mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Performs the update that was suggested in https://github.com/pytorch/pytorch/issues/41489 Adjust the functionality to largely match that pf the scipy companion PR https://github.com/scipy/scipy/pull/10844/, including - a new `draw_base2` method - include zero as the first point in the (unscrambled) Sobol sequence The scipy PR is also quite opinionated if the `draw` method doesn't get called with a base 2 number (for which the resulting sequence has nice properties, see the scipy PR for a comprehensive discussion of this). Note that this update is a **breaking change** in the sense that sequences generated with the same parameters after as before will not be identical! They will have the same (better, arguably) distributional properties, but calling the engine with the same seed will result in different numbers in the sequence. Pull Request resolved: https://github.com/pytorch/pytorch/pull/49710 Test Plan: ``` from torch.quasirandom import SobolEngine sobol = SobolEngine(3) sobol.draw(4) sobol = SobolEngine(4, scramble=True) sobol.draw(5) sobol = SobolEngine(4, scramble=True) sobol.draw_base2(2) ``` Reviewed By: malfet Differential Revision: D25657233 Pulled By: Balandat fbshipit-source-id: 9df50a14631092b176cc692b6024aa62a639ef61
178 lines
7.1 KiB
Python
178 lines
7.1 KiB
Python
import torch
|
|
from typing import Optional
|
|
|
|
|
|
class SobolEngine(object):
|
|
r"""
|
|
The :class:`torch.quasirandom.SobolEngine` is an engine for generating
|
|
(scrambled) Sobol sequences. Sobol sequences are an example of low
|
|
discrepancy quasi-random sequences.
|
|
|
|
This implementation of an engine for Sobol sequences is capable of
|
|
sampling sequences up to a maximum dimension of 21201. It uses direction
|
|
numbers from https://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using the
|
|
search criterion D(6) up to the dimension 21201. This is the recommended
|
|
choice by the authors.
|
|
|
|
References:
|
|
- Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
|
|
Journal of Complexity, 14(4):466-489, December 1998.
|
|
|
|
- I. M. Sobol. The distribution of points in a cube and the accurate
|
|
evaluation of integrals.
|
|
Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
|
|
|
|
Args:
|
|
dimension (Int): The dimensionality of the sequence to be drawn
|
|
scramble (bool, optional): Setting this to ``True`` will produce
|
|
scrambled Sobol sequences. Scrambling is
|
|
capable of producing better Sobol
|
|
sequences. Default: ``False``.
|
|
seed (Int, optional): This is the seed for the scrambling. The seed
|
|
of the random number generator is set to this,
|
|
if specified. Otherwise, it uses a random seed.
|
|
Default: ``None``
|
|
|
|
Examples::
|
|
|
|
>>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
|
|
>>> soboleng.draw(3)
|
|
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
|
|
[0.7500, 0.2500, 0.7500, 0.2500, 0.7500],
|
|
[0.2500, 0.7500, 0.2500, 0.7500, 0.2500]])
|
|
"""
|
|
MAXBIT = 30
|
|
MAXDIM = 21201
|
|
|
|
def __init__(self, dimension, scramble=False, seed=None):
|
|
if dimension > self.MAXDIM or dimension < 1:
|
|
raise ValueError("Supported range of dimensionality "
|
|
f"for SobolEngine is [1, {self.MAXDIM}]")
|
|
|
|
self.seed = seed
|
|
self.scramble = scramble
|
|
self.dimension = dimension
|
|
|
|
cpu = torch.device("cpu")
|
|
|
|
self.sobolstate = torch.zeros(dimension, self.MAXBIT, device=cpu, dtype=torch.long)
|
|
torch._sobol_engine_initialize_state_(self.sobolstate, self.dimension)
|
|
|
|
if not self.scramble:
|
|
self.shift = torch.zeros(self.dimension, device=cpu, dtype=torch.long)
|
|
else:
|
|
self._scramble()
|
|
|
|
self.quasi = self.shift.clone(memory_format=torch.contiguous_format)
|
|
self._first_point = (self.quasi / 2 ** self.MAXBIT).reshape(1, -1)
|
|
self.num_generated = 0
|
|
|
|
def draw(self, n=1, out=None, dtype=torch.float32):
|
|
r"""
|
|
Function to draw a sequence of :attr:`n` points from a Sobol sequence.
|
|
Note that the samples are dependent on the previous samples. The size
|
|
of the result is :math:`(n, dimension)`.
|
|
|
|
Args:
|
|
n (Int, optional): The length of sequence of points to draw.
|
|
Default: 1
|
|
out (Tensor, optional): The output tensor
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of the
|
|
returned tensor.
|
|
Default: ``torch.float32``
|
|
"""
|
|
if self.num_generated == 0:
|
|
if n == 1:
|
|
result = self._first_point
|
|
else:
|
|
result, self.quasi = torch._sobol_engine_draw(
|
|
self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated, dtype=dtype,
|
|
)
|
|
result = torch.cat((self._first_point, result), dim=-2)
|
|
else:
|
|
result, self.quasi = torch._sobol_engine_draw(
|
|
self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1, dtype=dtype,
|
|
)
|
|
|
|
self.num_generated += n
|
|
|
|
if out is not None:
|
|
out.resize_as_(result).copy_(result)
|
|
return out
|
|
|
|
return result
|
|
|
|
def draw_base2(self, m, out=None, dtype=torch.float32):
|
|
r"""
|
|
Function to draw a sequence of :attr:`2**m` points from a Sobol sequence.
|
|
Note that the samples are dependent on the previous samples. The size
|
|
of the result is :math:`(2**m, dimension)`.
|
|
|
|
Args:
|
|
m (Int): The (base2) exponent of the number of points to draw.
|
|
out (Tensor, optional): The output tensor
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of the
|
|
returned tensor.
|
|
Default: ``torch.float32``
|
|
"""
|
|
n = 2 ** m
|
|
total_n = self.num_generated + n
|
|
if not (total_n & (total_n - 1) == 0):
|
|
raise ValueError("The balance properties of Sobol' points require "
|
|
"n to be a power of 2. {0} points have been "
|
|
"previously generated, then: n={0}+2**{1}={2}. "
|
|
"If you still want to do this, please use "
|
|
"'SobolEngine.draw()' instead."
|
|
.format(self.num_generated, m, total_n))
|
|
return self.draw(n=n, out=out, dtype=dtype)
|
|
|
|
def reset(self):
|
|
r"""
|
|
Function to reset the ``SobolEngine`` to base state.
|
|
"""
|
|
self.quasi.copy_(self.shift)
|
|
self.num_generated = 0
|
|
return self
|
|
|
|
def fast_forward(self, n):
|
|
r"""
|
|
Function to fast-forward the state of the ``SobolEngine`` by
|
|
:attr:`n` steps. This is equivalent to drawing :attr:`n` samples
|
|
without using the samples.
|
|
|
|
Args:
|
|
n (Int): The number of steps to fast-forward by.
|
|
"""
|
|
if self.num_generated == 0:
|
|
torch._sobol_engine_ff_(self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated)
|
|
else:
|
|
torch._sobol_engine_ff_(self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1)
|
|
self.num_generated += n
|
|
return self
|
|
|
|
def _scramble(self):
|
|
g: Optional[torch.Generator] = None
|
|
if self.seed is not None:
|
|
g = torch.Generator()
|
|
g.manual_seed(self.seed)
|
|
|
|
cpu = torch.device("cpu")
|
|
|
|
# Generate shift vector
|
|
shift_ints = torch.randint(2, (self.dimension, self.MAXBIT), device=cpu, generator=g)
|
|
self.shift = torch.mv(shift_ints, torch.pow(2, torch.arange(0, self.MAXBIT, device=cpu)))
|
|
|
|
# Generate lower triangular matrices (stacked across dimensions)
|
|
ltm_dims = (self.dimension, self.MAXBIT, self.MAXBIT)
|
|
ltm = torch.randint(2, ltm_dims, device=cpu, generator=g).tril()
|
|
|
|
torch._sobol_engine_scramble_(self.sobolstate, ltm, self.dimension)
|
|
|
|
def __repr__(self):
|
|
fmt_string = [f'dimension={self.dimension}']
|
|
if self.scramble:
|
|
fmt_string += ['scramble=True']
|
|
if self.seed is not None:
|
|
fmt_string += [f'seed={self.seed}']
|
|
return self.__class__.__name__ + '(' + ', '.join(fmt_string) + ')'
|