Files
pytorch/torch/_inductor/select_algorithm.py
Jez Ng 4667e20b3f Delete a bunch of type-ignores (#113990)
* Replaced `ignore[import]` by mypy config file entries
* Removed a bunch of ignores around previously-fixed attr-defined /
  call-arg issues
* Fixed some invalid / undefined types; added a few more type-ignores to
  squelch the downstream errors this exposed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113990
Approved by: https://github.com/eellison, https://github.com/Skylion007
ghstack dependencies: #113979
2023-11-18 02:48:38 +00:00

1000 lines
33 KiB
Python

import builtins
import functools
import inspect
import itertools
import logging
import sys
import textwrap
import time
from io import StringIO
from typing import Any, Callable, Dict, List, Optional, Type, Union
from unittest.mock import patch
import sympy
import torch
from torch._dynamo.testing import rand_strided
from torch._dynamo.utils import counters, identity, preserve_rng_state
from . import config, ir
from .autotune_process import TensorMeta, TritonBenchmarkRequest
from .codecache import code_hash, PersistentCache, PyCodeCache
from .codegen.common import ChoiceCaller, IndentedBuffer, KernelTemplate
from .codegen.triton import texpr, TritonKernel, TritonPrinter, TritonScheduling
from .codegen.triton_utils import config_of, signature_to_meta
from .exc import CUDACompileError
from .utils import do_bench, Placeholder, sympy_dot, sympy_product, unique
from .virtualized import V
log = logging.getLogger(__name__)
# correctness checks struggle with fp16/tf32
VERIFY: Dict[str, Any] = dict()
PRINT_AUTOTUNE = True
DEBUG = False
class KernelNamespace:
pass
# these objects are imported from the generated wrapper code
extern_kernels = KernelNamespace()
class PartialRender:
"""
Some parts of a template need to be generated at the end, but
inserted into the template at the start. This allows doing a bunch
of replacements after the initial render.
"""
def __init__(self, code, replacement_hooks):
super().__init__()
self.code = code
self.replacement_hooks = replacement_hooks
def finalize(self):
code = self.code
assert code is not None, "can only be called once"
self.code = None
for key, fn in self.replacement_hooks.items():
code = code.replace(key, fn())
return code
class TritonTemplateKernel(TritonKernel):
def __init__(
self,
kernel_name,
input_nodes,
output_node,
defines,
num_stages,
num_warps,
grid_fn,
meta,
call_sizes,
use_jit=True,
prefix_args=0,
suffix_args=0,
epilogue_fn=identity,
*,
index_dtype,
):
super().__init__(
sympy_product(output_node.get_size()),
sympy.Integer(1),
index_dtype=index_dtype,
)
self.input_nodes = input_nodes
self.output_node = output_node
self.named_input_nodes = {}
self.defines = defines
self.kernel_name = kernel_name
self.template_mask = None
self.use_jit = use_jit
self.num_stages = num_stages
self.num_warps = num_warps
self.grid_fn = grid_fn
self.meta = meta
self.call_sizes = call_sizes
# for templates with fixed epilogues
self.prefix_args = prefix_args
self.suffix_args = suffix_args
self.epilogue_fn = epilogue_fn
self.render_hooks = dict()
def jit_line(self):
if self.use_jit:
return "@triton.jit"
argdefs, _, signature = self.args.python_argdefs()
triton_meta = {
"signature": signature_to_meta(signature, size_dtype=self.index_dtype),
"device": V.graph.scheduler.current_device.index,
"device_type": V.graph.scheduler.current_device.type,
"constants": {},
}
triton_meta["configs"] = [config_of(signature)]
inductor_meta = {"kernel_name": str(Placeholder.DESCRIPTIVE_NAME)}
return textwrap.dedent(
f"""
@template(
num_stages={self.num_stages},
num_warps={self.num_warps},
triton_meta={triton_meta!r},
inductor_meta={inductor_meta!r},
)
@triton.jit
"""
)
def def_kernel(self, *argnames):
"""
Hook called from template code to generate function def and
needed args.
"""
assert all(isinstance(x, str) for x in argnames)
renames = IndentedBuffer(initial_indent=1)
named_args = self.input_nodes[
self.prefix_args : len(self.input_nodes) - self.suffix_args
]
assert len(argnames) == len(named_args), (
len(argnames),
len(named_args),
self.prefix_args,
len(self.input_nodes),
)
for input_node in self.input_nodes[: self.prefix_args]:
# get args in correct order
self.args.input(input_node.get_name())
for name, input_node in zip(argnames, named_args):
arg_name = f"arg_{name}"
self.named_input_nodes[name] = input_node
self.args.input_buffers[input_node.get_name()] = arg_name
# The args may be duplicated, so renaming must be after args are de-duplicated.
for name in argnames:
input_node = self.named_input_nodes[name]
arg_name = self.args.input_buffers[input_node.get_name()]
if input_node.get_layout().offset == 0:
renames.writeline(f"{name} = {arg_name}")
else:
offset = texpr(self.rename_indexing(input_node.get_layout().offset))
renames.writeline(f"{name} = {arg_name} + {offset}")
for input_node in self.input_nodes[len(self.input_nodes) - self.suffix_args :]:
# get args in correct order
self.args.input(input_node.get_name())
def hook():
# python_argdefs() cannot be run until after the rest of the template lazily adds more args
arg_defs, *_ = self.args.python_argdefs()
return "\n".join(
[
"import triton.language as tl",
"import triton",
"from torch._inductor.triton_heuristics import template",
"from torch._inductor.utils import instance_descriptor",
"from torch._inductor import triton_helpers",
"",
self.jit_line(),
f"def {self.kernel_name}({', '.join(arg_defs)}):",
self.defines,
renames.getvalue(),
]
)
assert "<DEF_KERNEL>" not in self.render_hooks
self.render_hooks["<DEF_KERNEL>"] = hook
return "<DEF_KERNEL>"
def size(self, name: str, index: int):
"""
Hook called from template code to get the size of an arg.
Will add needed args to pass it in if it is dynamic.
"""
assert isinstance(index, int)
if name is None:
val = self.output_node.get_size()[index]
else:
assert isinstance(name, str)
val = self.named_input_nodes[name].get_size()[index]
return texpr(self.rename_indexing(val))
def stride(self, name, index):
"""
Hook called from template code to get the stride of an arg.
Will add needed args to pass it in if it is dynamic.
"""
assert isinstance(index, int)
if name is None:
val = self.output_node.get_stride()[index]
else:
assert isinstance(name, str)
val = self.named_input_nodes[name].get_stride()[index]
return texpr(self.rename_indexing(val))
def store_output(self, indices, val, mask):
"""
Hook called from template code to store the final output
(if the buffer hasn't been optimized away), then append any
epilogue fusions.
"""
assert isinstance(indices, (list, tuple))
assert isinstance(val, str)
assert isinstance(mask, str)
assert self.template_mask is None
indices = list(map(TritonPrinter.paren, indices))
index_symbols = [sympy.Symbol(x) for x in indices]
lengths = [V.graph.sizevars.simplify(s) for s in self.output_node.get_size()]
assert len(indices) == len(lengths)
# glue to make generated code use same indexing from template
for name, range_tree_entry in zip(
indices, self.range_trees[0].construct_entries(lengths)
):
range_tree_entry.set_name(name)
contiguous_index = sympy_dot(
ir.FlexibleLayout.contiguous_strides(lengths), index_symbols
)
contiguous_index = self.rename_indexing(contiguous_index)
self.body.writeline("xindex = " + texpr(contiguous_index))
self.range_trees[0].lookup(sympy.Integer(1), sympy_product(lengths)).set_name(
"xindex"
)
self.template_mask = mask
self.template_indices = indices
output_index = self.output_node.get_layout().make_indexer()(index_symbols)
output_index = self.rename_indexing(output_index)
if output_index == contiguous_index:
output_index = sympy.Symbol("xindex")
epilogue_args = [val]
for input_node in itertools.chain(
self.input_nodes[: self.prefix_args],
self.input_nodes[len(self.input_nodes) - self.suffix_args :],
):
input_node.freeze_layout()
epilogue_args.append(input_node.make_loader()(index_symbols))
V.ops.store(
self.output_node.get_name(),
output_index,
self.epilogue_fn(*epilogue_args),
)
self.codegen_body()
def hook():
# more stuff might have been added since the codegen_body above
self.codegen_body()
return textwrap.indent(self.body.getvalue(), " ").strip()
assert "<STORE_OUTPUT>" not in self.render_hooks
self.render_hooks["<STORE_OUTPUT>"] = hook
return "<STORE_OUTPUT>"
def render(self, template, kwargs):
return PartialRender(
template.render(**self.template_env(), **kwargs),
self.render_hooks,
)
def make_load(self, name, indices, mask):
"""
Optional helper called from template code to generate the code
needed to load from an tensor.
"""
assert isinstance(indices, (list, tuple))
assert isinstance(name, str)
assert isinstance(mask, str)
stride = self.named_input_nodes[name].get_stride()
indices = list(map(TritonPrinter.paren, indices))
assert len(indices) == len(stride)
index = " + ".join(
f"{texpr(self.rename_indexing(s))} * {i}" for s, i in zip(stride, indices)
)
return f"tl.load({name} + ({index}), {mask})"
def template_env(self):
"""
Generate the namespace visible in the template.
"""
return {
fn.__name__: fn
for fn in [
self.def_kernel,
self.size,
self.stride,
self.store_output,
self.make_load,
]
}
def indexing(
self,
index: sympy.Expr,
*,
copy_shape=None,
dense_indexing=False,
override_mask=None,
):
"""
Override the default indexing to use our custom mask and force
dense indexing.
"""
result, *mask = super().indexing(
index,
dense_indexing=False,
copy_shape=self.template_mask,
override_mask=self.template_mask,
)
return (result, *mask)
def initialize_range_tree(self, pid_cache):
super().initialize_range_tree(pid_cache)
# ignore default codegen
self.body.clear()
self.indexing_code.clear()
def call_kernel(self, name: str, node: Optional[ir.IRNode] = None):
wrapper = V.graph.wrapper_code
_, call_args, _ = self.args.python_argdefs()
call_args = [str(a) for a in call_args]
for i in range(len(call_args)):
if V.graph.is_unspec_arg(call_args[i]):
call_args[i] = call_args[i] + ".item()"
if isinstance(call_args[i], sympy.Symbol):
call_args[i] = texpr(call_args[i])
if V.graph.cpp_wrapper:
# In the cpp_wrapper case, we have to compute CUDA launch grid at runtime
# if any dynamic dimension is involved. We rely on the Python version
# of the grid function to generate those grid configs, which may contain
# symbolic values. The wrapper will use cexpr to print out C++ code
# appropriately for the grid configs.
grid_args = [V.graph.sizevars.simplify(s) for s in self.call_sizes] + [
self.meta
]
grid = self.grid_fn(*grid_args)
wrapper.generate_kernel_call(
name,
call_args,
device_index=V.graph.scheduler.current_device.index,
grid=grid,
)
else:
call_args = ", ".join(call_args) # type: ignore[assignment]
stream_name = wrapper.write_get_raw_stream(
V.graph.scheduler.current_device.index
)
wrapper.add_import_once(f"import {self.grid_fn.__module__}")
meta = wrapper.add_meta_once(self.meta)
grid_call = [
texpr(V.graph.sizevars.simplify(s)) for s in self.call_sizes
] + [meta]
grid_call = f"{self.grid_fn.__module__}.{self.grid_fn.__name__}({', '.join(grid_call)})"
wrapper.writeline(
f"{name}.run({call_args}, grid={grid_call}, stream={stream_name})"
)
@functools.lru_cache(None)
def _jinja2_env():
try:
import jinja2
return jinja2.Environment(
undefined=jinja2.StrictUndefined,
)
except ImportError:
return None
class TritonTemplate(KernelTemplate):
index_counter = itertools.count()
all_templates: Dict[str, "TritonTemplate"] = dict()
def __init__(self, name: str, grid: Any, source: str, debug=False):
super().__init__(name)
self.grid = grid
self.template = self._template_from_string(source)
assert name not in self.all_templates, "duplicate template name"
self.all_templates[name] = self
self.debug = debug
def generate(
self,
input_nodes,
layout,
num_stages,
num_warps,
prefix_args=0,
suffix_args=0,
epilogue_fn=identity,
**kwargs,
):
assert self.template, "requires jinja2"
defines = StringIO()
for name, val in kwargs.items():
defines.write(f" {name} : tl.constexpr = {val}\n")
defines = defines.getvalue()
fake_out = ir.Buffer("buf_out", layout)
kernel_name = f"triton_{self.name}"
numel = sympy_product(layout.size)
buffers = itertools.chain(input_nodes, (fake_out,))
if not TritonScheduling.can_use_32bit_indexing(numel, buffers):
raise NotImplementedError(
"64-bit indexing is not yet implemented for triton templates"
)
kernel_options = dict(
input_nodes=input_nodes,
defines=defines,
num_stages=num_stages,
num_warps=num_warps,
grid_fn=self.grid,
meta=kwargs,
call_sizes=layout.size,
prefix_args=prefix_args,
suffix_args=suffix_args,
epilogue_fn=epilogue_fn,
index_dtype="tl.int32",
)
with patch.object(
V.graph, "get_dtype", self._fake_get_dtype(fake_out)
), TritonTemplateKernel(
kernel_name=kernel_name,
output_node=fake_out,
use_jit=True,
**kernel_options,
) as kernel:
try:
code = kernel.render(self.template, kwargs).finalize()
except ZeroDivisionError:
# TODO(nmacchioni): fix sympy division by zero
return None
if self.debug:
print("Generated Code:\n", code)
extra = (
"-".join(
[
*[
f"{kwarg}={repr(kwargs[kwarg])}"
for kwarg in sorted(kwargs.keys())
],
f"num_stages={num_stages}",
f"num_warps={num_warps}",
]
)
+ "-"
)
mod = PyCodeCache.load(code, extra)
_, call_args, _ = kernel.args.python_argdefs()
expected_args = list(unique(x.get_name() for x in input_nodes))
expected_args.extend([fake_out.get_name()])
assert list(call_args)[: len(expected_args)] == expected_args, (
call_args,
expected_args,
)
extra_args = V.graph.sizevars.size_hints(
map(sympy.expand, call_args[len(expected_args) :]),
fallback=config.unbacked_symint_fallback,
)
kernel_hash_name = f"triton_{self.name}_{next(self.index_counter)}"
def make_kernel_render(out_node):
kernel = TritonTemplateKernel(
kernel_name=str(Placeholder.KERNEL_NAME),
output_node=out_node,
use_jit=False,
**kernel_options,
)
render = functools.partial(
kernel.render,
self.template,
kwargs,
)
return kernel, render
# create the BenchmarkRequest
assert mod.__file__ is not None
grid = self.grid(
*V.graph.sizevars.size_hints(
layout.size,
fallback=config.unbacked_symint_fallback,
),
kwargs,
)
bmreq = TritonBenchmarkRequest(
module_path=mod.__file__,
module_cache_key=mod.key,
kernel_name=kernel_name,
grid=grid,
extra_args=extra_args,
num_stages=num_stages,
num_warps=num_warps,
input_tensor_meta=TensorMeta.from_irnodes(input_nodes),
output_tensor_meta=TensorMeta.from_irnodes(layout),
)
return TritonTemplateCaller(
kernel_hash_name,
input_nodes,
layout,
make_kernel_render,
extra.strip("-").replace("-", ", "),
bmreq,
)
class ExternKernelChoice:
def __init__(
self,
kernel,
cpp_kernel=None,
*,
name=None,
has_out_variant=True,
):
super().__init__()
name = name or kernel.__name__
assert callable(kernel)
assert not hasattr(extern_kernels, name), "duplicate extern kernel"
self.name = name
self.cpp_kernel = cpp_kernel
self.has_out_variant = has_out_variant
setattr(extern_kernels, name, kernel)
def to_callable(self):
return getattr(extern_kernels, self.name)
def call_name(self):
return f"extern_kernels.{self.name}"
@functools.lru_cache(None)
def hash_key(self):
fn = self.to_callable()
parts = [
self.name,
getattr(fn, "__name__", ""),
getattr(fn, "__module__", ""),
]
try:
parts.append(inspect.getsource(fn))
except Exception:
pass
return code_hash("-".join(parts))
def bind(self, input_nodes, layout, ordered_kwargs_for_cpp_kernel=(), **kwargs):
self.ordered_kwargs_for_cpp_kernel = ordered_kwargs_for_cpp_kernel
return ExternKernelCaller(
self, input_nodes, layout, kwargs, has_out_variant=self.has_out_variant
)
class TritonTemplateCaller(ChoiceCaller):
def __init__(
self, name, input_nodes, layout, make_kernel_render, debug_extra, bmreq
):
super().__init__(name, input_nodes, layout)
self.make_kernel_render = make_kernel_render
self.debug_extra = debug_extra
self.bmreq = bmreq
def benchmark(self, *args, out):
assert self.bmreq is not None
return self.bmreq.benchmark(*args, output_tensor=out)
def __str__(self):
return f"TritonTemplateCaller({self.bmreq.module_path}, {self.debug_extra})"
def call_name(self):
return f"template_kernels.{self.name}"
def hash_key(self):
return "-".join(
[
self.name.rsplit("_", 1)[0],
self.bmreq.module_cache_key,
]
)
def output_node(self):
return ir.TensorBox.create(
ir.TritonTemplateBuffer(
layout=self.layout,
inputs=self.input_nodes,
make_kernel_render=self.make_kernel_render,
)
)
class ExternKernelCaller(ChoiceCaller):
def __init__(
self,
choice: ExternKernelChoice,
input_nodes,
layout,
kwargs=None,
*,
has_out_variant=True,
):
super().__init__(choice.name, input_nodes, layout)
self.choice = choice
self.kwargs = kwargs or {}
self.has_out_variant = has_out_variant
def __str__(self):
return f"ExternKernelCaller({self.choice.call_name()})"
def benchmark(self, *args, out):
if self.has_out_variant:
return super().benchmark(*args, out=out)
else:
algo = self.to_callable()
out_new = algo(*args)
torch._C._dynamo.guards.assert_size_stride(
out_new, tuple(out.size()), tuple(out.stride())
)
out.copy_(out_new) # for correctness checking
return do_bench(lambda: algo(*args))
def to_callable(self):
fn = self.choice.to_callable()
if self.kwargs:
return functools.partial(fn, **self.kwargs)
else:
return fn
def hash_key(self):
return "-".join(
[
self.choice.name,
*[
f"{kwarg}={repr(self.kwargs[kwarg])}"
for kwarg in sorted(self.kwargs.keys())
],
self.choice.hash_key(),
]
)
def output_node(self):
cls: Union[Type[ir.ExternKernelOut], Type[ir.ExternKernelAlloc]]
if self.has_out_variant:
cls = ir.ExternKernelOut
else:
cls = ir.ExternKernelAlloc
return ir.TensorBox.create(
cls(
layout=self.layout,
inputs=self.input_nodes,
kernel=self.choice.call_name(),
cpp_kernel=self.choice.cpp_kernel,
ordered_kwargs_for_cpp_kernel=self.choice.ordered_kwargs_for_cpp_kernel,
kwargs=self.kwargs,
)
)
class ErrorFromChoice(RuntimeError):
def __init__(self, msg, choice: ChoiceCaller, inputs_str):
msg += f"\nFrom choice {choice}\n{inputs_str}"
super().__init__(msg)
self.choice = choice
class AlgorithmSelectorCache(PersistentCache):
def __call__(
self,
name,
choices: List[ChoiceCaller],
input_nodes,
layout,
# optional dict mapping arg indices to the functions
# generating a torch.Tensor for that input from the
# corresponding ir.Buffer. if passed for a given
# arg, the function will be called instead of
# generating a random torch.Tensor for benchmarking.
input_gen_fns: Optional[Dict[int, Callable[[ir.Buffer], torch.Tensor]]] = None,
):
from .codegen.cuda.cuda_kernel import CUDATemplateCaller
# TODO(nmacchioni): remove once CI tests are fixed
choices = [choice for choice in choices if choice is not None]
if len(choices) == 0:
raise RuntimeError(
"No choices to select, please consider adding ATEN into max_autotune_gemm_backends "
"config (defined in torch/_inductor/config.py) to allow at least one choice. "
)
log.info("Max autotune selects from %s choices.", str(len(choices)))
if len(choices) == 1:
if not isinstance(choices[0], CUDATemplateCaller):
# CUDATemplateCaller still needs to go through autotuning process to retrieve workspace size.
return choices[0].output_node()
@functools.lru_cache(None)
def make_benchmark_fn():
return self.make_benchmark_fn(choices, input_nodes, layout, input_gen_fns)
def autotune(choices):
return make_benchmark_fn()(choices)
if config.autotune_in_subproc:
from .autotune_process import tuning_pool
# do the optional warmup
tuning_pool.initialize()
autotune_start_ts = time.time()
timings = self.lookup(
choices,
name,
repr([self.key_of(x) for x in input_nodes]),
autotune,
)
autotune_elapse = time.time() - autotune_start_ts
if timings == {} or choices[0] not in timings:
return choices[0].output_node()
if make_benchmark_fn.cache_info().currsize:
counters["inductor"]["select_algorithm_autotune"] += 1
if (
make_benchmark_fn.cache_info().currsize
or log.getEffectiveLevel() == logging.DEBUG
):
self.log_results(name, input_nodes, timings, autotune_elapse)
selected_choice = builtins.min(timings, key=timings.__getitem__).output_node()
log.debug("selected choice: %s", str(selected_choice))
return selected_choice
@classmethod
def make_benchmark_fn(
cls,
choices,
input_nodes,
layout,
input_gen_fns=None,
):
if input_gen_fns is None:
input_gen_fns = {}
# de-duplicate args
unique_example_inputs = {
x.get_name(): input_gen_fns.get(i, cls.benchmark_example_value)(x)
for i, x in enumerate(input_nodes)
}
example_inputs = list(unique_example_inputs.values())
example_inputs_extern = [
torch.as_strided(
unique_example_inputs[input_node.get_name()],
V.graph.sizevars.size_hints(
input_node.get_size(),
fallback=config.unbacked_symint_fallback,
),
V.graph.sizevars.size_hints(
input_node.get_stride(),
fallback=config.unbacked_symint_fallback,
),
V.graph.sizevars.size_hint(
input_node.get_layout().offset,
fallback=config.unbacked_symint_fallback,
),
)
for input_node in input_nodes
]
out = cls.benchmark_example_value(layout)
out_extern = torch.as_strided(
out, out.size(), out.stride(), V.graph.sizevars.size_hint(layout.offset)
)
if VERIFY:
choices[0].benchmark(*example_inputs_extern, out=out_extern)
expected = out_extern.clone()
if DEBUG:
print(f"{len(choices)} tuning requests:")
def debug_str():
def tensor_repr(x):
return (
f"torch.empty_strided({tuple(x.size())!r}, {tuple(x.stride())!r}, "
f"dtype={x.dtype!r}, device={x.device.type!r})"
)
lines = [
"inputs = [",
]
for x in example_inputs:
lines.append(f" {tensor_repr(x)},")
lines += ["]", f"out = {tensor_repr(out)}", ""]
return "\n".join(lines)
def benchmark_choice_in_current_process(choice):
out.zero_()
if isinstance(choice, ExternKernelCaller):
# aten kernels want the offset baked in for sliced tensors
result = choice.benchmark(*example_inputs_extern, out=out_extern)
else:
# triton templates want the base pointer for sliced tensors
result = choice.benchmark(*example_inputs, out=out)
if VERIFY:
torch.testing.assert_close(out_extern, expected, **VERIFY)
torch.cuda.synchronize() # shake out any CUDA errors
return result
def benchmark_in_current_process(choices):
timings = {}
for choice in choices:
try:
timing = benchmark_choice_in_current_process(choice)
except CUDACompileError as e:
log.warning(
"CUDA compilation error: \n%s. \nIgnore this choice.", str(e)
)
timing = float("inf")
except RuntimeError as e:
msg = str(e)
if "invalid argument" in msg:
msg += "\n\nThis may mean this GPU is too small for max_autotune mode.\n\n"
log.warning(msg)
timing = float("inf")
else:
if "illegal memory access" in msg:
msg += "\n\nEither error in template or triton bug.\n"
raise ErrorFromChoice(msg, choice, debug_str()) # noqa: TRY200
except AssertionError as e:
raise AssertionError( # noqa: TRY200
f"Incorrect result from choice {choice}\n\n{e}"
)
timings[choice] = timing
return timings
def benchmark_in_sub_process(choices):
from . import autotune_process
# only benchmark triton kernel in sub process for now.
# ATen/Extern kernel are still benchmarked in the current process.
extern = [c for c in choices if isinstance(c, ExternKernelCaller)]
triton = [c for c in choices if not isinstance(c, ExternKernelCaller)]
timings = benchmark_in_current_process(extern)
timings.update(autotune_process.benchmark_in_sub_process(triton))
return timings
benchmark = (
benchmark_in_sub_process
if config.autotune_in_subproc
else benchmark_in_current_process
)
return benchmark
@staticmethod
def log_results(name, input_nodes, timings, elapse):
if not (config.max_autotune or config.max_autotune_gemm) or not PRINT_AUTOTUNE:
return
sizes = ", ".join(
[
"x".join(
map(
str,
V.graph.sizevars.size_hints(
n.get_size(), fallback=config.unbacked_symint_fallback
),
)
)
for n in input_nodes
]
)
n = None if log.getEffectiveLevel() == logging.DEBUG else 10
top_k = sorted(timings, key=timings.__getitem__)[:n]
best = top_k[0]
best_time = timings[best]
sys.stderr.write(f"AUTOTUNE {name}({sizes})\n")
for choice in top_k:
result = timings[choice]
if result:
sys.stderr.write(
f" {choice.name} {result:.4f} ms {best_time/result:.1%}\n"
)
else:
sys.stderr.write(
f" {choice.name} {result:.4f} ms <DIVIDED BY ZERO ERROR>\n"
)
autotune_type_str = (
"SubProcess" if config.autotune_in_subproc else "SingleProcess"
)
sys.stderr.write(f"{autotune_type_str} AUTOTUNE takes {elapse:.4f} seconds\n")
@staticmethod
def benchmark_example_value(node):
"""
Convert an ir.Buffer into a concrete torch.Tensor we can use for
benchmarking.
"""
if isinstance(node, ir.Layout):
node = ir.Buffer("fake", node)
# triton templates want the base tensor.
if isinstance(node, ir.BaseView):
node = node.unwrap_view()
# preserve rng states to avoid the rand_strided call below changes
# the rng states for the real model code.
with preserve_rng_state():
return rand_strided(
V.graph.sizevars.size_hints(
node.get_size(),
fallback=config.unbacked_symint_fallback,
),
V.graph.sizevars.size_hints(
node.get_stride(),
fallback=config.unbacked_symint_fallback,
),
device=node.get_device(),
dtype=node.get_dtype(),
extra_size=node.layout.offset,
)
@staticmethod
def key_of(node):
"""
Extract the pieces of an ir.Buffer that we should invalidate cached
autotuning results on.
"""
sizevars = V.graph.sizevars
return (
node.get_device().type,
str(node.get_dtype()),
*sizevars.size_hints(
node.get_size(),
fallback=config.unbacked_symint_fallback,
),
*sizevars.size_hints(
node.get_stride(),
fallback=config.unbacked_symint_fallback,
),
sizevars.size_hint(
node.get_layout().offset,
fallback=config.unbacked_symint_fallback,
),
)
_ALGORITHM_SELECTOR_CACHE = None
def autotune_select_algorithm(*args, **kwargs):
global _ALGORITHM_SELECTOR_CACHE
if _ALGORITHM_SELECTOR_CACHE is None:
_ALGORITHM_SELECTOR_CACHE = AlgorithmSelectorCache()
return _ALGORITHM_SELECTOR_CACHE(*args, **kwargs)
def realize_inputs(*args):
if len(args) == 1:
return ir.ExternKernel.require_stride1(ir.ExternKernel.realize_input(args[0]))
return [realize_inputs(x) for x in args]
# ensure lowering is imported so that `extern_kernels.*` is populated
from . import lowering # noqa: F401