|
|
return "cubin_path" if torch.version.hip is None else "hsaco_path"
|
|
|
|
|
|
class CacheBase:
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def get_system() -> Dict[str, Any]:
|
|
try:
|
|
from triton.compiler.compiler import triton_key
|
|
|
|
# Use triton_key instead of triton.__version__ as the version
|
|
# is not updated with each code change
|
|
triton_version = triton_key()
|
|
except ModuleNotFoundError:
|
|
triton_version = None
|
|
|
|
try:
|
|
system: Dict[str, Any] = {
|
|
"device": {
|
|
"name": torch.cuda.get_device_properties(
|
|
torch.cuda.current_device()
|
|
).name,
|
|
},
|
|
"version": {
|
|
"cuda": torch.version.cuda,
|
|
"triton": triton_version,
|
|
},
|
|
}
|
|
except (AssertionError, RuntimeError):
|
|
# If cuda is not installed, none of the above config is relevant.
|
|
system = {}
|
|
|
|
system["hash"] = hashlib.sha256(
|
|
json.dumps(system, sort_keys=True).encode("utf-8")
|
|
).hexdigest()
|
|
|
|
return system
|
|
|
|
@staticmethod
|
|
@clear_on_fresh_inductor_cache
|
|
@functools.lru_cache(None)
|
|
def get_local_cache_path() -> Path:
|
|
return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def get_global_cache_path() -> Optional[Path]:
|
|
return (
|
|
Path(os.path.join(config.global_cache_dir, CacheBase.get_system()["hash"]))
|
|
if config.global_cache_dir is not None
|
|
else None
|
|
)
|
|
|
|
def __init__(self) -> None:
|
|
if not torch.cuda.is_available():
|
|
return
|
|
|
|
self.system = CacheBase.get_system()
|
|
|
|
def get_local_cache(self) -> Dict[str, Any]:
|
|
local_cache_path = self.get_local_cache_path()
|
|
if not local_cache_path.is_file():
|
|
return {}
|
|
with open(local_cache_path) as local_cache_fp:
|
|
local_cache = json.load(local_cache_fp)
|
|
return local_cache["cache"]
|
|
|
|
def update_local_cache(self, local_cache: Dict[str, Any]) -> None:
|
|
local_cache_path = self.get_local_cache_path()
|
|
write_atomic(
|
|
str(local_cache_path),
|
|
json.dumps({"system": self.system, "cache": local_cache}, indent=4),
|
|
make_dirs=True,
|
|
)
|
|
|
|
|
|
class LocalCache(CacheBase):
|
|
def lookup(self, *keys: str) -> Optional[Dict[str, Any]]:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys:
|
|
if key in cache:
|
|
sub_cache = cache[key]
|
|
else:
|
|
return None
|
|
|
|
return sub_cache
|
|
|
|
def set_value(self, *keys: str, value: Any) -> None:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys[0:-1]:
|
|
sub_cache.setdefault(key, {})
|
|
sub_cache = sub_cache[key]
|
|
sub_cache[keys[-1]] = value
|
|
|
|
self.update_local_cache(cache)
|
|
|
|
|
|
class PersistentCache(CacheBase):
|
|
@functools.lru_cache(None)
|
|
def get_global_cache(self):
|
|
global_cache_path = self.get_global_cache_path()
|
|
if global_cache_path is None or not global_cache_path.is_file():
|
|
return {}
|
|
with open(global_cache_path) as global_cache_fp:
|
|
global_cache = json.load(global_cache_fp)
|
|
return global_cache["cache"]
|
|
|
|
def lookup(
|
|
self,
|
|
choices: List[ChoiceCaller],
|
|
op: str,
|
|
inputs: str,
|
|
benchmark: Optional[Callable[[Any], Dict[ChoiceCaller, float]]],
|
|
) -> Dict[ChoiceCaller, float]:
|
|
"""
|
|
Check to see if we have benchmarked the given choice callers. For each
|
|
choice caller:
|
|
|
|
1. Check global_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
2. Check local_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
3. If benchmark is not None:
|
|
a. `max_autotune_gemm=True`: benchmark the choice, update
|
|
local_cache[op][inputs][choice], and return the benchmark.
|
|
b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
|
|
"""
|
|
precision = torch.get_float32_matmul_precision()
|
|
|
|
log_stats = partial(log_global_cache_stats, self.system, op, inputs, precision)
|
|
log_vals = partial(log_global_cache_vals, self.system, op, inputs, precision)
|
|
log_errors = partial(
|
|
log_global_cache_errors, self.system, op, inputs, precision
|
|
)
|
|
timings = {}
|
|
|
|
def check_cache(cache, callback=None) -> bool:
|
|
"""Check if `cache` contains data for all the choices"""
|
|
hit = True
|
|
for choice in choices:
|
|
choice_hash = choice.hash_key()
|
|
if choice_hash in cache.get(op, {}).get(inputs, {}).get(precision, {}):
|
|
# cache hit
|
|
timings[choice] = cache[op][inputs][precision][choice_hash]
|
|
else:
|
|
# cache miss
|
|
hit = False
|
|
break
|
|
if callback:
|
|
callback(cached=hit)
|
|
return hit
|
|
|
|
if config.max_autotune or config.max_autotune_gemm:
|
|
local_cache = self.get_local_cache() if config.autotune_local_cache else {}
|
|
# check local cache first since it is data specific to the current machine
|
|
if (
|
|
not check_cache(local_cache)
|
|
and not (
|
|
use_global_cache()
|
|
and check_cache(self.get_global_cache(), callback=log_stats)
|
|
)
|
|
and benchmark is not None
|
|
):
|
|
try:
|
|
# re-benchmark everything to try to get consistent numbers from the same machine
|
|
timings = benchmark(choices)
|
|
assert all(choice in timings for choice in choices)
|
|
local_cache.setdefault(op, {})
|
|
local_cache[op].setdefault(inputs, {}).setdefault(precision, {})
|
|
for choice, timing in timings.items():
|
|
local_cache[op][inputs][precision][choice.hash_key()] = timing
|
|
except RuntimeError as e:
|
|
# catch and log autotuning failures
|
|
log_errors(e)
|
|
raise e
|
|
|
|
self.update_local_cache(local_cache)
|
|
|
|
timings_to_log = {
|
|
choice.hash_key(): timings[choice] for choice in choices
|
|
}
|
|
log_vals(timings_to_log)
|
|
elif use_global_cache():
|
|
# only check global cache, not local one
|
|
check_cache(self.get_global_cache(), callback=log_stats)
|
|
# may have a partial cache hit, where not everything is benchmarked
|
|
|
|
return timings
|
|
|
|
|
|
def get_lock_dir() -> str:
|
|
lock_dir = os.path.join(cache_dir(), "locks")
|
|
if not os.path.exists(lock_dir):
|
|
os.makedirs(lock_dir, exist_ok=True)
|
|
return lock_dir
|
|
|
|
|
|
def sha256_hash(data: bytes) -> str:
|
|
# [:51] to strip off the "Q====" suffix common to every hash value.
|
|
return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()
|
|
|
|
|
|
def code_hash(code: Union[str, bytes], extra: str = ""):
|
|
hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
|
|
if extra != "":
|
|
hashing_str = hashing_str + b"||" + extra.encode("utf-8")
|
|
return "c" + sha256_hash(hashing_str)
|
|
|
|
|
|
def get_path(
|
|
basename: str, extension: str, specified_dir: str = ""
|
|
) -> Tuple[str, str, str]:
|
|
if specified_dir:
|
|
if os.path.isabs(specified_dir):
|
|
subdir = specified_dir
|
|
else:
|
|
subdir = os.path.join(cache_dir(), specified_dir)
|
|
else:
|
|
subdir = os.path.join(cache_dir(), basename[1:3])
|
|
path = os.path.join(subdir, f"{basename}.{extension}")
|
|
return basename, subdir, path
|
|
|
|
|
|
def get_hash(content: Union[str, bytes], extra: str = "", hash_type: str = "code"):
|
|
if hash_type == "code":
|
|
return code_hash(content, extra)
|
|
if hash_type in ["cubin", "hsaco"]:
|
|
return code_hash(repr(content))
|
|
raise AssertionError(f"Unknown hash type {hash_type}")
|
|
|
|
|
|
def write(
|
|
content: Union[str, bytes],
|
|
extension: str,
|
|
extra: str = "",
|
|
hash_type: str = "code",
|
|
specified_dir: str = "",
|
|
) -> Tuple[str, str]:
|
|
# use striped content to compute hash so we don't end up with different
|
|
# hashes just because the content begins/ends with different number of
|
|
# spaces.
|
|
key: str = get_hash(content.strip(), extra, hash_type)
|
|
basename, subdir, path = get_path(key, extension, specified_dir)
|
|
if not os.path.exists(path):
|
|
write_atomic(path, content, make_dirs=True)
|
|
return basename, path
|
|
|
|
|
|
def write_text(text: str) -> str:
|
|
"""
|
|
Write the `text` to a file and return the path computed based on the hash.
|
|
"""
|
|
return write(text, "txt")[1]
|
|
|
|
|
|
def write_atomic(
|
|
path: str, content: Union[str, bytes], make_dirs: bool = False
|
|
) -> None:
|
|
# Write into temporary file first to avoid conflicts between threads
|
|
# Avoid using a named temporary file, as those have restricted permissions
|
|
assert isinstance(
|
|
content, (str, bytes)
|
|
), "Only strings and byte arrays can be saved in the cache"
|
|
path = Path(path)
|
|
if make_dirs:
|
|
path.parent.mkdir(parents=True, exist_ok=True)
|
|
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
|
|
write_mode = "w" if isinstance(content, str) else "wb"
|
|
with tmp_path.open(write_mode) as f:
|
|
f.write(content)
|
|
tmp_path.rename(path)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorMetadataAndValues:
|
|
"""
|
|
TensorMetadata plus the elements as a list of raw values.
|
|
Used for hashing inlined constants.
|
|
"""
|
|
|
|
tensor_metadata: TensorMetadata
|
|
values: List[Any]
|
|
|
|
|
|
def _ident(x: Any) -> Any:
|
|
return x
|
|
|
|
|
|
def _reduce_fake_tensor(t):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to pickle FakeTensors.
|
|
"""
|
|
metadata = extract_tensor_metadata(t)
|
|
return (_ident, (metadata,))
|
|
|
|
|
|
def _reduce_tensor(t):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to pickle Tensors.
|
|
If we see tensors, we know they're constants stored as attributes on
|
|
the GraphModule. Include the values in the key calculation. Small
|
|
tensors will be inlined, so we can't serve the same cache entry for
|
|
different values anyway. Large constants are treated as parameters,
|
|
so we could conceivably reuse a cache entry. To do that, however,
|
|
PyCodeCache would need more complexity to create a new module from its
|
|
cache, but with the right constants attached as attributes.
|
|
"""
|
|
if t.is_mkldnn:
|
|
# TODO: These tensors don't currently pickle, so we can't cache a
|
|
# compiled graph containing them. Just fail now. If mkldnn tensors
|
|
# get pickling support, we can remove this.
|
|
raise BypassFxGraphCache
|
|
|
|
# Very large tensors could be expensive to copy to cpu and hash. Let's
|
|
# at least report if we find slowness.
|
|
start = time()
|
|
values = t.tolist()
|
|
elapsed = time() - start
|
|
if elapsed > 1.0:
|
|
warnings.warn(
|
|
f"FX graph cache handling of a large constant took {elapsed:.1}s. Please file an issue."
|
|
)
|
|
|
|
metadata = extract_tensor_metadata(t)
|
|
return (_ident, (TensorMetadataAndValues(metadata, values),))
|
|
|
|
|
|
def _reduce_symint(s):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to pickle SymInts.
|
|
"""
|
|
# For hashing purposes, we only care about the name of the symbol and
|
|
# not the backed value. We evaluate guards stored with a cached graph
|
|
# to ensure a cached entity with SymInt args is safe to reuse.
|
|
return (_ident, (str(s),))
|
|
|
|
|
|
def _reduce_unsupported(s):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to handle any objects that we don't
|
|
support and therefore raise to bypass caching.
|
|
"""
|
|
raise BypassFxGraphCache
|
|
|
|
|
|
class FxGraphCachePickler(pickle.Pickler):
|
|
"""
|
|
Custom pickler to customize the pickling of some objects (Tensors), only for the
|
|
purpose of computing a hash for keying into the FxGraphCache. Tensors contain
|
|
objects that don't pickle and/or vary between runs, and we want to capture the
|
|
data that allow us to compute a stable, but safe hash.
|
|
"""
|
|
|
|
dispatch_table = copyreg.dispatch_table.copy()
|
|
dispatch_table[FakeTensor] = _reduce_fake_tensor
|
|
dispatch_table[torch.Tensor] = _reduce_tensor
|
|
dispatch_table[torch.SymInt] = _reduce_symint
|
|
dispatch_table[
|
|
torch.fx.experimental._backward_state.BackwardState
|
|
] = _reduce_unsupported
|
|
|
|
@classmethod
|
|
def dumps(cls, obj) -> bytes:
|
|
"""
|
|
Pickle an object using the FxGraphCachePickler.
|
|
"""
|
|
with io.BytesIO() as stream:
|
|
pickler = cls(stream)
|
|
pickler.dump(obj)
|
|
return stream.getvalue()
|
|
|
|
@classmethod
|
|
def get_hash(cls, obj: Any) -> str:
|
|
"""
|
|
Serialize an object using the FxGraphCachePickler and return a hash
|
|
of the pickled object.
|
|
"""
|
|
serialized_data = cls.dumps(obj)
|
|
return sha256_hash(serialized_data)
|
|
|
|
@classmethod
|
|
def debug_str(cls, inp: Any) -> str:
|
|
"""
|
|
Get a printable string describing in more detail all the attributes
|
|
comprising an object. Useful for debugging when one graph hashes
|
|
to a different value than another.
|
|
"""
|
|
|
|
def get_str(obj) -> str:
|
|
if isinstance(obj, torch.Tensor):
|
|
return str(extract_tensor_metadata(obj))
|
|
elif isinstance(obj, bytes):
|
|
return "<bytes>"
|
|
else:
|
|
return str(obj)
|
|
|
|
lines = []
|
|
for attr, obj in vars(inp).items():
|
|
if isinstance(obj, list):
|
|
for ii in range(len(obj)):
|
|
h = cls.get_hash(obj[ii])
|
|
lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
|
|
elif isinstance(obj, dict):
|
|
for k, v in obj.items():
|
|
h = cls.get_hash(v)
|
|
lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
|
|
else:
|
|
h = cls.get_hash(obj)
|
|
lines.append(f"[{h}] {attr}: {get_str(obj)}")
|
|
return "\n".join(lines)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_inductor_code_hash() -> bytes:
|
|
"""
|
|
Compute a hash of all inductor code modules. Used by the FxGraph cache
|
|
so any inductor code changes would result in new cache keys.
|
|
"""
|
|
inductor_root = os.path.dirname(__file__)
|
|
|
|
contents: Dict[str, bytes] = {}
|
|
for lib in pkgutil.iter_modules([inductor_root]):
|
|
spec = lib.module_finder.find_spec(lib.name, None)
|
|
assert spec is not None
|
|
module = spec.origin
|
|
assert module is not None
|
|
with open(module, "rb") as f:
|
|
contents[module] = f.read()
|
|
|
|
return hashlib.sha256(pickle.dumps(contents)).digest()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class OrderedSetHolder:
|
|
"""
|
|
See FxGraphHashDetails. Holds a sorted list to support stable hashing
|
|
of set kwargs.
|
|
"""
|
|
|
|
items: List[Any]
|
|
|
|
|
|
class BypassFxGraphCache(Exception):
|
|
"""
|
|
Exception to indicate that the FxGraphCache should be bypassed.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class FxGraphHashDetails:
|
|
"""
|
|
Object to capture all the details for a compiled FX graph relevant to computing
|
|
a safe and stable cache key.
|
|
"""
|
|
|
|
# Excluded kwargs param that are not stable between runs
|
|
EXCLUDED_KWARGS = ["graph_id"]
|
|
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor],
|
|
fx_kwargs: Dict[str, Any],
|
|
):
|
|
self.gm = gm
|
|
self.example_inputs = example_inputs
|
|
|
|
# Order kwargs so hashing is stable to changes in kwarg order.
|
|
self.fx_kwargs = {}
|
|
for k in sorted(fx_kwargs):
|
|
if k not in self.EXCLUDED_KWARGS:
|
|
if type(fx_kwargs[k]) is set:
|
|
# Special case to handle set params. Python sets can't be
|
|
# ordered, so sort the elements and store them in a proxy.
|
|
self.fx_kwargs[k] = OrderedSetHolder(sorted(fx_kwargs[k]))
|
|
else:
|
|
self.fx_kwargs[k] = fx_kwargs[k]
|
|
|
|
# 'Deterministic algorithms' can affect codegen via lowering to cuda kernels.
|
|
self.deterministic_algorithms_settings = (
|
|
torch.are_deterministic_algorithms_enabled(),
|
|
torch.is_deterministic_algorithms_warn_only_enabled(),
|
|
torch.utils.deterministic.fill_uninitialized_memory, # type: ignore[attr-defined]
|
|
)
|
|
|
|
# Global settings affecting matmul codegen.
|
|
self.cuda_matmul_settings = (
|
|
torch.backends.cuda.matmul.allow_tf32,
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction,
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction,
|
|
)
|
|
|
|
# Also hash on various system info (including the triton compiler version).
|
|
self.torch_version = torch.__version__
|
|
self.system_info = CacheBase.get_system()
|
|
|
|
# And the inductor configuration and code.
|
|
self.inductor_code_hash = get_inductor_code_hash()
|
|
try:
|
|
self.inductor_config = config.save_config()
|
|
except (TypeError, AttributeError) as e:
|
|
# Some configs options are callables, e.g., post_grad_custom_pre_pass,
|
|
# and may not pickle.
|
|
log.debug("Can't pickle inductor config: %s", e)
|
|
raise BypassFxGraphCache from e
|
|
|
|
def debug_str(self) -> str:
|
|
"""
|
|
Get a printable string describing in more detail all the attributes
|
|
comprising this object. Useful for debugging when one graph hashes
|
|
to a different value than another.
|
|
"""
|
|
return FxGraphCachePickler.debug_str(self)
|
|
|
|
|
|
def compiled_fx_graph_hash(
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor],
|
|
fx_kwargs: Dict[str, Any],
|
|
) -> str:
|
|
"""
|
|
Generate a unique hash of the FX graph for caching.
|
|
"""
|
|
details = FxGraphHashDetails(gm, example_inputs, fx_kwargs)
|
|
# The prefix distinguishes among the other kinds of objects we
|
|
# cache in this module.
|
|
key = "f" + FxGraphCachePickler.get_hash(details)
|
|
log.debug(
|
|
"FX graph cache hash details for key %s:\n%s",
|
|
key,
|
|
details.debug_str(),
|
|
)
|
|
return key
|
|
|
|
|
|
class FxGraphCache:
|
|
"""
|
|
Supports caching and reusing compiled Fx graphs.
|
|
|
|
The overall strategy is as follows:
|
|
- This cache stores entries on disk. When saving an entry, we can't
|
|
serialize callables (that could be C++, Triton, etc.), so we serialize
|
|
their own disk cache location. We then recreate the compiled artifact
|
|
after fetching from disk.
|
|
- For indexing the cache, we gather the fields relevant to identifying an
|
|
FxGraph (the graph module, graph inputs, system settings etc.) into an
|
|
FxGraphCacheDetails object, pickle it, and compute a hash for the key.
|
|
See FxGraphCachePickler.
|
|
- Among the metadata we store, we also include a guards expression that's
|
|
appropriate for validating any symbols for Tensor arguments that have
|
|
symbolic bounds. On cache lookup then, we evaluate those guards in the
|
|
current context to validate that a cached entry can be served.
|
|
- A given graph could have multiple compiled versions, corresponding to
|
|
different sets of guards. Therefore, we store cache entries in the form:
|
|
<temp dir>/<fx graph hash>/<serialized metatdata>
|
|
- On lookup, we compute the key from the graph details, iterate over all
|
|
leaf files in the corresponding subdirectory, deserialize the entry, and
|
|
evaluate its guards expression. If the evaluation succeeds, we have a
|
|
cache hit. If it fails, we compile the graph and store a new entry.
|
|
- Finally, on a cache hit, we need to make sure any guards that would
|
|
have been created during compilation are added to the current context.
|
|
"""
|
|
|
|
# TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
|
|
# in an in-memory cache after loading from disk.
|
|
@staticmethod
|
|
def _get_tmp_dir() -> str:
|
|
"""
|
|
Get the toplevel temporary directory for storing compiled graphs.
|
|
"""
|
|
return os.path.join(cache_dir(), "fxgraph")
|
|
|
|
@staticmethod
|
|
def _get_tmp_dir_for_key(key: str) -> str:
|
|
"""
|
|
Return the disk location for a given cache key.
|
|
"""
|
|
return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)
|
|
|
|
@staticmethod
|
|
def _filter_symints(inputs: List[Any]) -> List[torch.SymInt]:
|
|
"""
|
|
Get the SymInt objects from the input list.
|
|
"""
|
|
return [s for s in inputs if isinstance(s, torch.SymInt)]
|
|
|
|
@staticmethod
|
|
def _get_shape_env() -> Optional[ShapeEnv]:
|
|
"""
|
|
Helper to get the shape env from the tracing context.
|
|
"""
|
|
ctx = torch._guards.TracingContext.try_get()
|
|
if not ctx:
|
|
return None
|
|
return ctx.fake_mode.shape_env
|
|
|
|
@staticmethod
|
|
def _lookup_graph(
|
|
key: str,
|
|
example_inputs: List[torch.Tensor],
|
|
local,
|
|
remote_cache,
|
|
) -> Optional[CompiledFxGraph]:
|
|
"""
|
|
Lookup a compiled graph in the cache by key. On a hit, return the
|
|
deserialized CompiledFxGraph object. On a miss, return None.
|
|
"""
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
|
|
symints = FxGraphCache._filter_symints(example_inputs)
|
|
assert all(has_hint(s) for s in symints)
|
|
hints = [hint_int(s) for s in symints]
|
|
|
|
def iterate_over_candidates() -> Generator[CompiledFxGraph, None, None]:
|
|
if local:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if os.path.exists(subdir):
|
|
for path in sorted(os.listdir(subdir)):
|
|
with open(os.path.join(subdir, path), "rb") as f:
|
|
yield pickle.load(f)
|
|
if remote_cache:
|
|
if (data := remote_cache.get(key)) is not None:
|
|
yield pickle.loads(data)
|
|
|
|
# Iterate over any entries in the subdir for this key and evaluate
|
|
# their guards to determine whether there's a hit.
|
|
graph = None
|
|
|
|
for candidate in iterate_over_candidates():
|
|
if not candidate.guards_expr:
|
|
# No guards to evaluate, so this is a hit.
|
|
graph = candidate
|
|
break
|
|
|
|
# Evaluate the guard expression in the current context.
|
|
# If there's not a cache hit, we don't want the evaluation to
|
|
# affect the current env, e.g., cause the creation of new guards,
|
|
# so we evaluate with the hints instead of the symbols.
|
|
hit = bool(
|
|
shape_env.evaluate_guards_expression(candidate.guards_expr, hints)
|
|
)
|
|
log.debug(
|
|
"fx graph cache key %s evaluating guards [%s] with values %s => hit=%s",
|
|
key,
|
|
candidate.guards_expr,
|
|
hints,
|
|
hit,
|
|
)
|
|
if hit:
|
|
graph = candidate
|
|
break
|
|
|
|
if graph is None:
|
|
return None
|
|
|
|
# See _save_graph(); we don't store the callable in the cache entry so
|
|
# recreate it here from the PyCodeCache disk cache.
|
|
artifact_path = get_path(graph.cache_key, "py")[2]
|
|
if not os.path.exists(artifact_path):
|
|
counters["inductor"]["fxgraph_lookup_write_file"] += 1
|
|
Path(os.path.dirname(artifact_path)).mkdir(parents=True, exist_ok=True)
|
|
code = graph.source_code
|
|
cpp_pp = cpp_prefix_path()
|
|
if os.path.basename(cpp_pp) in code:
|
|
if cpp_pp in code:
|
|
# Great the name is correct
|
|
pass
|
|
else:
|
|
# Old dir name is included, replace it
|
|
pattern = rf'#include\s*"[^"]+{os.path.basename(cpp_pp)}"'
|
|
code = re.sub(pattern, f'#include "{cpp_pp}"', code)
|
|
|
|
write_atomic(artifact_path, code, make_dirs=True)
|
|
|
|
try:
|
|
graph.current_callable = PyCodeCache.load_by_key_path(
|
|
graph.cache_key,
|
|
artifact_path,
|
|
graph.cache_linemap,
|
|
graph.constants,
|
|
).call
|
|
except OSError:
|
|
# Not expected, but in case the PyCodeCache entry is removed from
|
|
# underneath us, treat it as a cache miss and recompile.
|
|
log.error("Failed to load cached artifact: %s", artifact_path)
|
|
return None
|
|
|
|
# Now re-evaluate with the symints to add any guards to the current env.
|
|
if graph.guards_expr:
|
|
check = bool(
|
|
shape_env.evaluate_guards_expression(graph.guards_expr, symints)
|
|
)
|
|
assert check is True
|
|
log.debug(
|
|
"fx graph cache key %s post-load guards: %s", key, shape_env.guards
|
|
)
|
|
|
|
# Increment the cached metrics by the amounts recorded when the FX
|
|
# graph was compiled for this cache entry. Pretending these counters
|
|
# were incremented normally is useful for testing with the cache enabled.
|
|
metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas)
|
|
|
|
return graph
|
|
|
|
@staticmethod
|
|
def _save_graph(
|
|
key: str,
|
|
compiled_graph: CompiledFxGraph,
|
|
example_inputs: List[torch.Tensor],
|
|
time_taken_ns,
|
|
local,
|
|
remote_cache,
|
|
):
|
|
"""
|
|
Store a serialized CompiledFxGraph on disk.
|
|
"""
|
|
disk_compiled_graph = copy(compiled_graph)
|
|
# We can't really serialize callables that may be C++/Triton/etc.,
|
|
# so we serialize their PyCodeCache disk cache location instead.
|
|
# TODO: This could be better if we're ever able to serialize compiled
|
|
# models to disk.
|
|
disk_compiled_graph.current_callable = None
|
|
|
|
# Before serializing, compute the guard expression that will be used to
|
|
# ensure that a CompiledFxGraph is valid when loaded from the cache. It's
|
|
# sufficient to consider only the SymInt args to the fx graph since the
|
|
# Tensor shapes are already captured in the hash for the cache key. Any
|
|
# Tensor arg with a symbolic shape will have a SymInt arg for the graph.
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
symints = FxGraphCache._filter_symints(example_inputs)
|
|
disk_compiled_graph.guards_expr = shape_env.produce_guards_expression(symints)
|
|
|
|
try:
|
|
content = pickle.dumps(disk_compiled_graph)
|
|
except Exception as e:
|
|
log.debug("fx graph cache unable to serialize compiled graph: %s", e)
|
|
counters["inductor"]["fxgraph_cache_pickle_error"] += 1
|
|
return
|
|
|
|
if local:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if not os.path.exists(subdir):
|
|
os.makedirs(subdir, exist_ok=True)
|
|
|
|
# Use a hash of the serialized CompiledFxGraph to get a unique file
|
|
# name. The specific name doesn't matter since a lookup involves
|
|
# iterating over all entries in the parent subdir.
|
|
path = os.path.join(subdir, sha256_hash(content))
|
|
write_atomic(path, content, make_dirs=True)
|
|
|
|
if remote_cache:
|
|
cache_data = (
|
|
{
|
|
"data": content,
|
|
"time_taken_ms": time_taken_ns // 1000000, # Convert from NS to MS
|
|
}
|
|
if config.is_fbcode()
|
|
else content
|
|
)
|
|
remote_cache.put(key, cache_data)
|
|
|
|
@staticmethod
|
|
def _check_can_cache(gm: torch.fx.GraphModule):
|
|
"""
|
|
Check some conditions that would preclude caching and raise BypassFxGraphCache
|
|
to bypass in case caching is not possible.
|
|
"""
|
|
# Freezing can embed constants that wouldn't be static across runs.
|
|
if config.freezing or config.aot_inductor.use_runtime_constant_folding:
|
|
raise BypassFxGraphCache
|
|
|
|
# The treatment of guards in the caching implementation requires that
|
|
# we have a shape env.
|
|
if FxGraphCache._get_shape_env() is None:
|
|
log.debug("fx graph cache no shape env")
|
|
raise BypassFxGraphCache
|
|
|
|
# HigherOrderOperators should be handled on a case-by-case basis.
|
|
# Currently, we just skip caching if we have any.
|
|
for node in gm.graph.nodes:
|
|
if isinstance(node.target, torch._ops.HigherOrderOperator):
|
|
raise BypassFxGraphCache
|
|
|
|
@staticmethod
|
|
def load(
|
|
compile_fx_fn: Callable[..., Any],
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor],
|
|
fx_kwargs: Dict[str, Any],
|
|
local: bool,
|
|
remote: bool,
|
|
):
|
|
"""
|
|
Load a compiled graph from the cache. If a cached entry does not exist,
|
|
compile the graph and save it to the cache.
|
|
"""
|
|
assert local or remote, "at least one of them needs to be enabled"
|
|
compiled_graph = None
|
|
try:
|
|
FxGraphCache._check_can_cache(gm)
|
|
key = compiled_fx_graph_hash(gm, example_inputs, fx_kwargs)
|
|
|
|
remote_cache = None
|
|
if remote:
|
|
cache_id = "fx-graph-v1"
|
|
try:
|
|
import triton
|
|
|
|
if config.is_fbcode():
|
|
remote_cache = triton.runtime.fb_memcache.FbMemcacheRemoteFxGraphCacheBackend(
|
|
cache_id
|
|
)
|
|
else:
|
|
remote_cache = triton.runtime.cache.RedisRemoteCacheBackend(
|
|
cache_id
|
|
)
|
|
except Exception:
|
|
remote_cache = None
|
|
log.warning("Unable to create a remote cache", exc_info=True)
|
|
|
|
compiled_graph = FxGraphCache._lookup_graph(
|
|
key, example_inputs, local, remote_cache
|
|
)
|
|
if compiled_graph is None:
|
|
log.debug("fx graph cache miss for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_miss"] += 1
|
|
start_time = time_ns()
|
|
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
|
time_taken_ns = time_ns() - start_time
|
|
FxGraphCache._save_graph(
|
|
key,
|
|
compiled_graph,
|
|
example_inputs,
|
|
time_taken_ns,
|
|
local,
|
|
remote_cache,
|
|
)
|
|
else:
|
|
log.debug("fx graph cache hit for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_hit"] += 1
|
|
except BypassFxGraphCache:
|
|
counters["inductor"]["fxgraph_cache_bypass"] += 1
|
|
if not compiled_graph:
|
|
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
|
|
|
return compiled_graph
|
|
|
|
@staticmethod
|
|
def clear():
|
|
"""
|
|
Clear out the on-disk cache.
|
|
"""
|
|
try:
|
|
shutil.rmtree(FxGraphCache._get_tmp_dir())
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CompiledFxGraph:
|
|
"""
|
|
Class holding a compiled FX graph. This is the object serialized on disk
|
|
to support FxGraph caching.
|
|
"""
|
|
|
|
current_callable: Optional[Callable[..., Any]]
|
|
cache_key: str
|
|
source_code: str = dataclasses.field(repr=False) # Do not display source_code
|
|
cache_linemap: Optional[List[Tuple[int, str]]]
|
|
device_types: Set[str]
|
|
device_idxs: Set[int]
|
|
mutated_inputs: Set[str]
|
|
mutated_input_idxs: Set[int]
|
|
constants: Dict[str, torch.Tensor]
|
|
output_strides: Optional[List[Optional[Tuple[int, ...]]]]
|
|
disabled_cudagraphs_reason: Optional[str]
|
|
metrics_deltas: metrics.CachedMetricsDeltas
|
|
# This is a string representation of an expression we serialize
|
|
# with the object so the guards can be evaluated in a different
|
|
# context in order to verify the validity of serving a cached
|
|
# fx graph. The expression must be generated by:
|
|
# ShapeEnv.produce_guards_expression()
|
|
guards_expr: Optional[str]
|
|
|
|
_boxed_call: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
current_callable: Optional[Callable[..., Any]],
|
|
graph: GraphLowering,
|
|
output_strides: List[Optional[Tuple[int, ...]]],
|
|
disabled_cudagraphs_reason: Optional[str],
|
|
metrics_deltas: metrics.CachedMetricsDeltas,
|
|
):
|
|
self.current_callable = current_callable
|
|
self.cache_key = graph.cache_key
|
|
if graph.cache_path:
|
|
with open(graph.cache_path) as f:
|
|
self.source_code = f.read()
|
|
self.cache_linemap = graph.cache_linemap
|
|
self.device_types = graph.device_types
|
|
self.device_idxs = graph.device_idxs
|
|
self.mutated_inputs = graph.mutated_inputs
|
|
self.mutated_input_idxs = set(graph.mutated_input_idxs)
|
|
self.constants = graph.constants
|
|
self.output_strides = output_strides
|
|
self.disabled_cudagraphs_reason = disabled_cudagraphs_reason
|
|
self.metrics_deltas = metrics_deltas
|
|
self.guards_expr = None
|
|
|
|
def __call__(self, inputs: List[Any]) -> Any:
|
|
assert self.current_callable is not None
|
|
return self.current_callable(inputs)
|
|
|
|
|
|
def cpp_compiler() -> str:
|
|
if config.is_fbcode():
|
|
return build_paths.cc() if torch.version.hip is None else build_paths.clang()
|
|
if isinstance(config.cpp.cxx, (list, tuple)):
|
|
search = tuple(config.cpp.cxx)
|
|
else:
|
|
search = (config.cpp.cxx,)
|
|
return cpp_compiler_search(search)
|
|
|
|
|
|
@functools.lru_cache(1)
|
|
def cpp_compiler_search(search: str) -> str:
|
|
for cxx in search:
|
|
try:
|
|
if cxx is None:
|
|
# gxx package is only available for Linux
|
|
# according to https://anaconda.org/conda-forge/gxx/
|
|
if sys.platform != "linux":
|
|
continue
|
|
# Do not install GXX by default
|
|
if not os.getenv("TORCH_INDUCTOR_INSTALL_GXX"):
|
|
continue
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(
|
|
os.path.join(lock_dir, "g++.lock"), timeout=LOCK_TIMEOUT
|
|
)
|
|
with lock:
|
|
cxx = install_gcc_via_conda()
|
|
subprocess.check_output([cxx, "--version"])
|
|
return cxx
|
|
except (subprocess.SubprocessError, FileNotFoundError, ImportError):
|
|
continue
|
|
raise exc.InvalidCxxCompiler
|
|
|
|
|
|
def install_gcc_via_conda() -> str:
|
|
"""On older systems, this is a quick way to get a modern compiler"""
|
|
prefix = os.path.join(cache_dir(), "gcc")
|
|
cxx_path = os.path.join(prefix, "bin", "g++")
|
|
if not os.path.exists(cxx_path):
|
|
log.info("Downloading GCC via conda")
|
|
conda = os.environ.get("CONDA_EXE", "conda")
|
|
if conda is None:
|
|
conda = shutil.which("conda")
|
|
if conda is not None:
|
|
subprocess.check_call(
|
|
[
|
|
conda,
|
|
"create",
|
|
f"--prefix={prefix}",
|
|
"--channel=conda-forge",
|
|
"--quiet",
|
|
"-y",
|
|
"python=3.8",
|
|
"gxx",
|
|
],
|
|
stdout=subprocess.PIPE,
|
|
)
|
|
return cxx_path
|
|
|
|
|
|
def is_gcc() -> bool:
|
|
if sys.platform == "darwin" and is_apple_clang():
|
|
return False
|
|
return bool(re.search(r"(gcc|g\+\+)", cpp_compiler()))
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def is_apple_clang() -> bool:
|
|
cxx = cpp_compiler()
|
|
version_string = subprocess.check_output([cxx, "--version"]).decode("utf8")
|
|
return "Apple" in version_string.splitlines()[0]
|
|
|
|
|
|
def is_clang() -> bool:
|
|
# Mac OS apple clang maybe named as gcc, need check compiler info.
|
|
if sys.platform == "darwin":
|
|
return is_apple_clang()
|
|
return bool(re.search(r"(clang|clang\+\+)", cpp_compiler()))
|
|
|
|
|
|
def get_compiler_version_info(compiler):
|
|
SUBPROCESS_DECODE_ARGS = ("oem",) if _IS_WINDOWS else ()
|
|
env = os.environ.copy()
|
|
env["LC_ALL"] = "C" # Don't localize output
|
|
try:
|
|
version_string = subprocess.check_output(
|
|
[compiler, "-v"], stderr=subprocess.STDOUT, env=env
|
|
).decode(*SUBPROCESS_DECODE_ARGS)
|
|
except Exception as e:
|
|
try:
|
|
version_string = subprocess.check_output(
|
|
[compiler, "--version"], stderr=subprocess.STDOUT, env=env
|
|
).decode(*SUBPROCESS_DECODE_ARGS)
|
|
except Exception as e:
|
|
return ""
|
|
# Mutiple lines to one line string.
|
|
version_string = version_string.replace("\r", "_")
|
|
version_string = version_string.replace("\n", "_")
|
|
return version_string
|
|
|
|
|
|
def _get_isa_dry_compile_fingerprint(isa_flags: str) -> str:
|
|
# ISA dry compile will cost about 1 sec time each startup time.
|
|
# Please check the issue: https://github.com/pytorch/pytorch/issues/100378
|
|
# Actually, dry compile is checking compile capability for ISA.
|
|
# We just record the compiler version, isa options and pytorch version info,
|
|
# and generated them to output binary hash path.
|
|
# It would optimize and skip compile existing binary.
|
|
compiler_info = get_compiler_version_info(cpp_compiler())
|
|
torch_version = torch.__version__
|
|
fingerprint = f"{compiler_info}={isa_flags}={torch_version}"
|
|
return fingerprint
|
|
|
|
|
|
class VecISA:
|
|
_bit_width: int
|
|
_macro: List[str]
|
|
_arch_flags: str
|
|
_dtype_nelements: Dict[torch.dtype, int]
|
|
|
|
# Note [Checking for Vectorized Support in Inductor]
|
|
# TorchInductor CPU vectorization reuses PyTorch vectorization utility functions
|
|
# Hence, TorchInductor would depend on Sleef* to accelerate mathematical functions
|
|
# like exp, pow, sin, cos and etc.
|
|
# But PyTorch and TorchInductor might use different compilers to build code. If
|
|
# PyTorch uses gcc-7/g++-7 to build the release package, the libtorch_cpu.so
|
|
# will not expose the Sleef* AVX512 symbols since gcc-7/g++-7 cannot pass
|
|
# avx512 check in CMake - FindAVX.cmake. But TorchInductor install the latest
|
|
# gcc/g++ compiler by default while it could support the AVX512 compilation.
|
|
# Therefore, there would be a conflict sleef version between PyTorch and
|
|
# TorchInductor. Hence, we dry-compile the following code to check whether current
|
|
# HW platform and PyTorch both could support AVX512 or AVX2. And suppose ARM
|
|
# also needs the logic
|
|
# In fbcode however, we are using the same compiler for pytorch and for inductor codegen,
|
|
# making the runtime check unnecessary.
|
|
_avx_code = """
|
|
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR) || defined(CPU_CAPABILITY_NEON)
|
|
#include <ATen/cpu/vec/functional.h>
|
|
#include <ATen/cpu/vec/vec.h>
|
|
#endif
|
|
|
|
__attribute__((aligned(64))) float in_out_ptr0[16] = {0.0};
|
|
|
|
extern "C" void __avx_chk_kernel() {
|
|
auto tmp0 = at::vec::Vectorized<float>(1);
|
|
auto tmp1 = tmp0.exp();
|
|
tmp1.store(in_out_ptr0);
|
|
}
|
|
""" # noqa: B950
|
|
|
|
_avx_py_load = """
|
|
import torch
|
|
from ctypes import cdll
|
|
cdll.LoadLibrary("__lib_path__")
|
|
"""
|
|
|
|
def bit_width(self) -> int:
|
|
return self._bit_width
|
|
|
|
def nelements(self, dtype: torch.dtype = torch.float) -> int:
|
|
return self._dtype_nelements[dtype]
|
|
|
|
def build_macro(self) -> List[str]:
|
|
return self._macro
|
|
|
|
def build_arch_flags(self) -> str:
|
|
return self._arch_flags
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(str(self))
|
|
|
|
@functools.lru_cache(None)
|
|
def __bool__(self) -> bool:
|
|
from torch._inductor.cpp_builder import CppBuilder, CppTorchOptions
|
|
|
|
if config.cpp.vec_isa_ok is not None:
|
|
return config.cpp.vec_isa_ok
|
|
|
|
if config.is_fbcode():
|
|
return True
|
|
|
|
key, input_path = write(
|
|
VecISA._avx_code,
|
|
"cpp",
|
|
extra=_get_isa_dry_compile_fingerprint(self._arch_flags),
|
|
)
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_dir = os.path.dirname(input_path)
|
|
buid_options = CppTorchOptions(chosen_isa=self, warning_all=False)
|
|
x86_isa_help_builder = CppBuilder(
|
|
key,
|
|
[input_path],
|
|
buid_options,
|
|
output_dir,
|
|
)
|
|
try:
|
|
# Check if the output file exist, and compile when not.
|
|
output_path = x86_isa_help_builder.get_target_file_path()
|
|
if not os.path.isfile(output_path):
|
|
status, target_file = x86_isa_help_builder.build()
|
|
if status:
|
|
return False
|
|
|
|
# Check build result
|
|
subprocess.check_call(
|
|
[
|
|
sys.executable,
|
|
"-c",
|
|
VecISA._avx_py_load.replace("__lib_path__", output_path),
|
|
],
|
|
stderr=subprocess.DEVNULL,
|
|
env={**os.environ, "PYTHONPATH": ":".join(sys.path)},
|
|
)
|
|
except Exception as e:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class VecNEON(VecISA):
|
|
_bit_width = 256 # This is required to leverage the compute implemented in aten/src/ATen/cpu/vec/vec256/vec256_float_neon.h
|
|
_macro = ["CPU_CAPABILITY_NEON"]
|
|
_arch_flags = "" # Unused
|
|
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
|
|
|
def __str__(self) -> str:
|
|
return "asimd" # detects the presence of advanced SIMD on armv8-a kernels
|
|
|
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class VecAVX512(VecISA):
|
|
_bit_width = 512
|
|
_macro = ["CPU_CAPABILITY_AVX512"]
|
|
_arch_flags = (
|
|
"-mavx512f -mavx512dq -mavx512vl -mavx512bw -mfma"
|
|
if not _IS_WINDOWS
|
|
else "/arch:AVX512"
|
|
) # TODO: use cflags
|
|
_dtype_nelements = {torch.float: 16, torch.bfloat16: 32, torch.float16: 32}
|
|
|
|
def __str__(self) -> str:
|
|
return "avx512"
|
|
|
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class VecAVX2(VecISA):
|
|
_bit_width = 256
|
|
_macro = ["CPU_CAPABILITY_AVX2"]
|
|
_arch_flags = (
|
|
"-mavx2 -mfma" if not _IS_WINDOWS else "/arch:AVX2"
|
|
) # TODO: use cflags
|
|
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
|
|
|
def __str__(self) -> str:
|
|
return "avx2"
|
|
|
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class VecZVECTOR(VecISA):
|
|
_bit_width = 256
|
|
_macro = [
|
|
"CPU_CAPABILITY_ZVECTOR",
|
|
"CPU_CAPABILITY=ZVECTOR",
|
|
"HAVE_ZVECTOR_CPU_DEFINITION",
|
|
]
|
|
_arch_flags = "-mvx -mzvector"
|
|
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
|
|
|
def __str__(self) -> str:
|
|
return "zvector"
|
|
|
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
|
|
|
|
|
class InvalidVecISA(VecISA):
|
|
_bit_width = 0
|
|
_macro = [""]
|
|
_arch_flags = ""
|
|
_dtype_nelements = {}
|
|
|
|
def __str__(self) -> str:
|
|
return "INVALID_VEC_ISA"
|
|
|
|
def __bool__(self) -> bool: # type: ignore[override]
|
|
return False
|
|
|
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
|
|
|
|
|
def x86_isa_checker() -> List[str]:
|
|
supported_isa: List[str] = []
|
|
|
|
def _check_and_append_supported_isa(
|
|
dest: List[str], isa_supported: bool, isa_name: str
|
|
):
|
|
if isa_supported is True:
|
|
dest.append(isa_name)
|
|
|
|
Arch = platform.machine()
|
|
"""
|
|
Arch value is x86_64 on Linux, and the value is AMD64 on Windows.
|
|
"""
|
|
if Arch != "x86_64" and Arch != "AMD64":
|
|
return supported_isa
|
|
|
|
avx2 = torch.cpu._is_cpu_support_avx2()
|
|
avx512 = torch.cpu._is_cpu_support_avx512()
|
|
|
|
_check_and_append_supported_isa(supported_isa, avx2, "avx2")
|
|
_check_and_append_supported_isa(supported_isa, avx512, "avx512")
|
|
|
|
return supported_isa
|
|
|
|
|
|
invalid_vec_isa = InvalidVecISA()
|
|
supported_vec_isa_list = [VecAVX512(), VecAVX2(), VecNEON()]
|
|
|
|
|
|
# Cache the cpuinfo to avoid I/O overhead. Meanwhile, the cpuinfo content
|
|
# might have too much redundant content that is useless for ISA check. Hence,
|
|
# we only cache some key isa information.
|
|
@functools.lru_cache(None)
|
|
def valid_vec_isa_list() -> List[VecISA]:
|
|
if sys.platform == "darwin" and platform.processor() == "arm":
|
|
return [VecNEON()]
|
|
|
|
cur_os = sys.platform
|
|
if cur_os != "linux" and cur_os != "win32":
|
|
return []
|
|
|
|
if platform.machine() == "s390x":
|
|
with open("/proc/cpuinfo") as _cpu_info:
|
|
while True:
|
|
line = _cpu_info.readline()
|
|
if not line:
|
|
break
|
|
# process line
|
|
featuresmatch = re.match(r"^features\s*:\s*(.*)$", line)
|
|
if featuresmatch:
|
|
for group in featuresmatch.groups():
|
|
if re.search(r"[\^ ]+vxe[\$ ]+", group):
|
|
return [VecZVECTOR()]
|
|
return []
|
|
|
|
isa_list = []
|
|
_cpu_supported_isa = x86_isa_checker()
|
|
for isa in supported_vec_isa_list:
|
|
if str(isa) in _cpu_supported_isa:
|
|
isa_list.append(isa)
|
|
return isa_list
|
|
|
|
|
|
def pick_vec_isa() -> VecISA:
|
|
if config.is_fbcode():
|
|
return VecAVX2()
|
|
|
|
_valid_vec_isa_list: List[VecISA] = valid_vec_isa_list()
|
|
|
|
if not _valid_vec_isa_list:
|
|
return invalid_vec_isa
|
|
|
|
# If the simdlen is None, it indicates determine the vectorization length automatically
|
|
if config.cpp.simdlen is None:
|
|
assert _valid_vec_isa_list
|
|
return _valid_vec_isa_list[0]
|
|
|
|
for isa in _valid_vec_isa_list:
|
|
if config.cpp.simdlen == isa.bit_width():
|
|
return isa
|
|
|
|
return invalid_vec_isa
|
|
|
|
|
|
def get_compile_only(compile_only: bool = True) -> str:
|
|
return "-c" if compile_only else ""
|
|
|
|
|
|
def get_shared(shared: bool = True, compile_only: bool = False) -> str:
|
|
if not shared:
|
|
return ""
|
|
if compile_only:
|
|
return "-fPIC"
|
|
if platform.system() == "Darwin" and "clang" in cpp_compiler():
|
|
# This causes undefined symbols to behave the same as linux
|
|
return "-shared -fPIC -undefined dynamic_lookup"
|
|
else:
|
|
return "-shared -fPIC"
|
|
|
|
|
|
def get_warning_all_flag(warning_all: bool = True) -> str:
|
|
return "-Wall" if warning_all else ""
|
|
|
|
|
|
def get_glibcxx_abi_build_flags() -> str:
|
|
return "-D_GLIBCXX_USE_CXX11_ABI=" + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))
|
|
|
|
|
|
def cpp_flags() -> str:
|
|
flags = ["-std=c++17", "-Wno-unused-variable", "-Wno-unknown-pragmas"]
|
|
if is_clang():
|
|
flags.append("-Werror=ignored-optimization-argument")
|
|
return " ".join(flags)
|
|
|
|
|
|
def cpp_wrapper_flags() -> str:
|
|
return "-DTORCH_INDUCTOR_CPP_WRAPPER"
|
|
|
|
|
|
def optimization_flags() -> str:
|
|
base_flags = "-O0 -g" if config.aot_inductor.debug_compile else "-O3 -DNDEBUG"
|
|
base_flags += " -ffast-math -fno-finite-math-only"
|
|
if not config.cpp.enable_unsafe_math_opt_flag:
|
|
base_flags += " -fno-unsafe-math-optimizations"
|
|
if not config.cpp.enable_floating_point_contract_flag:
|
|
base_flags += " -ffp-contract=off"
|
|
|
|
if config.is_fbcode():
|
|
# FIXME: passing `-fopenmp` adds libgomp.so to the generated shared library's dependencies.
|
|
# This causes `ldopen` to fail in fbcode, because libgomp does not exist in the default paths.
|
|
# We will fix it later by exposing the lib path.
|
|
return base_flags
|
|
|
|
if sys.platform == "darwin":
|
|
# Per https://mac.r-project.org/openmp/ right way to pass `openmp` flags to MacOS is via `-Xclang`
|
|
# Also, `-march=native` is unrecognized option on M1
|
|
base_flags += " -Xclang"
|
|
else:
|
|
if platform.machine() == "ppc64le":
|
|
base_flags += " -mcpu=native"
|
|
else:
|
|
base_flags += " -march=native"
|
|
|
|
# Internal cannot find libgomp.so
|
|
if not config.is_fbcode():
|
|
base_flags += " -fopenmp"
|
|
return base_flags
|
|
|
|
|
|
def use_custom_generated_macros() -> str:
|
|
return "-D C10_USING_CUSTOM_GENERATED_MACROS"
|
|
|
|
|
|
def use_fb_internal_macros() -> str:
|
|
if config.is_fbcode():
|
|
openmp_lib = build_paths.openmp_lib()
|
|
preprocessor_flags = " ".join(
|
|
(
|
|
"-D C10_USE_GLOG",
|
|
"-D C10_USE_MINIMAL_GLOG",
|
|
"-D C10_DISABLE_TENSORIMPL_EXTENSIBILITY",
|
|
)
|
|
)
|
|
return f"-Wp,-fopenmp {openmp_lib} {preprocessor_flags}"
|
|
else:
|
|
return ""
|
|
|
|
|
|
def use_standard_sys_dir_headers() -> str:
|
|
if config.is_fbcode():
|
|
return "-nostdinc"
|
|
else:
|
|
return ""
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def is_conda_llvm_openmp_installed() -> bool:
|
|
try:
|
|
command = "conda list llvm-openmp --json"
|
|
output = subprocess.check_output(command.split()).decode("utf8")
|
|
return len(json.loads(output)) > 0
|
|
except subprocess.SubprocessError:
|
|
return False
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def homebrew_libomp() -> Tuple[bool, str]:
|
|
try:
|
|
# check if `brew` is installed
|
|
subprocess.check_output(["which", "brew"])
|
|
# get the location of `libomp` if it is installed
|
|
# this is the location that `libomp` **would** be installed
|
|
# see https://github.com/Homebrew/brew/issues/10261#issuecomment-756563567 for details
|
|
libomp_path = (
|
|
subprocess.check_output(["brew", "--prefix", "libomp"])
|
|
.decode("utf8")
|
|
.strip()
|
|
)
|
|
# check if `libomp` is installed
|
|
omp_available = os.path.exists(libomp_path)
|
|
return omp_available, libomp_path
|
|
except subprocess.SubprocessError:
|
|
return False, ""
|
|
|
|
|
|
def _set_gpu_runtime_env() -> None:
|
|
if (
|
|
config.is_fbcode()
|
|
and torch.version.hip is None
|
|
and "CUDA_HOME" not in os.environ
|
|
and "CUDA_PATH" not in os.environ
|
|
):
|
|
os.environ["CUDA_HOME"] = os.path.dirname(build_paths.cuda())
|
|
|
|
|
|
def _get_python_include_dirs():
|
|
include_dir = Path(sysconfig.get_path("include"))
|
|
# On Darwin Python executable from a framework can return
|
|
# non-existing /Library/Python/... include path, in which case
|
|
# one should use Headers folder from the framework
|
|
if not include_dir.exists() and platform.system() == "Darwin":
|
|
std_lib = Path(sysconfig.get_path("stdlib"))
|
|
include_dir = (std_lib.parent.parent / "Headers").absolute()
|
|
if not (include_dir / "Python.h").exists():
|
|
warnings.warn(f"Can't find Python.h in {str(include_dir)}")
|
|
return [str(include_dir)]
|
|
|
|
|
|
def get_include_and_linking_paths(
|
|
include_pytorch: bool = False,
|
|
vec_isa: VecISA = invalid_vec_isa,
|
|
cuda: bool = False,
|
|
aot_mode: bool = False,
|
|
) -> Tuple[List[str], str, str, str, str]:
|
|
_set_gpu_runtime_env()
|
|
from torch.utils import cpp_extension
|
|
|
|
# Remove below in the further
|
|
# macros = "-D {}".format(vec_isa.build_macro()) if vec_isa != invalid_vec_isa else ""
|
|
macros = ""
|
|
if vec_isa != invalid_vec_isa:
|
|
for x in vec_isa.build_macro():
|
|
macros_def = f"-D{x} "
|
|
macros += macros_def
|
|
|
|
build_arch_flags = ""
|
|
if sys.platform == "linux" and (
|
|
include_pytorch
|
|
or vec_isa != invalid_vec_isa
|
|
or cuda
|
|
or config.cpp.enable_kernel_profile
|
|
):
|
|
# Note - We include pytorch only on linux right now. There is more work
|
|
# to do to enable OMP build on darwin where PyTorch is built with IOMP
|
|
# and we need a way to link to what PyTorch links.
|
|
ipaths = cpp_extension.include_paths(cuda) + _get_python_include_dirs()
|
|
lpaths = cpp_extension.library_paths(cuda) + [
|
|
sysconfig.get_config_var("LIBDIR")
|
|
]
|
|
|
|
libs = []
|
|
|
|
# No need to manually specify libraries in fbcode.
|
|
if not config.is_fbcode():
|
|
libs += ["torch", "torch_cpu"]
|
|
libs += ["gomp"]
|
|
if not aot_mode:
|
|
libs += ["torch_python"]
|
|
else:
|
|
# internal remote execution is able to find omp, but not gomp
|
|
libs += ["omp"]
|
|
if aot_mode:
|
|
ipaths += [os.path.dirname(cpp_prefix_path())]
|
|
if cuda and torch.version.hip is None:
|
|
# This is a special treatment for Meta internal cuda-12 where all libs
|
|
# are in lib/cuda-12 and lib/cuda-12/stubs
|
|
for i, path in enumerate(lpaths):
|
|
if path.startswith(
|
|
os.environ["CUDA_HOME"]
|
|
) and not os.path.exists(f"{path}/libcudart_static.a"):
|
|
for root, dirs, files in os.walk(path):
|
|
if "libcudart_static.a" in files:
|
|
lpaths[i] = os.path.join(path, root)
|
|
lpaths.append(os.path.join(lpaths[i], "stubs"))
|
|
break
|
|
if macros:
|
|
if config.is_fbcode() and vec_isa != invalid_vec_isa:
|
|
cap = str(vec_isa).upper()
|
|
macros = " ".join(
|
|
[
|
|
vec_isa.build_arch_flags(),
|
|
f"-D CPU_CAPABILITY={cap}",
|
|
f"-D CPU_CAPABILITY_{cap}",
|
|
f"-D HAVE_{cap}_CPU_DEFINITION",
|
|
]
|
|
)
|
|
|
|
if cuda:
|
|
if macros is None:
|
|
macros = ""
|
|
macros += " -D USE_ROCM" if torch.version.hip else " -D USE_CUDA"
|
|
|
|
if cuda:
|
|
if torch.version.hip is not None:
|
|
if config.is_fbcode():
|
|
libs += ["amdhip64"]
|
|
else:
|
|
libs += ["c10_hip", "torch_hip"]
|
|
macros += " -D __HIP_PLATFORM_AMD__"
|
|
else:
|
|
if config.is_fbcode():
|
|
libs += ["cuda"]
|
|
else:
|
|
libs += ["c10_cuda", "cuda", "torch_cuda"]
|
|
build_arch_flags = vec_isa.build_arch_flags()
|
|
else:
|
|
# Note - this is effectively a header only inclusion. Usage of some header files may result in
|
|
# symbol not found, if those header files require a library.
|
|
# For those cases, include the lpath and libs command as we do for pytorch above.
|
|
# This approach allows us to only pay for what we use.
|
|
ipaths = cpp_extension.include_paths(cuda) + _get_python_include_dirs()
|
|
if aot_mode:
|
|
ipaths += [os.path.dirname(cpp_prefix_path())]
|
|
lpaths = []
|
|
if sys.platform == "darwin":
|
|
# only Apple builtin compilers (Apple Clang++) require openmp
|
|
omp_available = not is_apple_clang()
|
|
|
|
# check the `OMP_PREFIX` environment first
|
|
if os.getenv("OMP_PREFIX") is not None:
|
|
header_path = os.path.join(os.getenv("OMP_PREFIX"), "include", "omp.h") # type: ignore[arg-type]
|
|
valid_env = os.path.exists(header_path)
|
|
if valid_env:
|
|
ipaths.append(os.path.join(os.getenv("OMP_PREFIX"), "include")) # type: ignore[arg-type]
|
|
lpaths.append(os.path.join(os.getenv("OMP_PREFIX"), "lib")) # type: ignore[arg-type]
|
|
else:
|
|
warnings.warn("environment variable `OMP_PREFIX` is invalid.")
|
|
omp_available = omp_available or valid_env
|
|
|
|
libs = [] if omp_available else ["omp"]
|
|
|
|
# prefer to use openmp from `conda install llvm-openmp`
|
|
if not omp_available and os.getenv("CONDA_PREFIX") is not None:
|
|
omp_available = is_conda_llvm_openmp_installed()
|
|
if omp_available:
|
|
conda_lib_path = os.path.join(os.getenv("CONDA_PREFIX"), "lib") # type: ignore[arg-type]
|
|
ipaths.append(os.path.join(os.getenv("CONDA_PREFIX"), "include")) # type: ignore[arg-type]
|
|
lpaths.append(conda_lib_path)
|
|
# Prefer Intel OpenMP on x86 machine
|
|
if os.uname().machine == "x86_64" and os.path.exists(
|
|
os.path.join(conda_lib_path, "libiomp5.dylib")
|
|
):
|
|
libs = ["iomp5"]
|
|
|
|
# next, try to use openmp from `brew install libomp`
|
|
if not omp_available:
|
|
omp_available, libomp_path = homebrew_libomp()
|
|
if omp_available:
|
|
ipaths.append(os.path.join(libomp_path, "include"))
|
|
lpaths.append(os.path.join(libomp_path, "lib"))
|
|
|
|
# if openmp is still not available, we let the compiler to have a try,
|
|
# and raise error together with instructions at compilation error later
|
|
else:
|
|
libs = ["omp"] if config.is_fbcode() else ["gomp"]
|
|
|
|
# Unconditionally import c10 for non-abi-compatible mode to use TORCH_CHECK - See PyTorch #108690
|
|
if not config.abi_compatible:
|
|
libs += ["c10"]
|
|
lpaths += [cpp_extension.TORCH_LIB_PATH]
|
|
|
|
# third party libs
|
|
if config.is_fbcode():
|
|
# Note that the order of include paths do matter, as a result
|
|
# we need to have several branches interleaved here
|
|
if torch.version.hip is None:
|
|
ipaths.append(build_paths.sleef())
|
|
ipaths.append(build_paths.openmp())
|
|
ipaths.append(build_paths.python())
|
|
if torch.version.hip is not None:
|
|
ipaths.append(build_paths.clang_include())
|
|
ipaths.append(build_paths.gcc_include())
|
|
ipaths.append(build_paths.gcc_install_tools_include())
|
|
else:
|
|
ipaths.append(build_paths.cc_include())
|
|
ipaths.append(build_paths.libgcc())
|
|
ipaths.append(build_paths.libgcc_arch())
|
|
ipaths.append(build_paths.libgcc_backward())
|
|
ipaths.append(build_paths.glibc())
|
|
ipaths.append(build_paths.linux_kernel())
|
|
if torch.version.hip is not None:
|
|
ipaths.append(build_paths.rocm())
|
|
else:
|
|
ipaths.append(build_paths.cuda())
|
|
# We also need to bundle includes with absolute paths into a remote directory
|
|
# (later on, we copy the include paths from cpp_extensions into our remote dir)
|
|
ipaths.append("include")
|
|
|
|
static_link_libs = []
|
|
if aot_mode and cuda and config.is_fbcode():
|
|
# For Meta internal cuda-12, it is recommended to static link cudart
|
|
if torch.version.hip is None:
|
|
static_link_libs = ["-Wl,-Bstatic", "-lcudart_static", "-Wl,-Bdynamic"]
|
|
|
|
lpaths_str = " ".join(["-L" + p for p in lpaths])
|
|
libs_str = " ".join(static_link_libs + ["-l" + p for p in libs])
|
|
return ipaths, lpaths_str, libs_str, macros, build_arch_flags
|
|
|
|
|
|
def cpp_compile_command(
|
|
input: Union[str, List[str]],
|
|
output: str,
|
|
warning_all: bool = True,
|
|
shared: bool = True,
|
|
include_pytorch: bool = False,
|
|
vec_isa: VecISA = invalid_vec_isa,
|
|
cuda: bool = False,
|
|
aot_mode: bool = False,
|
|
compile_only: bool = False,
|
|
use_absolute_path: bool = False,
|
|
use_mmap_weights: bool = False,
|
|
) -> str:
|
|
ipaths, lpaths, libs, macros, build_arch_flags = get_include_and_linking_paths(
|
|
include_pytorch, vec_isa, cuda, aot_mode
|
|
)
|
|
if isinstance(input, str):
|
|
input = [input]
|
|
ipaths_str = " ".join(["-I" + p for p in ipaths])
|
|
clang_flags = ""
|
|
if config.is_fbcode():
|
|
if aot_mode and not use_absolute_path:
|
|
inp_name = input
|
|
out_name = output
|
|
linker_script = _LINKER_SCRIPT
|
|
else:
|
|
# We need to copy any absolute-path torch includes
|
|
inp_name = [os.path.basename(i) for i in input]
|
|
out_name = os.path.basename(output)
|
|
linker_script = os.path.basename(_LINKER_SCRIPT)
|
|
assert is_clang()
|
|
# Use clang runtime instead of libgcc
|
|
clang_flags += " --rtlib=compiler-rt"
|
|
clang_flags += " -fuse-ld=lld"
|
|
clang_flags += f" -Wl,--script={linker_script}"
|
|
linker_paths = "-B" + build_paths.glibc_lib()
|
|
linker_paths += " -L" + build_paths.glibc_lib()
|
|
else:
|
|
inp_name = input
|
|
out_name = output
|
|
linker_paths = "" # let the compiler pick
|
|
if compile_only:
|
|
libs, lpaths = "", ""
|
|
inp_name_str = " ".join(inp_name)
|
|
if use_mmap_weights:
|
|
macros += " -D USE_MMAP_SELF"
|
|
|
|
return re.sub(
|
|
r"[ \n]+",
|
|
" ",
|
|
f"""
|
|
{cpp_compiler()} {inp_name_str} {get_shared(shared, compile_only)}
|
|
{get_warning_all_flag(warning_all)} {cpp_flags()}
|
|
{get_glibcxx_abi_build_flags()}
|
|
{ipaths_str} {lpaths} {libs} {build_arch_flags}
|
|
{macros} {linker_paths} {clang_flags} {cpp_wrapper_flags()}
|
|
{optimization_flags()}
|
|
{use_custom_generated_macros()}
|
|
{use_fb_internal_macros()}
|
|
{use_standard_sys_dir_headers()}
|
|
{get_compile_only(compile_only)}
|
|
-o {out_name}
|
|
""",
|
|
).strip()
|
|
|
|
|
|
def run_command_and_check(cmd: str):
|
|
cmd = shlex.split(cmd)
|
|
try:
|
|
subprocess.check_call(cmd)
|
|
except subprocess.CalledProcessError as e:
|
|
raise exc.CppCompileError(cmd, e.output) from e
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def split_aot_inductor_output_path(path: str) -> Tuple[str, str]:
|
|
"""Returns the path where the AOT Inductor compiled kernels are stored."""
|
|
if path.endswith(".so"):
|
|
return os.path.split(path)
|
|
else:
|
|
return path, ""
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CudaKernelParamCache:
|
|
cache: Dict[str, Dict[str, str]] = dict()
|
|
cache_clear = staticmethod(cache.clear)
|
|
|
|
@classmethod
|
|
def set(cls, key: str, params: Dict[str, str], cubin: str) -> None:
|
|
bin_type = "cubin" if torch.version.hip is None else "hsaco"
|
|
_, path = write(
|
|
cubin,
|
|
bin_type,
|
|
hash_type=bin_type,
|
|
specified_dir=split_aot_inductor_output_path(
|
|
config.aot_inductor.output_path
|
|
)[0],
|
|
)
|
|
|
|
params[get_cpp_wrapper_cubin_path_name()] = path
|
|
|
|
cls.cache[key] = params
|
|
|
|
@classmethod
|
|
def get(cls, key: str) -> Optional[Dict[str, str]]:
|
|
return cls.cache.get(key, None)
|
|
|
|
@classmethod
|
|
def get_keys(cls):
|
|
return cls.cache.keys()
|
|
|
|
|
|
class AotCodeCompiler:
|
|
@classmethod
|
|
def compile(
|
|
cls,
|
|
graph: GraphLowering,
|
|
source_code: str,
|
|
serialized_extern_kernel_nodes: Optional[str],
|
|
cuda: bool,
|
|
) -> str:
|
|
picked_vec_isa = pick_vec_isa()
|
|
cpp_command = repr(
|
|
cpp_compile_command(
|
|
"i",
|
|
"o",
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
)
|
|
)
|
|
fbcode_aot_cpu_re = False
|
|
use_absolute_path = False
|
|
if config.is_fbcode():
|
|
ld_command = build_paths.ld()
|
|
if not cuda and graph.aot_mode: # Meta internal AOTInductor CPU
|
|
objcopy_command = build_paths.objcopy_fallback()
|
|
fbcode_aot_cpu_re = True
|
|
use_absolute_path = True
|
|
else:
|
|
objcopy_command = build_paths.objcopy()
|
|
else:
|
|
ld_command = "ld"
|
|
objcopy_command = "objcopy"
|
|
|
|
(
|
|
specified_output_path,
|
|
specified_so_name,
|
|
) = split_aot_inductor_output_path(config.aot_inductor.output_path)
|
|
key, input_path = write(
|
|
source_code,
|
|
"cpp",
|
|
extra=cpp_command,
|
|
specified_dir=specified_output_path,
|
|
)
|
|
output_code_log.info("Output code written to: %s", input_path)
|
|
trace_structured(
|
|
"graph_dump",
|
|
lambda: {
|
|
"name": "inductor_aot_code",
|
|
"type": "cpp",
|
|
"filename": input_path,
|
|
},
|
|
payload_fn=lambda: source_code,
|
|
)
|
|
|
|
def _compile_consts_linux(consts: bytes) -> str:
|
|
_, consts_path = write(
|
|
consts,
|
|
"bin",
|
|
specified_dir=specified_output_path,
|
|
)
|
|
|
|
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
|
if fbcode_aot_cpu_re:
|
|
cmd = f"{ld_command} -r -b binary -o {os.path.basename(consts_o)} {os.path.basename(consts_path)}"
|
|
compile_file(consts_path, consts_o, cmd.split())
|
|
os.chmod(consts_o, 0o644)
|
|
else:
|
|
cmd = f"{ld_command} -r -b binary -o {consts_o} {consts_path}"
|
|
run_command_and_check(cmd)
|
|
log.debug("aot constant binary command: %s", cmd)
|
|
|
|
# .data section is between .text and .bss. When the size of .data is large,
|
|
# during the linking, the relocation of .text against .bss may overflow.
|
|
# Rename it to .ldata so that it won't be in between the .text and .bss section
|
|
cmd = (
|
|
f"{objcopy_command} --rename-section"
|
|
" .data=.ldata"
|
|
" --set-section-alignment .data=64" # following the gAlignment of CPU in c10/core/alignment.h
|
|
f" {consts_o} {consts_o}"
|
|
)
|
|
log.debug("aot constant rename section command: %s", cmd)
|
|
run_command_and_check(cmd)
|
|
|
|
cmd = f"rm {consts_path}"
|
|
log.debug("aot constant bin removal command: %s", cmd)
|
|
run_command_and_check(cmd)
|
|
|
|
if fbcode_aot_cpu_re:
|
|
body = re.sub(r"[\W]", "_", os.path.basename(consts_path))
|
|
else:
|
|
body = re.sub(r"[\W]", "_", consts_path)
|
|
|
|
symbol_list = []
|
|
symbol_list.append(
|
|
f"{objcopy_command} --redefine-sym _binary_{body}_start=_binary_constants_bin_start {consts_o}"
|
|
)
|
|
symbol_list.append(
|
|
f"{objcopy_command} --redefine-sym _binary_{body}_size=_binary_constants_bin_size {consts_o}"
|
|
)
|
|
symbol_list.append(
|
|
f"{objcopy_command} --redefine-sym _binary_{body}_end=_binary_constants_bin_end {consts_o}"
|
|
)
|
|
log.debug("aot constant binary redefine symbol: %s", " ".join(symbol_list))
|
|
for cmd in symbol_list:
|
|
run_command_and_check(cmd)
|
|
return consts_o
|
|
|
|
def _compile_consts_darwin(consts: bytes) -> str:
|
|
is_large_consts = len(consts) > 1024
|
|
consts_asm = "\t.section\t__DATA,__data\n"
|
|
consts_asm += "\t.globl\t__binary_constants_bin_start\n"
|
|
consts_asm += "__binary_constants_bin_start:\n"
|
|
if not is_large_consts:
|
|
for c in consts:
|
|
consts_asm += f"\t.byte {c}\n"
|
|
# Add one element even if constants are empty
|
|
# Otherwise assembler will not put them in data section
|
|
if not consts:
|
|
consts_asm += "\t.space 1\n"
|
|
else:
|
|
consts_asm += "\t.quad 0x1234567899abcdef\n"
|
|
consts_asm += f"\t.space {len(consts) - 8}\n"
|
|
consts_asm += ".globl\t__binary_constants_bin_end\n"
|
|
consts_asm += "__binary_constants_bin_end:\n"
|
|
_, consts_path = write(
|
|
consts_asm,
|
|
"S",
|
|
specified_dir=specified_output_path,
|
|
)
|
|
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
|
cmd = f"{cpp_compiler()} -c -o {consts_o} {consts_path}"
|
|
run_command_and_check(cmd)
|
|
if is_large_consts:
|
|
with open(consts_o, "r+b") as f:
|
|
f.seek(0)
|
|
hdr = f.read(1024)
|
|
# Search for magic number and write the actual data over it
|
|
start_idx = hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12")
|
|
assert start_idx != -1
|
|
f.seek(start_idx)
|
|
pos = 0
|
|
while pos < len(consts):
|
|
rc = f.write(consts[pos:])
|
|
pos += rc
|
|
return consts_o
|
|
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
# Currently, this only support serializing extern nodes in fbcode
|
|
# Eventually, we should also have a serializer for OSS.
|
|
if config.is_fbcode() and serialized_extern_kernel_nodes:
|
|
output_json = os.path.splitext(input_path)[0] + ".json"
|
|
with open(output_json, "w") as f:
|
|
f.write(serialized_extern_kernel_nodes)
|
|
|
|
output_so = (
|
|
config.aot_inductor.output_path
|
|
if specified_so_name
|
|
else os.path.splitext(input_path)[0] + ".so"
|
|
)
|
|
|
|
output_o = os.path.splitext(input_path)[0] + ".o"
|
|
consts_size = sum(
|
|
tensor.untyped_storage().nbytes()
|
|
for (name, tensor) in graph.constants.items()
|
|
if name not in graph.folded_constants
|
|
)
|
|
# TODO: Fix mmap weights with cuda
|
|
use_mmap_weights = not config.is_fbcode() and consts_size > 2_000_000_000
|
|
if config.aot_inductor.force_mmap_weights:
|
|
use_mmap_weights = True
|
|
compile_cmd = cpp_compile_command(
|
|
input=input_path,
|
|
output=output_o,
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
compile_only=True,
|
|
use_absolute_path=use_absolute_path,
|
|
use_mmap_weights=use_mmap_weights,
|
|
)
|
|
log.debug("aot compilation command: %s", compile_cmd)
|
|
if fbcode_aot_cpu_re:
|
|
compile_file(input_path, output_o, compile_cmd.split())
|
|
os.chmod(output_o, 0o644)
|
|
else:
|
|
run_command_and_check(compile_cmd)
|
|
|
|
def _to_bytes(t: torch.Tensor) -> bytes:
|
|
# This serializes the tensor's untyped_storage to bytes by accessing
|
|
# the raw data of the underlying structure.
|
|
|
|
if t.numel() == 0:
|
|
return b""
|
|
|
|
t_cpu = t.untyped_storage().cpu()
|
|
raw_array = ctypes.cast(
|
|
t_cpu.data_ptr(),
|
|
ctypes.POINTER(ctypes.c_ubyte * t_cpu.nbytes()),
|
|
)
|
|
|
|
return bytes(raw_array.contents)
|
|
|
|
serialized_weights = b"".join(
|
|
_to_bytes(graph.get_original_value_of_constant(name))
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
if not use_mmap_weights:
|
|
aot_constants = serialized_weights
|
|
magic_number = 0
|
|
else:
|
|
magic_number = cast(
|
|
int, torch.randint(0, torch.iinfo(torch.int64).max, (1,)).item()
|
|
)
|
|
aot_constants = struct.pack("qq", consts_size + 8, magic_number)
|
|
consts_o = {
|
|
"linux": _compile_consts_linux,
|
|
"darwin": _compile_consts_darwin,
|
|
}[sys.platform](aot_constants)
|
|
|
|
link_cmd = cpp_compile_command(
|
|
input=[output_o, consts_o],
|
|
output=output_so,
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
use_absolute_path=use_absolute_path,
|
|
)
|
|
log.debug("aot linkage command: %s", link_cmd)
|
|
if fbcode_aot_cpu_re:
|
|
compile_file([output_o, consts_o], output_so, link_cmd.split())
|
|
os.chmod(output_so, 0o755)
|
|
else:
|
|
run_command_and_check(link_cmd)
|
|
|
|
if use_mmap_weights:
|
|
with open(output_so, "a+b") as f_so:
|
|
so_size = f_so.tell()
|
|
# Page align the weights
|
|
f_so.write(b" " * (16384 - so_size % 16384))
|
|
f_so.write(serialized_weights)
|
|
f_so.write(struct.pack("q", magic_number))
|
|
|
|
# Append cmds to the end of codegen-ed wrapper file
|
|
with open(input_path, "a") as f:
|
|
f.write("\n")
|
|
f.write(f"// Compile cmd\n// {compile_cmd}\n")
|
|
f.write(f"// Link cmd\n// {link_cmd}\n")
|
|
|
|
return output_so
|
|
|
|
|
|
# Putting this fn in cpp.py (unfortunately) causes a deadlock, which is why it's in codecache.py.
|
|
# Why? importing from cpp.py invokes codecache.pick_vec_isa(), which takes out a lock.
|
|
# Cycle goes:
|
|
# - CppCodeCache.load()
|
|
# - pick_vec_isa()
|
|
# - valid_vec_isa_list()
|
|
# - VecISA.__bool__() <-- takes out a lock
|
|
# - compile_file() <-- imports cpp_prefix_path from cpp, which causes us to try to take out the same lock.
|
|
@clear_on_fresh_inductor_cache
|
|
@functools.lru_cache
|
|
def cpp_prefix_path() -> str:
|
|
path = Path(__file__).parent / "codegen/cpp_prefix.h"
|
|
with path.open() as f:
|
|
content = f.read()
|
|
_, filename = write(
|
|
content,
|
|
"h",
|
|
)
|
|
return filename
|
|
|
|
|
|
def cpp_prefix() -> str:
|
|
filename = cpp_prefix_path()
|
|
if config.is_fbcode():
|
|
# We need relative paths, since we bundle up
|
|
# everything that we compile into a folder for remote compilation.
|
|
return f'#include "{os.path.basename(filename)}"'
|
|
else:
|
|
return f'#include "{filename}"'
|
|
|
|
|
|
# Given a path to an input cpp file and an output path,
|
|
# Attempts to compile the file, storing the output in "output_path"
|
|
@dynamo_timed
|
|
def compile_file(
|
|
input_path: Union[str, List[str]], output_path: str, cmd: List[str]
|
|
) -> None:
|
|
input_paths = [input_path] if isinstance(input_path, str) else input_path
|
|
input_files = [
|
|
os.path.basename(ip) if config.is_fbcode() else ip for ip in input_paths
|
|
]
|
|
try:
|
|
if config.is_fbcode():
|
|
# Need to copy our header into the same folder as the sourcecode.
|
|
header_path = cpp_prefix_path()
|
|
header_name = os.path.basename(header_path)
|
|
output_name = os.path.basename(output_path)
|
|
# When we build remotely, we need to make sure to carefully copy any files
|
|
# that are required during the compilation process into our build directly.
|
|
# This is where all of the ATen/c10/Torch includes come from.
|
|
torch_includes_path = os.path.join(_TORCH_PATH, "include")
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# Copy everything to tmp compilation folder
|
|
shutil.copy(header_path, os.path.join(tmp_dir, header_name))
|
|
shutil.copy(_LINKER_SCRIPT, os.path.join(tmp_dir, "script.ld"))
|
|
for p, f in zip(input_paths, input_files):
|
|
shutil.copy(p, os.path.join(tmp_dir, f))
|
|
dest_include_path = os.path.join(tmp_dir, "include")
|
|
shutil.copytree(torch_includes_path, dest_include_path)
|
|
# Run the build
|
|
output_file_path = _run_build_command(cmd, tmp_dir, output_name)
|
|
# Copy output from the build
|
|
if os.path.exists(output_path):
|
|
os.remove(output_path)
|
|
shutil.copy(output_file_path, output_path)
|
|
else:
|
|
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
|
|
except subprocess.CalledProcessError as e:
|
|
output = e.output.decode("utf-8")
|
|
openmp_problem = "'omp.h' file not found" in output or "libomp" in output
|
|
if openmp_problem and sys.platform == "darwin":
|
|
instruction = (
|
|
"\n\nOpenMP support not found. Please try one of the following solutions:\n"
|
|
"(1) Set the `CXX` environment variable to a compiler other than Apple clang++/g++ "
|
|
"that has builtin OpenMP support;\n"
|
|
"(2) install OpenMP via conda: `conda install llvm-openmp`;\n"
|
|
"(3) install libomp via brew: `brew install libomp`;\n"
|
|
"(4) manually setup OpenMP and set the `OMP_PREFIX` environment variable to point to a path"
|
|
" with `include/omp.h` under it."
|
|
)
|
|
output += instruction
|
|
raise exc.CppCompileError(cmd, output) from e
|
|
|
|
|
|
_libgomp: Optional[CDLL] = None
|
|
|
|
|
|
def custom_op_wrapper(op: str, *args):
|
|
# This function will be called from generated cpp wrapper code in the JIT mode.
|
|
# Because tensors will be passed in as AtenTensorHandle, we need to explicitly convert them.
|
|
def convert_arg(arg):
|
|
if str(type(arg)) == "<class 'PyCapsule'>":
|
|
# No easy way to do isinstance check on PyCapsule
|
|
return torch._C._aoti.alloc_tensor_by_stealing_from_void_ptr(arg)
|
|
elif isinstance(arg, (list, tuple)):
|
|
return type(arg)(convert_arg(a) for a in arg)
|
|
else:
|
|
return arg
|
|
|
|
converted_args = [convert_arg(arg) for arg in args]
|
|
|
|
assert op.startswith("torch.ops."), (
|
|
op + " can not be called through custom_op_wrapper"
|
|
)
|
|
func = None
|
|
for i, s in enumerate(op.split(".")):
|
|
if i == 0:
|
|
func = importlib.import_module(s)
|
|
func = getattr(func, s)
|
|
|
|
assert callable(func), op + " can not be loaded through custom_op_wrapper"
|
|
result = func(*converted_args)
|
|
if isinstance(result, (list, tuple)):
|
|
for r in result:
|
|
assert isinstance(r, torch.Tensor), op + " returns a list of non-tensors"
|
|
return torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(result) # type: ignore[arg-type]
|
|
else:
|
|
assert isinstance(result, torch.Tensor), op + " returns a non-tensor"
|
|
return torch._C._aoti.unsafe_alloc_void_ptr_from_tensor(result)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CppCodeCache:
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags: Dict[str, Any] = {}
|
|
|
|
@staticmethod
|
|
def _load_library_inner(path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
return cdll.LoadLibrary(path)
|
|
|
|
@classmethod
|
|
def _load_library(cls, path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
try:
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
except (ImportError, OSError) as e:
|
|
if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
|
|
# hacky workaround for fbcode/buck
|
|
global _libgomp
|
|
_libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
if "failed to map segment from shared object" in str(e):
|
|
raise OSError(
|
|
f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder "
|
|
"is mounted with noexec (e.g., by default Docker mounts tmp file systems "
|
|
f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another "
|
|
"temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
|
|
) from e
|
|
raise
|
|
|
|
@classmethod
|
|
def load_async(cls, source_code: str, cuda=False, submit_fn=None):
|
|
compile_command = {
|
|
**cls.cpp_compile_command_flags,
|
|
"cuda": cuda,
|
|
"vec_isa": pick_vec_isa(),
|
|
}
|
|
|
|
from torch._inductor.cpp_builder import CppBuilder, CppTorchOptions
|
|
|
|
picked_vec_isa = pick_vec_isa()
|
|
dummy_builder = CppBuilder("i", ["o"], CppTorchOptions(picked_vec_isa))
|
|
# write function will calc source_code hash, the same source code with different
|
|
# ISA level should be generate different hash.
|
|
# So we need get a command_line which contains isa related parameter as a part of hash key.
|
|
# And then pass the command_line to below write function as extra parameter to
|
|
# guarantee the source code hash contains ISA difference.
|
|
dummy_cmd = dummy_builder.get_command_line()
|
|
key, input_path = write(source_code, "cpp", extra=dummy_cmd)
|
|
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_path = os.path.join(get_lock_dir(), key + ".lock")
|
|
output_path = input_path[:-3] + "so"
|
|
future: Optional[Future[Any]] = None
|
|
lib = None
|
|
worker_fn = functools.partial(
|
|
_worker_compile_cpp,
|
|
lock_path,
|
|
input_path,
|
|
output_path,
|
|
cpp_compile_command(
|
|
input=input_path, output=output_path, **compile_command
|
|
),
|
|
)
|
|
|
|
def load_fn():
|
|
nonlocal lib
|
|
if lib is None:
|
|
if future is not None:
|
|
future.result()
|
|
worker_fn()
|
|
lib = cls._load_library(output_path, key)
|
|
assert lib is not None
|
|
return lib
|
|
|
|
if submit_fn is not None:
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
if not os.path.exists(output_path):
|
|
future = submit_fn(worker_fn)
|
|
|
|
cls.cache[key] = load_fn
|
|
|
|
return cls.cache[key]
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, cuda: bool = False):
|
|
return cls.load_async(source_code, cuda)()
|
|
|
|
|
|
def _worker_compile_cpp(lock_path, input_path, output_path, cmd):
|
|
from filelock import FileLock
|
|
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
if not os.path.exists(output_path):
|
|
compile_file(input_path, output_path, shlex.split(cmd))
|
|
|
|
|
|
# Customized Python binding for cpp kernels
|
|
@clear_on_fresh_inductor_cache
|
|
class CppPythonBindingsCodeCache(CppCodeCache):
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
# kernels have no dependency on libtorch
|
|
"include_pytorch": False,
|
|
"shared": True,
|
|
}
|
|
entry_function = "kernel"
|
|
call_entry_function = "kernel(%s);Py_RETURN_NONE;"
|
|
extra_parse_arg = ""
|
|
suffix_template = textwrap.dedent(
|
|
"""
|
|
// Python bindings to call %s():
|
|
#define PY_SSIZE_T_CLEAN
|
|
#include <Python.h>
|
|
#include <sstream>
|
|
#include <cstdlib>
|
|
|
|
#ifndef _MSC_VER
|
|
#if __cplusplus < 202002L
|
|
// C++20 earlier code
|
|
// https://en.cppreference.com/w/cpp/language/attributes/likely
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#endif
|
|
#endif
|
|
|
|
// This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow.
|
|
// We manually link it below to workaround issues with fbcode build.
|
|
static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj);
|
|
|
|
template <typename T> static inline T parse_arg(PyObject* args, size_t n) {
|
|
static_assert(std::is_pointer<T>::value, "arg type must be pointer or long");
|
|
return static_cast<T>(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n)));
|
|
}
|
|
template <> inline long parse_arg<long>(PyObject* args, size_t n) {
|
|
auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n));
|
|
if(result == -1 && PyErr_Occurred())
|
|
[[unlikely]] throw std::runtime_error("expected int arg");
|
|
return result;
|
|
}
|
|
|
|
%s
|
|
|
|
static PyObject* %s_py(PyObject* self, PyObject* args) {
|
|
try {
|
|
if(!PyTuple_CheckExact(args))
|
|
[[unlikely]] throw std::runtime_error("tuple args required");
|
|
if(PyTuple_GET_SIZE(args) != %s)
|
|
[[unlikely]] throw std::runtime_error("requires %s args");
|
|
%s
|
|
} catch(std::exception const& e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
} catch(...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static PyMethodDef py_methods[] = {
|
|
{"%s", %s_py, METH_VARARGS, ""},
|
|
{NULL, NULL, 0, NULL}};
|
|
|
|
static struct PyModuleDef py_module =
|
|
{PyModuleDef_HEAD_INIT, "%s", NULL, -1, py_methods};
|
|
|
|
PyMODINIT_FUNC PyInit_%s(void) {
|
|
const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR");
|
|
if(!str_addr) {
|
|
PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set");
|
|
return nullptr;
|
|
}
|
|
std::istringstream iss(str_addr);
|
|
uintptr_t addr = 0;
|
|
iss >> addr;
|
|
_torchinductor_pyobject_tensor_data_ptr =
|
|
reinterpret_cast<decltype(_torchinductor_pyobject_tensor_data_ptr)>(addr);
|
|
return PyModule_Create(&py_module);
|
|
}
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _load_library_inner(cls, path: str, key: str) -> ModuleType:
|
|
os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str(
|
|
torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr # type: ignore[attr-defined]
|
|
)
|
|
module_name = f"{key}.{cls.entry_function}"
|
|
try:
|
|
return sys.modules[module_name]
|
|
except KeyError:
|
|
pass
|
|
spec = importlib.util.spec_from_file_location(module_name, path)
|
|
assert spec is not None
|
|
module = importlib.util.module_from_spec(spec)
|
|
sys.modules[module_name] = module
|
|
spec.loader.exec_module(module) # type: ignore[union-attr]
|
|
return module
|
|
|
|
@classmethod
|
|
def load_pybinding_async(
|
|
cls,
|
|
argtypes: List[str],
|
|
source_code: str,
|
|
cuda: bool = False,
|
|
num_outputs: int = -1,
|
|
submit_fn=None,
|
|
) -> Any:
|
|
"""
|
|
Wrap a C++ function in fast Python bindings.
|
|
|
|
Args:
|
|
argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"]
|
|
source_code: C++ source code containing a ENTRY_FUNCTION() function
|
|
|
|
Returns:
|
|
A python version of ENTRY_FUNCTION()
|
|
"""
|
|
parseargs = ", ".join(
|
|
f"parse_arg<{argtype.replace('const ', '')}>(args, {n})"
|
|
for n, argtype in enumerate(argtypes)
|
|
)
|
|
suffix = cls.suffix_template % (
|
|
cls.entry_function,
|
|
cls.extra_parse_arg % num_outputs if cls.extra_parse_arg else "",
|
|
cls.entry_function,
|
|
len(argtypes),
|
|
len(argtypes),
|
|
cls.call_entry_function % parseargs,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
)
|
|
get_result = cls.load_async(source_code + suffix, cuda, submit_fn=submit_fn)
|
|
result = None
|
|
|
|
def future():
|
|
nonlocal result
|
|
if result is None:
|
|
result = get_result()
|
|
assert isinstance(result, ModuleType)
|
|
return getattr(result, cls.entry_function)
|
|
|
|
return future
|
|
|
|
@classmethod
|
|
def load_pybinding(cls, *args, **kwargs) -> Any:
|
|
return cls.load_pybinding_async(*args, **kwargs)()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CppWrapperCodeCache(CppPythonBindingsCodeCache):
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
"include_pytorch": not config.abi_compatible,
|
|
"shared": True,
|
|
}
|
|
entry_function = "inductor_entry_cpp"
|
|
call_entry_function = "return inductor_entry_cpp(%s);"
|
|
extra_parse_arg = textwrap.dedent(
|
|
"""
|
|
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
|
|
|
static inline std::vector<AtenTensorHandle> unpack_tensor_handle_list(PyObject* pyvec) {
|
|
std::vector<AtenTensorHandle> result;
|
|
size_t result_len = PyList_GET_SIZE(pyvec);
|
|
result.reserve(result_len);
|
|
for (size_t i = 0; i < result_len; i++) {
|
|
// AtenTensorHandle is essentially a pointer
|
|
void* elem = PyCapsule_GetPointer(PyList_GET_ITEM(pyvec, i), NULL);
|
|
result.push_back(reinterpret_cast<AtenTensorHandle>(elem));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline PyObject* pack_tensor_handle_list(const std::vector<AtenTensorHandle>& cppvec) {
|
|
size_t result_len = cppvec.size();
|
|
PyObject* result = PyList_New(static_cast<Py_ssize_t>(result_len));
|
|
for (size_t i = 0; i < result_len; i++) {
|
|
PyObject *elem =
|
|
cppvec[i] == nullptr
|
|
? Py_None
|
|
// Store AtenTensorHandle as PyCapsulate
|
|
: PyCapsule_New(reinterpret_cast<void*>(cppvec[i]), NULL, NULL);
|
|
PyList_SET_ITEM(result, i, elem);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <> inline std::vector<AtenTensorHandle> parse_arg<std::vector<AtenTensorHandle>>(PyObject* args, size_t n) {
|
|
return unpack_tensor_handle_list(PyTuple_GET_ITEM(args, n));
|
|
}
|
|
|
|
PyObject* inductor_entry_cpp(std::vector<AtenTensorHandle>&& input_handles) {
|
|
// For outputs, we only allocate a vector to hold returned tensor handles,
|
|
// not allocating the actual output tensor storage here
|
|
std::vector<AtenTensorHandle> output_handles(%s);
|
|
try {
|
|
inductor_entry_impl(input_handles.data(), output_handles.data());
|
|
return pack_tensor_handle_list(output_handles);
|
|
} catch(std::exception const& e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return {};
|
|
} catch(...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return {};
|
|
}
|
|
}
|
|
"""
|
|
)
|
|
|
|
|
|
# TODO: Will remove the temp code after switch to new cpp_builder
|
|
def _temp_validate_new_and_old_command(new_cmd: List[str], old_cmd: List[str]):
|
|
new_diff: List[str] = [x for x in new_cmd if x not in old_cmd]
|
|
old_diff: List[str] = [y for y in old_cmd if y not in new_cmd]
|
|
|
|
if new_diff or old_diff:
|
|
print("!!! new_cmd: ", new_cmd)
|
|
print("!!! old_cmd: ", old_cmd)
|
|
print("!!! new_diff: ", new_diff)
|
|
print("!!! old_diff: ", old_diff)
|
|
raise RuntimeError("Error in new and old command different.")
|
|
|
|
|
|
def _do_validate_cpp_commands(
|
|
include_pytorch: bool, cuda: bool, compile_only: bool, mmap_weights: bool
|
|
):
|
|
# PreCI will failed if test machine can't run cuda.
|
|
test_cuda = torch.cuda.is_available() and cuda
|
|
input_path = "/temp/dummy_input.cpp"
|
|
output_path = "/temp/dummy_output.so"
|
|
if compile_only:
|
|
output_path = "/temp/dummy_output.o"
|
|
picked_isa = pick_vec_isa()
|
|
|
|
old_cmd = cpp_compile_command(
|
|
input=input_path,
|
|
output=output_path,
|
|
include_pytorch=include_pytorch,
|
|
vec_isa=picked_isa,
|
|
cuda=test_cuda,
|
|
aot_mode=False,
|
|
compile_only=compile_only,
|
|
use_absolute_path=False,
|
|
use_mmap_weights=mmap_weights,
|
|
).split(" ")
|
|
|
|
from torch._inductor.cpp_builder import CppBuilder, CppTorchCudaOptions
|
|
|
|
dummy_build_option = CppTorchCudaOptions(
|
|
chosen_isa=picked_isa,
|
|
include_pytorch=include_pytorch,
|
|
use_cuda=test_cuda,
|
|
compile_only=compile_only,
|
|
use_mmap_weights=mmap_weights,
|
|
)
|
|
|
|
dummy_builder = CppBuilder(
|
|
name="dummy_output",
|
|
sources=input_path,
|
|
BuildOption=dummy_build_option,
|
|
output_dir="/temp/",
|
|
compile_only=compile_only,
|
|
use_absolute_path=False,
|
|
)
|
|
new_cmd = dummy_builder.get_command_line().split(" ")
|
|
|
|
_temp_validate_new_and_old_command(new_cmd, old_cmd)
|
|
|
|
|
|
# TODO: Will remove the temp code after switch to new cpp_builder
|
|
# It could help on sync new cpp_builder generate same command line as the old one.
|
|
def validate_new_cpp_commands():
|
|
cuda = [True, False]
|
|
use_mmap_weights = [True, False]
|
|
compile_only = [True, False]
|
|
include_pytorch = [True, False]
|
|
|
|
for x in cuda:
|
|
for y in use_mmap_weights:
|
|
for z in compile_only:
|
|
for m in include_pytorch:
|
|
print(
|
|
f"!!! cuda:{x}, use_mmap_weights:{y}, compile_only:{z}, include_pytorch:{m}"
|
|
)
|
|
_do_validate_cpp_commands(
|
|
include_pytorch=m, cuda=x, mmap_weights=y, compile_only=z
|
|
)
|
|
|
|
|
|
class PyCodeCache:
|
|
cache: Dict[str, ModuleType] = dict()
|
|
linemaps: Dict[str, List[Tuple[Any, ...]]] = dict()
|
|
cache_clear = staticmethod(cache.clear)
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, extra: str = "") -> Tuple[str, str]:
|
|
return write(source_code, "py", extra=extra)
|
|
|
|
@classmethod
|
|
def load(
|
|
cls,
|
|
source_code: str,
|
|
extra: str = "",
|
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
|
attrs: Optional[Dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
key, path = write(source_code, "py", extra=extra)
|
|
return cls.load_by_key_path(key, path, linemap, attrs)
|
|
|
|
@classmethod
|
|
def load_by_key_path(
|
|
cls,
|
|
key: str,
|
|
path: str,
|
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
|
attrs: Optional[Dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
if linemap is None:
|
|
linemap = []
|
|
if key not in cls.cache:
|
|
mod = _reload_python_module(key, path)
|
|
|
|
# another thread might set this first
|
|
cls.cache.setdefault(key, mod)
|
|
# unzip into separate lines/nodes lists
|
|
cls.linemaps[path] = list(zip(*linemap))
|
|
|
|
if attrs is not None:
|
|
for k, v in attrs.items():
|
|
setattr(mod, k, v)
|
|
|
|
if not (linemap or attrs):
|
|
mod._reload_in_subproc = functools.partial( # type: ignore[attr-defined]
|
|
_reload_python_module_in_subproc, key, path
|
|
)
|
|
|
|
return cls.cache[key]
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def stack_frames_for_code(
|
|
cls, path: str, lineno: int
|
|
) -> Optional[List[Dict[str, Any]]]:
|
|
if path not in cls.linemaps:
|
|
return None
|
|
# [(starting_line, <fx node>), ...]
|
|
lines, nodes = cls.linemaps[path]
|
|
p = bisect_right(lines, lineno)
|
|
if p == 0:
|
|
return None
|
|
entry = nodes[p - 1]
|
|
if not entry:
|
|
return None
|
|
|
|
def parse_stack_trace(stack_trace: str) -> List[Dict[str, Any]]:
|
|
# ideally fx stores stack traces as data rather than a string
|
|
# but this is not along a performance critical path
|
|
regex = r'File "(.+)", line (\d+), in (.+)\n'
|
|
matches = re.findall(regex, stack_trace)
|
|
return [
|
|
{"filename": f, "line": int(l), "name": n}
|
|
for f, l, n in reversed(matches)
|
|
]
|
|
|
|
return parse_stack_trace(entry)
|
|
|
|
|
|
class TritonCodeCache:
|
|
@classmethod
|
|
def load(cls, kernel_name: str, source_code: str) -> ModuleType:
|
|
return _module_to_triton_kernel(PyCodeCache.load(source_code), kernel_name)
|
|
|
|
|
|
def _cuda_compiler() -> Optional[str]:
|
|
if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
|
|
return config.cuda.cuda_cxx
|
|
if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
|
|
return os.getenv("CUDACXX", "")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
|
|
return os.path.realpath(os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc"))
|
|
return "nvcc"
|
|
|
|
|
|
def _cutlass_include_paths() -> List[str]:
|
|
cutlass_path = config.cuda.cutlass_dir
|
|
return [
|
|
# Use realpath to get canonical absolute paths, in order not to mess up cache keys
|
|
os.path.realpath(os.path.join(cutlass_path, "include")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/library/include")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/library/src")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/util/include")),
|
|
]
|
|
|
|
|
|
def _cuda_lib_options() -> List[str]:
|
|
from torch.utils import cpp_extension
|
|
|
|
extra_ldflags: List[str] = []
|
|
if is_linux():
|
|
extra_lib_dir = "lib64"
|
|
if not os.path.exists(
|
|
cpp_extension._join_cuda_home(extra_lib_dir)
|
|
) and os.path.exists(cpp_extension._join_cuda_home("lib")):
|
|
# 64-bit CUDA may be installed in "lib"
|
|
# Note that it's also possible both don't exist (see _find_cuda_home) - in that case we stay with "lib64"
|
|
extra_lib_dir = "lib"
|
|
extra_ldflags.append(f"-L{cpp_extension._join_cuda_home(extra_lib_dir)}")
|
|
extra_ldflags.append(
|
|
f'-L{cpp_extension._join_cuda_home(extra_lib_dir, "stubs")}'
|
|
)
|
|
extra_ldflags.append("-lcuda")
|
|
extra_ldflags.append("-lcudart")
|
|
else:
|
|
raise NotImplementedError(
|
|
"Unsupported env, failed to find cuda libs! Currently only Linux is supported."
|
|
)
|
|
return extra_ldflags
|
|
|
|
|
|
def _nvcc_host_compiler_options() -> List[str]:
|
|
return [
|
|
"-fPIC",
|
|
"-fno-strict-aliasing",
|
|
"-fvisibility=hidden",
|
|
"-Wconversion",
|
|
]
|
|
|
|
|
|
def _nvcc_compiler_options() -> List[str]:
|
|
arch = cuda_env.get_cuda_arch()
|
|
if arch == "90":
|
|
# Required by cutlass compilation.
|
|
arch = "90a"
|
|
code = [f"sm_{arch}", f"compute_{arch}"]
|
|
if config.cuda.enable_cuda_lto:
|
|
code += [f"lto_{arch}"]
|
|
options = [
|
|
"-t=0",
|
|
"-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
|
|
"-w",
|
|
f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
|
|
config.cuda.compile_opt_level,
|
|
"-std=c++17",
|
|
"--expt-relaxed-constexpr",
|
|
"-DNDEBUG",
|
|
]
|
|
if config.cuda.enable_debug_info:
|
|
options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
|
|
if config.cuda.enable_ptxas_info:
|
|
options.extend(
|
|
[
|
|
"--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
|
|
"--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels
|
|
"--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels
|
|
"--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.)
|
|
"--source-in-ptx",
|
|
]
|
|
) # Annotate the ptx file with source information
|
|
if config.cuda.use_fast_math:
|
|
options.extend(
|
|
[
|
|
"--use_fast_math",
|
|
"-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
|
|
]
|
|
)
|
|
return options
|
|
|
|
|
|
def cuda_compile_command(
|
|
src_files: List[str],
|
|
dst_file: str,
|
|
dst_file_ext: str,
|
|
extra_args: Optional[List[str]] = None,
|
|
) -> str:
|
|
if extra_args is None:
|
|
extra_args = []
|
|
include_paths = _cutlass_include_paths()
|
|
cuda_lib_options = _cuda_lib_options()
|
|
nvcc_host_compiler_options = _nvcc_host_compiler_options()
|
|
nvcc_compiler_options = _nvcc_compiler_options()
|
|
options = (
|
|
nvcc_compiler_options
|
|
+ extra_args
|
|
+ [
|
|
f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
|
|
for opt in nvcc_host_compiler_options
|
|
]
|
|
+ ["-I" + path for path in include_paths]
|
|
+ cuda_lib_options
|
|
)
|
|
src_file = " ".join(src_files)
|
|
res = ""
|
|
if dst_file_ext == "o":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "so":
|
|
options.append("-shared")
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "exe":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
|
|
log.debug("CUDA command: %s", res)
|
|
return res
|
|
|
|
|
|
class DLLWrapper:
|
|
"""A wrapper for a dynamic library."""
|
|
|
|
def __init__(
|
|
self,
|
|
lib_path: str,
|
|
):
|
|
self.lib_path = lib_path
|
|
self.is_open = False
|
|
self.DLL = cdll.LoadLibrary(lib_path)
|
|
self.is_open = True
|
|
|
|
def close(self):
|
|
if self.is_open:
|
|
self._dlclose()
|
|
self.is_open = False
|
|
|
|
def _dlclose(self):
|
|
f_dlclose = None
|
|
|
|
if is_linux():
|
|
syms = CDLL(None)
|
|
if not hasattr(syms, "dlclose"):
|
|
# Apline Linux
|
|
syms = CDLL("libc.so")
|
|
|
|
if hasattr(syms, "dlclose"):
|
|
f_dlclose = syms.dlclose
|
|
else:
|
|
raise NotImplementedError("Unsupported env, failed to do dlclose!")
|
|
|
|
if f_dlclose is not None:
|
|
f_dlclose.argtypes = [c_void_p]
|
|
f_dlclose(self.DLL._handle)
|
|
else:
|
|
log.warning(
|
|
"dll unloading function was not found, library may not be unloaded properly!"
|
|
)
|
|
|
|
def __getattr__(self, name):
|
|
if not self.is_open:
|
|
raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")
|
|
|
|
method = getattr(self.DLL, name)
|
|
|
|
def _wrapped_func(*args):
|
|
err = method(*args)
|
|
if err:
|
|
raise RuntimeError(f"Error in function: {method.__name__}")
|
|
|
|
return _wrapped_func
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.close()
|
|
|
|
def __del__(self):
|
|
self.close()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CUDACodeCache:
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
|
|
cache: Dict[str, CacheEntry] = dict()
|
|
cache_clear = staticmethod(cache.clear)
|
|
_SOURCE_CODE_SUFFIX = "cu"
|
|
|
|
@classmethod
|
|
def write(cls, source_code, dst_file_ext) -> Tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
cuda_command = repr(
|
|
cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
key, input_path = write(
|
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
|
)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code, dst_file_ext, extra_args: Optional[List[str]] = None
|
|
) -> Tuple[str, str, str]:
|
|
"""
|
|
Compiles CUDA source_code into a file with dst_file_ext extension.
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
if not os.path.exists(output_path):
|
|
cmd = cuda_compile_command(
|
|
[input_path], output_path, dst_file_ext, extra_args
|
|
)
|
|
start_time = time()
|
|
log.debug("CUDA Compilation: %s", cmd)
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
subprocess.check_output(
|
|
cmd_parts, stderr=subprocess.STDOUT, env=os.environ
|
|
)
|
|
except subprocess.CalledProcessError as error:
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
end_time = time()
|
|
log_duration_msg = f"CUDA Compilation took {end_time-start_time} seconds. Compile command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
else:
|
|
log.debug(
|
|
"CUDA Compilation skipped: %s since output already exists",
|
|
input_path,
|
|
)
|
|
cls.cache[key] = CUDACodeCache.CacheEntry(input_path, output_path)
|
|
|
|
return (cls.cache[key].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code, dst_file_ext) -> Tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
|
|
def caching_device_properties():
|
|
for _, device_interface in get_registered_device_interfaces():
|
|
if device_interface.is_available():
|
|
device_interface.Worker.get_device_properties()
|
|
|
|
|
|
class CodeCacheFuture:
|
|
def result(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
class TritonFuture(CodeCacheFuture):
|
|
kernel: ModuleType
|
|
|
|
def __init__(
|
|
self,
|
|
kernel: Any,
|
|
future: Optional[Future[Any]],
|
|
) -> None:
|
|
self.kernel = kernel
|
|
self.future = future
|
|
|
|
# @dynamo_utils.dynamo_timed
|
|
def result(self) -> ModuleType:
|
|
if self.future is not None:
|
|
# If the worker failed this will throw an exception.
|
|
self.future.result()
|
|
self.future = None
|
|
self.kernel.precompile()
|
|
return self.kernel
|
|
|
|
|
|
class LambdaFuture(CodeCacheFuture):
|
|
def __init__(self, result_fn):
|
|
self.result_fn = result_fn
|
|
|
|
def result(self):
|
|
return self.result_fn()
|
|
|
|
|
|
# If this process dies abnormally (e.g. segfault)
|
|
# it will not shut down the workers. Instead
|
|
# the workers will have their parent reassigned to the
|
|
# init process. This launches a separate thread to
|
|
# watch for the worker getting reassigned,
|
|
# and cleans it up in this case.
|
|
#
|
|
# This function cannot be an inner function since otherwise mp_context="spawn" would
|
|
# not work for ProcessPoolExecutor since inner functions cannot be pickled.
|
|
def _async_compile_initializer(orig_ppid) -> None:
|
|
def run() -> None:
|
|
while True:
|
|
sleep(1)
|
|
if orig_ppid != os.getppid():
|
|
os.kill(os.getpid(), signal.SIGKILL)
|
|
|
|
global _watchdog_thread
|
|
_watchdog_thread = Thread(target=run, daemon=True)
|
|
_watchdog_thread.start()
|
|
# Ignore Ctrl-C (i.e. SIGINT) sent to pool workers to avoid meaningless log spam.
|
|
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
|
|
|
|
|
_watchdog_thread: Optional[Thread] = None
|
|
|
|
# Used to keep track of all process pools invoked so far.
|
|
_pool_set: Set[ProcessPoolExecutor] = set()
|
|
|
|
|
|
def shutdown_compile_workers() -> None:
|
|
"""Shut down all outstanding compile-worker pools."""
|
|
for pool in _pool_set:
|
|
pool.shutdown()
|
|
after_fork()
|
|
|
|
|
|
def after_fork():
|
|
"""Reset pools to initial state without shutting them down"""
|
|
_pool_set.clear()
|
|
AsyncCompile.process_pool.cache_clear()
|
|
|
|
|
|
try:
|
|
os.register_at_fork(after_in_child=after_fork)
|
|
except AttributeError:
|
|
pass # register_at_fork does not exists on windows
|
|
|
|
|
|
class AsyncCompile:
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(1)
|
|
def pool() -> ThreadPoolExecutor:
|
|
assert config.compile_threads > 1
|
|
return ThreadPoolExecutor(config.compile_threads)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(1)
|
|
def process_pool() -> ProcessPoolExecutor:
|
|
# ensure properties have been calculated before processes
|
|
# are forked
|
|
caching_device_properties()
|
|
assert config.compile_threads > 1
|
|
orig_ppid = os.getpid()
|
|
|
|
ctx = multiprocessing.get_context(config.worker_start_method)
|
|
pool = ProcessPoolExecutor(
|
|
config.compile_threads,
|
|
mp_context=ctx,
|
|
initializer=partial(_async_compile_initializer, orig_ppid),
|
|
)
|
|
|
|
global _pool_set
|
|
_pool_set.add(pool)
|
|
|
|
# when this pool is created in a subprocess object, the normal exit handler
|
|
# doesn't run, and we need to register our own handler.
|
|
# exitpriority has to be high, because another one of the finalizers will
|
|
# kill the worker thread that sends the shutdown message to the workers...
|
|
multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize)
|
|
return pool
|
|
|
|
@classmethod
|
|
def warm_pool(cls) -> None:
|
|
if config.compile_threads <= 1:
|
|
return
|
|
_compile_start()
|
|
pool = cls.process_pool()
|
|
|
|
# We have to fork processes for compiler workers, but the more memory and other resources that are loaded, the
|
|
# slower the os.fork time is, quite drastically. It also holds the GIL so we can't put it on another thread.
|
|
|
|
# Examples:
|
|
# A simple x + x + x script: 10ms seconds in the middle of the program, 2ms at startup
|
|
# tf_efficientnet_b0 benchmark: 50ms! in the middle of the program , 3ms at startup
|
|
|
|
# So we want to start the workers early when it is still cheap, and also to allow the workers to get
|
|
# ready before we have work for them.
|
|
|
|
# ProcessPoolExecutor also does not launch the workers until it finds a point when all the workers are idle.
|
|
# But if we waited until then fork time will be long and we will be waiting for the processes to initialize.
|
|
|
|
# We force them to start here with some YOLOing of the internal methods.
|
|
if hasattr(pool, "_start_queue_management_thread"):
|
|
pool._start_queue_management_thread()
|
|
else:
|
|
for _ in range(config.compile_threads):
|
|
pool._adjust_process_count()
|
|
if hasattr(pool, "_start_executor_manager_thread"):
|
|
pool._start_executor_manager_thread()
|
|
_compile_end()
|
|
|
|
@classmethod
|
|
def submit(cls, task: Callable[..., Any]) -> Any:
|
|
if config.compile_threads <= 1:
|
|
return task()
|
|
return cls.pool().submit(task)
|
|
|
|
def triton(self, kernel_name: str, source_code: str, device_str: str = "cuda"):
|
|
_compile_start()
|
|
_set_triton_ptxas_path()
|
|
|
|
kernel = TritonCodeCache.load(kernel_name, source_code)
|
|
if config.compile_threads > 1:
|
|
return TritonFuture(
|
|
kernel,
|
|
self.process_pool().submit(
|
|
_worker_compile_triton,
|
|
kernel._reload_in_subproc,
|
|
),
|
|
)
|
|
else:
|
|
kernel.precompile()
|
|
return kernel
|
|
|
|
def multi_kernel(self, *args, **kwargs) -> Any:
|
|
from torch._inductor.codegen.multi_kernel import MultiKernelCall
|
|
|
|
# no need to call this in parallel since the sub-kernels are already parallel tasks
|
|
return MultiKernelCall(*args, **kwargs)
|
|
|
|
def cpp(self, source_code: str):
|
|
if config.compile_threads <= 1:
|
|
return CppCodeCache.load(source_code).kernel
|
|
else:
|
|
get_result = CppCodeCache.load_async(source_code, submit_fn=self.submit)
|
|
return LambdaFuture(lambda: get_result().kernel)
|
|
|
|
def cpp_pybinding(self, argtypes: List[str], source_code: str):
|
|
if config.compile_threads <= 1:
|
|
return CppPythonBindingsCodeCache.load_pybinding(argtypes, source_code)
|
|
else:
|
|
get_result = CppPythonBindingsCodeCache.load_pybinding_async(
|
|
argtypes, source_code, submit_fn=self.submit
|
|
)
|
|
return LambdaFuture(get_result)
|
|
|
|
def cuda(self, source_code, dst_file_ext):
|
|
def task():
|
|
return CUDACodeCache.load(source_code, dst_file_ext)[0]
|
|
|
|
return self.submit(task)
|
|
|
|
def wait(self, scope: Dict[str, Any]) -> None:
|
|
num_kernels = len(
|
|
[
|
|
value
|
|
for key, value in scope.items()
|
|
if isinstance(value, (Future, CodeCacheFuture))
|
|
]
|
|
)
|
|
pbar = tqdm(
|
|
total=num_kernels,
|
|
desc="Inductor Compilation",
|
|
disable=config.disable_progress,
|
|
delay=0,
|
|
)
|
|
if config.compile_threads > 1:
|
|
for key, result in scope.items():
|
|
if config.verbose_progress and not isinstance(pbar, _Faketqdm):
|
|
pbar.set_postfix_str(key)
|
|
if isinstance(result, (Future, CodeCacheFuture)):
|
|
scope[key] = result.result()
|
|
pbar.update(1)
|
|
|
|
_compile_end()
|
|
|
|
|
|
if (
|
|
os.environ.get("TORCH_TNT_IN_USE", "0") == "1"
|
|
or os.environ.get("TORCH_WARM_POOL", "1") != "1"
|
|
):
|
|
pass
|
|
elif sys.version_info >= (3, 12):
|
|
log.info("AsyncCompile.warm_pool() is broken on 3.12+.")
|
|
else:
|
|
AsyncCompile.warm_pool()
|