Files
pytorch/.github/scripts/generate_ci_workflows.py
Sam Estep 46484e8dfe Simplify .github/scripts/generate_ci_workflows.py (#58491)
Summary:
This PR simplifies `.github/scripts/generate_ci_workflows.py` by using the same strategy as https://github.com/pytorch/pytorch/issues/54344, representing workflows as plain data to avoid duplicating the definition of the `generate_workflow_file` function. This will make the script easier to maintain if/when that function is modified and/or more workflow types are added.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58491

Test Plan:
The Lint job in CI; specifically:
```
make generate-gha-workflows
mypy --config mypy-strict.ini
```

Reviewed By: malfet, seemethere

Differential Revision: D28511918

Pulled By: samestep

fbshipit-source-id: aaf415a954d938a29aee7c9367c9bc2b9f44bb01
2021-05-18 11:49:51 -07:00

187 lines
7.4 KiB
Python
Executable File

#!/usr/bin/env python3
from pathlib import Path
from typing import Any, Dict
import jinja2
DOCKER_REGISTRY = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
GITHUB_DIR = Path(__file__).parent.parent
# it would be nice to statically specify that build_environment must be
# present, but currently Python has no easy way to do that
# https://github.com/python/mypy/issues/4617
PyTorchWorkflow = Dict[str, Any]
def PyTorchWindowsWorkflow(
*,
build_environment: str,
on_pull_request: bool = False
) -> PyTorchWorkflow:
CPU_TEST_RUNNER = "windows.4xlarge"
CUDA_TEST_RUNNER = "windows.8xlarge.nvidia.gpu"
return {
"build_environment": build_environment,
"test_runner_type": (
CUDA_TEST_RUNNER
if "cuda" in build_environment
else CPU_TEST_RUNNER
),
"on_pull_request": on_pull_request,
}
def PyTorchLinuxWorkflow(
*,
build_environment: str,
docker_image_base: str,
on_pull_request: bool = False,
enable_doc_jobs: bool = False,
) -> PyTorchWorkflow:
CPU_TEST_RUNNER = "linux.2xlarge"
CUDA_TEST_RUNNER = "linux.8xlarge.nvidia.gpu"
return {
"build_environment": build_environment,
"docker_image_base": docker_image_base,
"test_runner_type": (
CUDA_TEST_RUNNER
if "cuda" in build_environment
else CPU_TEST_RUNNER
),
"on_pull_request": on_pull_request,
"enable_doc_jobs": enable_doc_jobs,
}
def generate_workflow_file(
*,
workflow: PyTorchWorkflow,
workflow_template: jinja2.Template,
) -> Path:
output_file_path = GITHUB_DIR / f"workflows/{workflow['build_environment']}.yml"
with open(output_file_path, "w") as output_file:
output_file.writelines(["# @generated DO NOT EDIT MANUALLY\n"])
output_file.write(workflow_template.render(**workflow))
output_file.write("\n")
return output_file_path
WINDOWS_WORKFLOWS = [
PyTorchWindowsWorkflow(
build_environment="pytorch-win-vs2019-cpu-py3",
)
]
LINUX_WORKFLOWS = [
PyTorchLinuxWorkflow(
build_environment="pytorch-linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
on_pull_request=True,
enable_doc_jobs=True,
),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-paralleltbb-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-parallelnative-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-pure_torch-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-asan",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang7-onnx",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang7-onnx",
# ),
PyTorchLinuxWorkflow(
build_environment="pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-libtorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-py3.6-clang9-noarch",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-xla-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-vulkan-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-py3.8-gcc9-coverage",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.8-gcc9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-rocm3.9-py3.6",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-rocm3.9-py3.6",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-x86_32",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-x86_64",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v7a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v8a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-custom-dynamic",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-custom-static",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-code-analysis",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
]
if __name__ == "__main__":
jinja_env = jinja2.Environment(
variable_start_string="!{{",
loader=jinja2.FileSystemLoader(str(GITHUB_DIR.joinpath("templates"))),
)
template_and_workflows = [
(jinja_env.get_template("linux_ci_workflow.yml.in"), LINUX_WORKFLOWS),
(jinja_env.get_template("windows_ci_workflow.yml.in"), WINDOWS_WORKFLOWS)
]
for template, workflows in template_and_workflows:
for workflow in workflows:
print(generate_workflow_file(workflow=workflow, workflow_template=template))