Files
pytorch/torch/quasirandom.py
Max Balandat 449098c2d2 [SobolEngine] Update direction numbers to 21201 dims (#49710)
Summary:
Performs the update that was suggested in https://github.com/pytorch/pytorch/issues/41489

Adjust the functionality to largely match that pf the scipy companion PR https://github.com/scipy/scipy/pull/10844/, including
- a new `draw_base2` method
- include zero as the first point in the (unscrambled) Sobol sequence

The scipy PR is also quite opinionated if the `draw` method doesn't get called with a base 2 number (for which the resulting sequence has nice properties, see the scipy PR for a comprehensive discussion of this).

Note that this update is a **breaking change** in the sense that sequences generated with the same parameters after as before will not be identical! They will have the same (better, arguably) distributional properties, but calling the engine with the same seed will result in different numbers in the sequence.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49710

Test Plan:
```
from torch.quasirandom import SobolEngine

sobol = SobolEngine(3)
sobol.draw(4)

sobol = SobolEngine(4, scramble=True)
sobol.draw(5)

sobol = SobolEngine(4, scramble=True)
sobol.draw_base2(2)
```

Reviewed By: malfet

Differential Revision: D25657233

Pulled By: Balandat

fbshipit-source-id: 9df50a14631092b176cc692b6024aa62a639ef61
2021-02-01 08:44:31 -08:00

178 lines
7.1 KiB
Python

import torch
from typing import Optional
class SobolEngine(object):
r"""
The :class:`torch.quasirandom.SobolEngine` is an engine for generating
(scrambled) Sobol sequences. Sobol sequences are an example of low
discrepancy quasi-random sequences.
This implementation of an engine for Sobol sequences is capable of
sampling sequences up to a maximum dimension of 21201. It uses direction
numbers from https://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using the
search criterion D(6) up to the dimension 21201. This is the recommended
choice by the authors.
References:
- Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
Journal of Complexity, 14(4):466-489, December 1998.
- I. M. Sobol. The distribution of points in a cube and the accurate
evaluation of integrals.
Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
Args:
dimension (Int): The dimensionality of the sequence to be drawn
scramble (bool, optional): Setting this to ``True`` will produce
scrambled Sobol sequences. Scrambling is
capable of producing better Sobol
sequences. Default: ``False``.
seed (Int, optional): This is the seed for the scrambling. The seed
of the random number generator is set to this,
if specified. Otherwise, it uses a random seed.
Default: ``None``
Examples::
>>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
>>> soboleng.draw(3)
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.7500, 0.2500, 0.7500, 0.2500, 0.7500],
[0.2500, 0.7500, 0.2500, 0.7500, 0.2500]])
"""
MAXBIT = 30
MAXDIM = 21201
def __init__(self, dimension, scramble=False, seed=None):
if dimension > self.MAXDIM or dimension < 1:
raise ValueError("Supported range of dimensionality "
f"for SobolEngine is [1, {self.MAXDIM}]")
self.seed = seed
self.scramble = scramble
self.dimension = dimension
cpu = torch.device("cpu")
self.sobolstate = torch.zeros(dimension, self.MAXBIT, device=cpu, dtype=torch.long)
torch._sobol_engine_initialize_state_(self.sobolstate, self.dimension)
if not self.scramble:
self.shift = torch.zeros(self.dimension, device=cpu, dtype=torch.long)
else:
self._scramble()
self.quasi = self.shift.clone(memory_format=torch.contiguous_format)
self._first_point = (self.quasi / 2 ** self.MAXBIT).reshape(1, -1)
self.num_generated = 0
def draw(self, n=1, out=None, dtype=torch.float32):
r"""
Function to draw a sequence of :attr:`n` points from a Sobol sequence.
Note that the samples are dependent on the previous samples. The size
of the result is :math:`(n, dimension)`.
Args:
n (Int, optional): The length of sequence of points to draw.
Default: 1
out (Tensor, optional): The output tensor
dtype (:class:`torch.dtype`, optional): the desired data type of the
returned tensor.
Default: ``torch.float32``
"""
if self.num_generated == 0:
if n == 1:
result = self._first_point
else:
result, self.quasi = torch._sobol_engine_draw(
self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated, dtype=dtype,
)
result = torch.cat((self._first_point, result), dim=-2)
else:
result, self.quasi = torch._sobol_engine_draw(
self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1, dtype=dtype,
)
self.num_generated += n
if out is not None:
out.resize_as_(result).copy_(result)
return out
return result
def draw_base2(self, m, out=None, dtype=torch.float32):
r"""
Function to draw a sequence of :attr:`2**m` points from a Sobol sequence.
Note that the samples are dependent on the previous samples. The size
of the result is :math:`(2**m, dimension)`.
Args:
m (Int): The (base2) exponent of the number of points to draw.
out (Tensor, optional): The output tensor
dtype (:class:`torch.dtype`, optional): the desired data type of the
returned tensor.
Default: ``torch.float32``
"""
n = 2 ** m
total_n = self.num_generated + n
if not (total_n & (total_n - 1) == 0):
raise ValueError("The balance properties of Sobol' points require "
"n to be a power of 2. {0} points have been "
"previously generated, then: n={0}+2**{1}={2}. "
"If you still want to do this, please use "
"'SobolEngine.draw()' instead."
.format(self.num_generated, m, total_n))
return self.draw(n=n, out=out, dtype=dtype)
def reset(self):
r"""
Function to reset the ``SobolEngine`` to base state.
"""
self.quasi.copy_(self.shift)
self.num_generated = 0
return self
def fast_forward(self, n):
r"""
Function to fast-forward the state of the ``SobolEngine`` by
:attr:`n` steps. This is equivalent to drawing :attr:`n` samples
without using the samples.
Args:
n (Int): The number of steps to fast-forward by.
"""
if self.num_generated == 0:
torch._sobol_engine_ff_(self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated)
else:
torch._sobol_engine_ff_(self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1)
self.num_generated += n
return self
def _scramble(self):
g: Optional[torch.Generator] = None
if self.seed is not None:
g = torch.Generator()
g.manual_seed(self.seed)
cpu = torch.device("cpu")
# Generate shift vector
shift_ints = torch.randint(2, (self.dimension, self.MAXBIT), device=cpu, generator=g)
self.shift = torch.mv(shift_ints, torch.pow(2, torch.arange(0, self.MAXBIT, device=cpu)))
# Generate lower triangular matrices (stacked across dimensions)
ltm_dims = (self.dimension, self.MAXBIT, self.MAXBIT)
ltm = torch.randint(2, ltm_dims, device=cpu, generator=g).tril()
torch._sobol_engine_scramble_(self.sobolstate, ltm, self.dimension)
def __repr__(self):
fmt_string = [f'dimension={self.dimension}']
if self.scramble:
fmt_string += ['scramble=True']
if self.seed is not None:
fmt_string += [f'seed={self.seed}']
return self.__class__.__name__ + '(' + ', '.join(fmt_string) + ')'