Files
pytorch/torch/_dynamo/variables/torch.py
Animesh Jain 4308b8a28f [dynamo] Support torch.fx.traceback.annotate (#164678)
Builds on top of https://github.com/pytorch/pytorch/pull/163673 and https://github.com/pytorch/pytorch/pull/164174. This will be used in the followup PRs to apply regional inductor compilation.

The existing implementation let Dynamo trace into the `torch.fx.traceback.annotate`, but thats not what we want. We want Dynamo to essentially run the torch.fx.traceback.annotate function in eager, so that every Fx node created in Dynamo Fx graph has the custom meta node.

What does not work?
* We still have to set the context manager `torch.fx.traceback.preserve_node_meta()` in the user code because CI was unhappy. This can be fixed but with some perseverance.
* This does not work with graph breaks yet. But we can solve that problem, if needed, in a separate PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164678
Approved by: https://github.com/SherlockNoMad, https://github.com/jansel, https://github.com/xmfan
2025-10-08 22:41:00 +00:00

1968 lines
84 KiB
Python

# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
"""
This module implements variable tracking for torch functions and operations during Dynamo tracing.
It provides classes to handle different types of torch operations:
TorchInGraphFunctionVariable: Handles torch.* functions that should be captured in the FX graph.
Provides special handling for constant folding, tensor methods, and torch function overrides.
Manages complex cases like out= variants and parameter construction.
TorchCtxManagerClassVariable: Handles torch context managers like torch.no_grad(), autocast, etc.
Provides implementations for entering/exiting these contexts during tracing.
DispatchKeySetVariable: Represents torch.DispatchKeySet for managing dispatch keys and
device-specific operations during tracing.
The module includes special handling for:
- Constant folding of pure functions
- Tensor method calls
- torch.nn.Parameter construction
- __torch_function__ overrides
- Context manager state tracking
- Device and dtype management
This is a core part of Dynamo's tracing system, translating torch operations into
traceable graph nodes while preserving correct semantics and handling edge cases.
"""
import functools
import inspect
import logging
import math
import re
from collections.abc import Sequence
from typing import Any, Callable, Optional, TYPE_CHECKING
import torch._C
import torch._refs
import torch.fx
import torch.nn
from torch._guards import TracingContext
from torch._logging import warning_once
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
from .. import config, graph_break_hints, polyfills, variables
from ..codegen import PyCodegen
from ..create_parameter_op import (
can_convert_to_tracable_parameter,
new_parameter_placeholder,
tracable_create_parameter,
)
from ..device_interface import get_registered_device_interfaces
from ..exc import raise_observed_exception, unimplemented_v2
from ..guards import GuardBuilder, install_guard
from ..source import (
AttrSource,
CallFunctionNoArgsSource,
SyntheticLocalSource,
TorchSource,
)
from ..utils import (
check_unspec_or_constant_args,
guard_if_dyn,
has_torch_function,
hashable,
product,
proxy_args_kwargs,
unwrap_if_wrapper,
)
from .base import typestr, VariableTracker
from .ctx_manager import (
AutocastModeVariable,
ProfilerContextVariable,
TorchFunctionDisableVariable,
)
from .dicts import ConstDictVariable
from .distributed import DistributedVariable, ProcessGroupVariable
from .functions import bind_args_cached
from .lists import ListVariable, TupleVariable
from .torch_function import (
can_dispatch_torch_function,
dispatch_torch_function,
TensorWithTFOverrideVariable,
TorchFunctionModeStackVariable,
)
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
try:
from torch.distributed.fsdp._fully_shard import _fsdp_param_group
except ModuleNotFoundError:
_fsdp_param_group = None # type: ignore[assignment]
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
log = logging.getLogger(__name__)
supported_ctx_manager_classes = dict.fromkeys(
[
torch.profiler.profiler.profile,
torch.autograd.forward_ad._set_fwd_grad_enabled,
torch.autograd.forward_ad.dual_level,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
torch._C.DisableTorchFunctionSubclass,
torch._C.DisableTorchFunction,
torch._functorch.vmap.vmap_increment_nesting,
torch._functorch.eager_transforms.grad_increment_nesting,
torch._functorch.eager_transforms.jvp_increment_nesting,
torch._functorch.eager_transforms.enable_inplace_requires_grad,
torch.amp.autocast_mode.autocast,
torch.autograd.grad_mode.enable_grad,
torch.autograd.grad_mode.inference_mode,
torch.autograd.grad_mode.no_grad,
torch.autograd.grad_mode.set_grad_enabled,
torch.autograd.graph.disable_saved_tensors_hooks,
torch.cpu.amp.autocast_mode.autocast,
torch.cuda.amp.autocast_mode.autocast,
torch.fx.traceback.annotate,
# We'll let Dynamo inline into the contextlib part of these context
# manager instances, all the way till it invokes the wrapped function
# itself (at which point we wrap it back to special context manager
# VTs).
#
# This allows us to support calling functions decorated with these
# context managers, without much extra effort or code dup.
torch.nn.attention.sdpa_kernel.__wrapped__, # type: ignore[attr-defined]
]
)
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = dict.fromkeys(
[
torch._shape_as_tensor,
]
)
constant_fold_functions_need_guards = [
torch.accelerator.current_device_index,
torch.cuda.current_device,
torch.cuda.is_initialized,
torch.xpu.current_device,
torch.xpu.is_initialized,
]
constant_fold_functions = [
torch._assert,
torch._utils._get_device_index,
torch._C._get_cublas_allow_tf32,
torch._C._is_any_autocast_enabled,
torch.accelerator.is_available,
torch.cuda.get_device_properties,
torch.cuda.is_available,
torch.distributed.is_available,
torch.get_autocast_dtype,
torch.get_autocast_gpu_dtype,
torch.get_default_dtype,
torch.is_autocast_cache_enabled,
torch.is_autocast_cpu_enabled,
torch.is_autocast_enabled,
torch.is_complex,
torch.is_floating_point,
torch.nn.functional._Reduction.get_enum, # type: ignore[attr-defined]
torch.promote_types,
torch._C._get_privateuse1_backend_name,
torch.autograd._is_checkpoint_valid,
torch.xpu.get_device_properties,
torch.xpu.is_available,
] + constant_fold_functions_need_guards
if torch.distributed.is_available():
constant_fold_functions.extend(
[
torch.distributed.is_initialized,
torch.distributed.get_rank,
torch.distributed.get_world_size,
]
)
# Convert to dict for O(1) access times
constant_fold_functions_need_guards = dict.fromkeys(constant_fold_functions_need_guards)
constant_fold_functions = dict.fromkeys(constant_fold_functions)
@functools.cache
def tracing_state_functions() -> dict[Callable[[], Any], Optional[bool]]:
# Defined as a function to avoid circular import like torch.onnx
return {
torch.jit.is_scripting: False,
torch.jit.is_tracing: False,
torch._C._get_tracing_state: None,
torch.fx._symbolic_trace.is_fx_tracing: False,
torch.fx._symbolic_trace.is_fx_symbolic_tracing: False,
torch.onnx.is_in_onnx_export: False,
torch._dynamo.external_utils.is_compiling: True,
torch._utils.is_compiling: True,
torch.compiler.is_compiling: True,
torch.compiler.is_dynamo_compiling: True,
torch.compiler.is_exporting: True,
torch.nn.modules.activation._is_make_fx_tracing: False,
}
bin_ops = dict.fromkeys(["add", "sub", "mul", "div", "sqrt"])
dispatch_key_set_functions = {
torch._C._dispatch_keys,
torch._C._dispatch_tls_local_include_set,
torch._C._dispatch_tls_local_exclude_set,
}
@functools.cache
def get_overridable_functions():
from itertools import chain
from torch.overrides import get_overridable_functions as get_overridable_functions_
funcs = set(chain.from_iterable(get_overridable_functions_().values()))
more: set[Callable[..., Any]] = {
torch.ones,
torch.ones_like,
torch.zeros,
torch.zeros_like,
torch.empty,
torch.full,
}
funcs.update(more)
return funcs
class BaseTorchVariable(VariableTracker):
"""common base for all torch.* functions, classes, modules and other things"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(value, source=source)
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
def reconstruct(self, codegen: "PyCodegen"):
try:
name = f"{self.value.__module__}.{self.value.__name__}"
except Exception:
name = f"torch_obj_{id(self.value)}"
unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
codegen.extend_output(
codegen.setup_globally_cached(unique_var_name, self.value)
)
def as_proxy(self):
return self.value
def as_python_constant(self):
return self.value
def call_obj_hasattr(self, tx: "InstructionTranslator", name):
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
def can_constant_fold_through(self):
if self.value in constant_fold_functions:
return True
if (
self.value is torch.autograd._profiler_enabled
and config.constant_fold_autograd_profiler_enabled
):
# The relevant flag is enabled only for export. One might wonder
# why?
#
# Actually we would like to not graph break even in the case of
# Dynamo. But there is a weird-unsolved bug with Kineto + Dynamo
# when there are distributed jobs that lead to NCCL timeouts. This
# bug is a rare edege case, but we have not been able to root cause
# it yet. See https://www.internalfb.com/sevmanager/view/560336 for
# more details.
#
# So is this safe for export? Yes, for export, we do not anticipate
# JIT tracing in distributed job training, and the weird edge-case
# interaction with Kineto is not a valid usecase. So, this is ok.
return True
return getattr(self.value, "__module__", None) == "math"
class TorchCtxManagerClassVariable(BaseTorchVariable):
"""Points to a context manager class in torch.* that dynamo has implementations"""
def __repr__(self) -> str:
return f"TorchCtxManagerClassVariable({self.value})"
@staticmethod
def is_matching_cls(value):
# Unwrap if it's a functools.lru_cache wrapper
value = unwrap_if_wrapper(value)
# We can't do isinstance(value, type) check because some ctx managers
# are implemented as a function decorated by contextlib.contextmanager,
# E.g., torch._functorch.vmap.vmap_increment_nesting.
return (
# Context manager type or function with @contextmanager is callable
callable(value)
and (
hashable(value) # accesses value.__hash__()
and value in supported_ctx_manager_classes
)
)
def call_function(
self,
tx: "InstructionTranslator",
args: Sequence[VariableTracker],
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
from . import (
DisabledSavedTensorsHooksVariable,
DualLevelContextManager,
FSDPParamGroupUseTrainingStateVariable,
FxTracebackAnnotateVariable,
GradIncrementNestingCtxManagerVariable,
GradInplaceRequiresGradCtxManagerVariable,
GradModeVariable,
InferenceModeVariable,
JvpIncrementNestingCtxManagerVariable,
SDPAKernelVariable,
SetFwdGradEnabledContextManager,
StreamVariable,
VmapIncrementNestingCtxManagerVariable,
)
if self.value is torch.no_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, False)
return ctx.call_function(tx, args, kwargs)
else:
return GradModeVariable.create(tx, False)
elif self.value is torch.enable_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, True)
return ctx.call_function(tx, args, kwargs)
return GradModeVariable.create(tx, True)
elif self.value is torch.set_grad_enabled and len(args) == 1:
return GradModeVariable.create(
tx, args[0].as_python_constant(), initialized=True
)
elif self.value is torch.inference_mode:
assert len(args) <= 1 and len(kwargs) == 0
inf_mode = args[0].as_python_constant() if len(args) == 1 else True
return InferenceModeVariable.create(tx, inf_mode)
elif self.value is torch.fx.traceback.annotate:
assert len(args) <= 1 and len(kwargs) == 0
return FxTracebackAnnotateVariable(
args[0].as_python_constant(), source=self.source
)
elif inspect.isclass(self.value) and issubclass(self.value, torch.Stream):
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
return wrap_fx_proxy_cls(
StreamVariable,
tx,
tx.output.create_proxy(
"call_function",
self.value,
(),
{},
),
)
elif self.value in (
torch.amp.autocast_mode.autocast,
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
):
return AutocastModeVariable.create(self.value, args, kwargs)
elif self.value in (
# NOTE any class added here must align with the semantic
# requirements of `ProfilerContextVariable`.
torch.profiler.profile,
torch.profiler.record_function,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
):
warning_once(log, "Profiler function %s will be ignored", self.value)
return ProfilerContextVariable()
elif (
self.value is torch._C.DisableTorchFunctionSubclass
or self.value is torch._C.DisableTorchFunction
):
assert not (args or kwargs)
return TorchFunctionDisableVariable.create(
tx, only_subclass=self.value is torch._C.DisableTorchFunctionSubclass
)
elif self.value is torch._functorch.vmap.vmap_increment_nesting:
assert len(args) == 2
return VmapIncrementNestingCtxManagerVariable.create(
tx,
args,
)
elif self.value is torch._functorch.eager_transforms.jvp_increment_nesting:
assert len(args) == 0
return JvpIncrementNestingCtxManagerVariable.create(tx)
elif self.value is torch.autograd.forward_ad._set_fwd_grad_enabled:
assert len(args) == 1
return SetFwdGradEnabledContextManager.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.forward_ad.dual_level:
assert len(args) == 0
return DualLevelContextManager.create(tx)
elif self.value is torch._functorch.eager_transforms.grad_increment_nesting:
assert len(args) == 0
return GradIncrementNestingCtxManagerVariable.create(tx)
elif (
self.value is torch._functorch.eager_transforms.enable_inplace_requires_grad
):
assert len(args) == 1
return GradInplaceRequiresGradCtxManagerVariable.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
assert len(args) == 1
return DisabledSavedTensorsHooksVariable.create(
tx, args[0].as_python_constant()
)
elif (
_fsdp_param_group is not None
and self.value is _fsdp_param_group.FSDPParamGroup.use_training_state
):
assert len(args) == 2
return FSDPParamGroupUseTrainingStateVariable.create(
tx, args[0], args[1].as_python_constant()
)
elif self.value is torch.nn.attention.sdpa_kernel.__wrapped__: # type: ignore[attr-defined]
name_to_arg_map = bind_args_cached(
self.value, tx, self.source, args, kwargs
)
backends = name_to_arg_map["backends"].as_python_constant()
set_priority = name_to_arg_map["set_priority"].as_python_constant()
return SDPAKernelVariable.create(tx, backends, set_priority)
return super().call_function(tx, args, kwargs)
class TorchInGraphFunctionVariable(BaseTorchVariable):
"""Points to a torch function/method that should be put in FX graph"""
def __init__(self, value, nonstrict_traceable=None, **kwargs) -> None:
super().__init__(value, **kwargs)
from ..trace_rules import is_nonstrict_trace_callable
if nonstrict_traceable is None:
nonstrict_traceable = is_nonstrict_trace_callable(value)
self.nonstrict_traceable = nonstrict_traceable
def __repr__(self) -> str:
return f"TorchInGraphFunctionVariable({self.value}, nonstrict_traceable={self.nonstrict_traceable})"
def get_function(self):
return self.value
@staticmethod
@functools.cache
def _get_handlers():
"""Build a dict from function -> method to handle it so that we are O(1)
in terms of the number of function with special handling."""
handlers = {}
def register(*fns):
def _register(handler):
for fn in fns:
assert fn not in handlers, fn
handlers[fn] = handler
return handler
assert callable(fns[0])
return _register
from torch.backends.cuda import SDPAParams
from . import (
ConstantVariable,
DeterministicAlgorithmsVariable,
GradModeVariable,
StreamContextVariable,
SymNodeVariable,
TensorVariable,
UserDefinedObjectVariable,
)
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
@register(*tracing_state_functions())
def handle_tracing_state_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
# See: https://github.com/pytorch/pytorch/issues/110765
if self.value in (
torch._utils.is_compiling,
torch._dynamo.external_utils.is_compiling,
torch.compiler.is_compiling,
torch.compiler.is_dynamo_compiling,
torch.compiler.is_exporting,
):
tx.mark_inconsistent_side_effects()
return ConstantVariable.create(tracing_state_functions()[self.value])
@register(*dispatch_key_set_functions)
def handle_dispatch_key_set_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not kwargs
if self.value is torch._C._dispatch_keys:
assert len(args) == 1
assert isinstance(args[0], variables.TensorVariable)
example_value = args[0].proxy.node.meta["example_value"]
dks = self.value(example_value)
# Remove Python and PythonTLSSnapshot from the dispatch key set,
# as they originate from FakeTensor propagation.
# This should only be done if the example_value is a FakeTensor.
# However, if tensor subclasses are present,
# it is reasonable for Python to remain in the dispatch key set.
if isinstance(example_value, torch._subclasses.FakeTensor):
dks = (
dks
- torch._C.DispatchKeySet(torch._C.DispatchKey.Python)
- torch._C.DispatchKeySet(
torch._C.DispatchKey.PythonTLSSnapshot
)
)
return DispatchKeySetVariable.create(dks)
else:
assert not args
return DispatchKeySetVariable.create(self.value())
@register(torch.overrides.get_default_nowrap_functions.__wrapped__)
def handle_get_default_nowrap_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
# [Note: __torch_function__] we return empty here because we restrict
# the set of functions that we trace __torch_function__ on to
# functions outside of the actual set. Implementing this properly will require implementing
# some variable types to track and compare tensor getset descriptors
return VariableTracker.build(
tx, torch.overrides.get_default_nowrap_functions()
)
@register(torch.ops.inductor.accumulate_grad_.default)
def handle_accumulate_grad_(self, tx: "InstructionTranslator", *args, **kwargs):
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.accumulate_grad), args, kwargs
)
@register(math.radians)
def handle_radians(self, tx: "InstructionTranslator", *args, **kwargs):
if not check_unspec_or_constant_args(args, kwargs):
# Use polyfill to convert math.radians(x) into math.pi * x / 180.0
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.radians), args, kwargs
)
@register(torch.is_inference_mode_enabled)
def handle_is_inference_mode_enabled(self, tx: "InstructionTranslator"):
unimplemented_v2(
gb_type="Encountered torch.is_inference_mode_enabled during tracing",
context="",
explanation="torch.is_inference_mode_enabled() is not supported",
hints=[
*graph_break_hints.FUNDAMENTAL,
*graph_break_hints.INFERENCE_MODE,
],
)
@register(torch.is_tensor, torch.overrides.is_tensor_like)
def handle_is_tensor(self, tx: "InstructionTranslator", arg):
if isinstance(arg, TensorVariable) or (
self.value is torch.overrides.is_tensor_like
and isinstance(arg, UserDefinedObjectVariable)
and hasattr(arg.value, "__torch_function__")
):
return ConstantVariable.create(True)
else:
return ConstantVariable.create(False)
@register(
torch.is_floating_point,
torch.is_complex,
)
def handle_is_floating_point(self, tx: "InstructionTranslator", input):
input_arg = input
if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
if self.value is torch.is_floating_point:
return ConstantVariable.create(input_arg.dtype.is_floating_point)
elif self.value is torch.is_complex:
return ConstantVariable.create(input_arg.dtype.is_complex)
else:
raise AssertionError(f"calling {self.value}")
@register(torch.numel)
def handle_numel(self, tx: "InstructionTranslator", input):
if isinstance(input, TensorVariable) and input.valid_size():
return ConstantVariable.create(product(input.size))
elif isinstance(input, TensorVariable):
# Workaround dynamic shapes issue
return input.call_method(tx, "numel", [], {})
@register(torch.compile)
def handle_torch_compile(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) == 1:
# torch.compile is a no-op in dynamo
return args[0]
unimplemented_v2(
gb_type="torch.compile call with > 1 args",
context=f"args={args}, kwargs={kwargs}",
explanation="Attempted to call `torch.compile` with > 1 args. Dynamo does not support this.",
hints=[
"Remove the torch.compile call or its additional args.",
*graph_break_hints.SUPPORTABLE,
],
)
@register(*REWRITE_OPS_TO_TENSOR_SIZE_METHOD)
def handle_tensor_size_rewrites(self, tx: "InstructionTranslator", input):
assert isinstance(input, TensorVariable)
return input.call_method(tx, "size", [], {})
@register(
torch.nn.modules.utils._single,
torch.nn.modules.utils._pair,
torch.nn.modules.utils._triple,
torch.nn.modules.utils._quadruple,
torch.nn.modules.utils._ntuple,
)
def handle_ntuple(self, tx: "InstructionTranslator", *args, **kwargs):
return self._call_ntuple(tx, args, kwargs)
@register(torch.is_grad_enabled)
def handle_is_grad_enabled(self, tx):
install_guard(GradModeVariable._guards_singleton)
return ConstantVariable.create(torch.is_grad_enabled())
@register(torch.use_deterministic_algorithms)
def handle_use_deterministic_algorithms(
self, tx: "InstructionTranslator", mode, warn_only=False
):
# pyrefly: ignore # missing-attribute
if warn_only and warn_only.as_python_constant():
unimplemented_v2(
gb_type="Attempted to use torch.use_deterministic_algorithms(warn_only=True)",
context=f"mode={mode}, warn_only={warn_only}",
explanation="Dynamo does not support this.",
hints=[
"Remove param warn_only in function call torch.use_deterministic_algorithms.",
*graph_break_hints.SUPPORTABLE,
],
)
return DeterministicAlgorithmsVariable.create(tx, mode.as_python_constant())
@register(torch.are_deterministic_algorithms_enabled)
def handle_are_deterministic_algorithms_enabled(self, tx):
install_guard(DeterministicAlgorithmsVariable._guards_singleton)
return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())
@register(torch._C._is_torch_function_enabled)
def handle_is_torch_function_enabled(self, tx):
install_guard(TorchFunctionDisableVariable._guards_singleton)
# see comment on SymbolicTorchFunctionState class as to why
# this is not a bug
return ConstantVariable.create(
tx.symbolic_torch_function_state.torch_function_subclass_enabled
)
@register(torch._C._is_torch_function_all_disabled)
def handle_is_torch_function_all_disabled(self, tx):
install_guard(TorchFunctionDisableVariable._guards_singleton)
return ConstantVariable.create(
not tx.symbolic_torch_function_state.torch_function_mode_enabled
)
@register(
torch.overrides.has_torch_function,
torch.overrides.has_torch_function_variadic,
torch.overrides.has_torch_function_unary,
)
def handle_has_torch_function(self, tx: "InstructionTranslator", *args):
elems = (
args[0].unpack_var_sequence(tx)
if len(args) == 1 and isinstance(args[0], TupleVariable)
else args
)
return ConstantVariable.create(
any(has_torch_function(x) for x in elems),
)
@register(
*dict.fromkeys( # remove duplicates
device_interface.stream
for _, device_interface in get_registered_device_interfaces()
)
)
def handle_device_interface_stream(self, tx: "InstructionTranslator", stream):
return StreamContextVariable.create(tx, stream)
@register(torch.from_numpy)
def handle_from_numpy(self, tx: "InstructionTranslator", *args):
if not config.trace_numpy:
unimplemented_v2(
gb_type="call `torch.from_numpy` with `torch._dynamo.config.trace_numpy=False`",
context=f"trace_numpy={config.trace_numpy}",
explanation=(
"Attempted to call `torch.from_numpy` with config "
"`torch._dynamo.config.trace_numpy` set to `False`."
),
hints=[
"Change `torch._dynamo.config.trace_numpy` to `True`.",
],
)
if not np:
unimplemented_v2(
gb_type="`torch.from_numpy` with NumPy unavailable",
context="",
explanation="Attempted to call `torch.numpy` but NumPy could not be imported.",
hints=[
"Check NumPy version and installation in your environment.",
*graph_break_hints.USER_ERROR,
],
)
return wrap_fx_proxy_cls(
target_cls=TensorVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.as_tensor,
*proxy_args_kwargs(args, {}),
),
example_value=None,
)
@register(torch.jit.annotate)
def handle_jit_annotate(self, tx: "InstructionTranslator", the_type, the_value):
return the_value
@register(torch.backends.cudnn.is_acceptable)
def handle_cudnn_is_acceptable(
self, tx: "InstructionTranslator", tensor, *extra
):
# is_acceptable(tensor) returns true if
# (a) tensor dtype/device are supported by cudnn
# (b) cudnn is available
# (c) some initialization has completed
# technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
assert not extra, "Expect 1 input to cudnn.is_acceptable"
assert isinstance(tensor, TensorVariable), (
"Expect input to cudnn.is_acceptable to be a tensor"
)
tensor_inp = torch.tensor(0, dtype=tensor.dtype, device=tensor.device)
return ConstantVariable.create(
torch.backends.cudnn.is_acceptable(tensor_inp)
)
@register(torch.utils.hooks.BackwardHook)
def handle_backward_hook(self, tx: "InstructionTranslator", *args, **kwargs):
return variables.BackwardHookVariable.create(tx, *args, **kwargs)
@register(torch.nn.Parameter)
def handle_parameter(self, tx: "InstructionTranslator", *args, **kwargs):
return self.call_nn_parameter(tx, *args, **kwargs)
@register(torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
def handle_sym_size(self_, tx, self, dim=None):
# we see this when retracing already traced code
if dim is not None:
return self.call_method(tx, "size", [dim], {})
@register(torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
def handle_sym_stride(self_, tx, self, dim=None):
if dim is not None:
return self.call_method(tx, "stride", [dim], {})
@register(torch.addcdiv)
def handle_addcdiv(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) == 3 and "value" in kwargs and len(kwargs) == 1:
# decompose addcdiv into constituent ops, prevents a graph break due to converting
# value to a scalar
result = TorchInGraphFunctionVariable(torch.div).call_function(
tx, [*args[1:]], {}
)
result = TorchInGraphFunctionVariable(torch.mul).call_function(
tx, [result, kwargs["value"]], {}
)
return TorchInGraphFunctionVariable(torch.add).call_function(
tx, [args[0], result], {}
)
@register(torch.full)
def handle_full(self, tx, size, fill_value, **kwargs):
if isinstance(fill_value, TensorVariable):
result = TorchInGraphFunctionVariable(
torch.ops.aten._local_scalar_dense
).call_function(tx, [fill_value], {})
return TorchInGraphFunctionVariable(torch.full).call_function(
tx, [size, result], kwargs
)
@register(torch._foreach_lerp_)
def handle_inplace_foreach_lerp_scalar(
_, tx: "InstructionTranslator", *args, **kwargs
):
if len(args) == 3 and not isinstance(args[2], ListVariable) and not kwargs:
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.foreach_lerp_inplace),
args,
kwargs,
)
@register(torch._foreach_pow)
def handle_foreach_pow_scalar(_, tx: "InstructionTranslator", *args, **kwargs):
# In eager it's more performant to call item() from within the C op implementation
# in compile, it's more performant to not graph break.
if len(args) == 2 and isinstance(args[0], TensorVariable) and not kwargs:
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.foreach_pow_scalar),
args,
kwargs,
)
@register(torch._assert)
def handle_assert(self, tx: "InstructionTranslator", condition, message):
if (condition.is_python_constant() and condition.as_python_constant()) or (
isinstance(condition, variables.SymNodeVariable)
and condition.evaluate_expr()
):
return ConstantVariable(None)
@register(SDPAParams)
def handle_sdpa_params(self, tx: "InstructionTranslator", *args, **kwargs):
return wrap_fx_proxy(
tx,
proxy=tx.output.create_proxy(
"call_function",
torch._C._SDPAParams,
*proxy_args_kwargs(args, kwargs),
),
param_vars=args,
)
if DistributedVariable.is_available():
from torch.distributed.distributed_c10d import (
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
_resolve_group_name_by_ranks_and_tag,
get_process_group_ranks,
)
from torch.distributed.tensor import DTensor
@register(
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
get_process_group_ranks,
_resolve_group_name_by_ranks_and_tag,
)
def handle_constant_processgroup_functions(
self, tx: "InstructionTranslator", *args
):
# because the input is a "ProcessGroupVariable", we'll be guarding on its
# ID_MATCH based on how it was constructed.
# We desugar it at trace-time into ranks by directly calling util
# bake the result into the trace
if len(args) == 1:
# group or group name
assert isinstance(args[0], (ProcessGroupVariable, ConstantVariable))
elif len(args) == 2:
# ranks + tag
assert isinstance(args[0], ListVariable) and isinstance(
args[1], ConstantVariable
)
else:
raise AssertionError(
f"Invalid group value ({args}) for constant pg "
f"function {self.value}"
)
args_as_value = [arg.as_python_constant() for arg in args]
invocation_result = self.value(*args_as_value)
# Note - while we *could* cook up sources around invocations, like a FunctionSource
# the space of invoking functions in the middle of the guard chain is very iffy. As such,
# guard propagation via options is the best we can do.
return VariableTracker.build(tx, invocation_result)
@register(DTensor.from_local)
def handle_from_local(self, tx: "InstructionTranslator", *args, **kwargs):
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
# and rewrite args to have only proxyable args, then insert call_function
args_as_value = [x.as_python_constant() for x in args[1:]]
kwargs_as_value = {
k: v.as_python_constant()
for k, v in kwargs.items()
if k not in ["shape", "stride"]
}
kwargs_to_be_proxied = {
k: kwargs[k] for k in ["shape", "stride"] if k in kwargs
}
def fn_with_prim_types(x, shape=None, stride=None):
return self.value(
x, *args_as_value, **kwargs_as_value, shape=shape, stride=stride
)
# attach the same function name for better debugging
fn_with_prim_types.__name__ = "prim " + self.value.__name__
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_with_prim_types,
*proxy_args_kwargs(
[args[0]],
kwargs_to_be_proxied,
),
),
)
@register(torch.nested.nested_tensor)
def handle_nested_tensor(
self,
tx: "InstructionTranslator",
tensor_list=None,
*args,
layout=None,
**kwargs,
):
from .lists import BaseListVariable
if layout and layout.as_python_constant() == torch.strided:
unimplemented_v2(
gb_type="Attempted to use strided NestedTensor",
context=f"layout={layout}",
explanation="Dynamo does not support this.",
hints=[
"Change layout=torch.jagged.",
*graph_break_hints.SUPPORTABLE,
],
)
if not isinstance(tensor_list, BaseListVariable):
unimplemented_v2(
gb_type="Attempted to use `nested_tensor` with non-list input",
context=f"tensor_list={tensor_list}",
explanation="Dynamo does not support this.",
hints=[
"Change `nested_tensor` with list input.",
*graph_break_hints.USER_ERROR,
],
)
@register(torch.nn.functional.one_hot)
def handle_one_hot(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) + len(kwargs) == 1 or (
len(args) == 2
and args[1].is_python_constant()
and args[1].as_python_constant() == -1
):
unimplemented_v2(
gb_type="Attempted to use `torch.nn.functional.one_hot` with data-dependent output shape",
context=f"args={args}, kwargs={kwargs}",
explanation="Dynamo does not support this.",
hints=[
"Explicitly set the `num_classes` param of the function call "
"`torch.nn.functional.one_hot` to something other than -1.",
],
)
@register(torch.fx.experimental.symbolic_shapes.guard_size_oblivious)
def handle_guard_size_oblivious(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
# TODO: this probably should be folded somewhere else but I'm not sure where
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.guard_size_oblivious(
expr.sym_num
)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch.fx.experimental.symbolic_shapes.guard_or_true)
def handle_guard_or_true(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
# TODO: this probably should be folded somewhere else but I'm not sure where
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.guard_or_true(expr.sym_num)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch.fx.experimental.symbolic_shapes.guard_or_false)
def handle_guard_or_false(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
# TODO: this probably should be folded somewhere else but I'm not sure where
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.guard_or_false(expr.sym_num)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch.fx.experimental.symbolic_shapes.statically_known_false)
def handle_statically_known_false(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.statically_known_false(
expr.sym_num
)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch.fx.experimental.symbolic_shapes.guard_scalar)
def guard_scalar(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
val = expr.sym_num
elif isinstance(expr, ConstantVariable):
val = expr.value
else:
raise torch._dynamo.exc.Unsupported("branch not supported")
return variables.ConstantVariable.create(
# pyrefly: ignore # bad-argument-type
torch.fx.experimental.symbolic_shapes.guard_scalar(val)
)
@register(torch.fx.experimental.symbolic_shapes.statically_known_true)
def handle_statically_known_true(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.statically_known_true(
expr.sym_num
)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch.fx.experimental.symbolic_shapes.sym_and)
def handle_sym_and(self, tx: "InstructionTranslator", *terms):
if all(isinstance(x, SymNodeVariable) for x in terms):
return SymNodeVariable.create(
tx,
torch.fx.experimental.symbolic_shapes.sym_and(
*(x.as_proxy() for x in terms)
),
sym_num=None,
)
@register(torch.fx.experimental.symbolic_shapes.sym_or)
def handle_sym_or(self, tx: "InstructionTranslator", *terms):
if all(isinstance(x, SymNodeVariable) for x in terms):
return SymNodeVariable.create(
tx,
torch.fx.experimental.symbolic_shapes.sym_or(
*(x.as_proxy() for x in terms)
),
sym_num=None,
)
@register(torch.fx.experimental.symbolic_shapes.has_static_value)
def handle_has_static_value(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
val = expr.sym_num
elif isinstance(expr, ConstantVariable):
val = expr.value
else:
return
return variables.ConstantVariable.create(
# pyrefly: ignore # bad-argument-type
torch.fx.experimental.symbolic_shapes.has_static_value(val)
)
@register(torch._C._autograd._unsafe_set_version_counter)
def handle_unsafe_set_version_counter(
self, tx: "InstructionTranslator", *args, **kwargs
):
from ..tensor_version_op import _unsafe_set_version_counter
return TorchInGraphFunctionVariable(
_unsafe_set_version_counter
).call_function(tx, [*args], kwargs)
@register(torch._C._functorch.peek_interpreter_stack)
def handle_functorch_peek_interpreter_stack(
self, tx: "InstructionTranslator", *args, **kwargs
):
# Wrap C++ interpreter (torch._C._functorch.CInterpreter) as UserDefinedObjectVariable,
# but Python interpreter (torch._functorch.pyfunctorch.FuncTorchInterpreter) as FuncTorchInterpreterVariable.
return UserDefinedObjectVariable(
torch._C._functorch.peek_interpreter_stack()
)
@register(torch._functorch.pyfunctorch.coerce_cinterpreter)
def handle_functorch_pyfunctorch_coerce_cinterpreter(
self, tx: "InstructionTranslator", *args, **kwargs
):
cinterpreter = args[0].value
return FuncTorchInterpreterVariable(
torch._functorch.pyfunctorch.coerce_cinterpreter(cinterpreter)
)
@register(torch.tensor)
def handle_torch_tensor(self, tx: "InstructionTranslator", *args, **kwargs):
def check_any_unspec(x):
# NB: This includes UnspecializedPythonVariable
if isinstance(x, (TensorVariable, SymNodeVariable)):
return True
elif isinstance(x, (ListVariable, TupleVariable)):
return any(check_any_unspec(y) for y in x.items)
# TODO: there maybe other recursive structures you need to
# check
else:
return False
data_arg = None
if args:
data_arg = args[0]
elif "data" in kwargs:
data_arg = kwargs["data"]
# NB: OK to pass torch.tensor(tensor), this will trace fine
if not isinstance(data_arg, TensorVariable) and check_any_unspec(data_arg):
# This is slower and less canonical, so only use it if we
# have to
return TorchInGraphFunctionVariable(torch._refs.tensor).call_function(
tx, [*args], kwargs
)
@register(torch._C._pop_torch_function_stack)
def handle_pop_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
if not tx.symbolic_torch_function_state.mode_stack:
unimplemented_v2(
gb_type="Attempted to pop from empty torch function mode stack",
context="",
explanation="Called `torch._C._pop_torch_function_stack` when torch function mode stack is empty.",
hints=[
"Do not pop from empty torch function mode stack.",
*graph_break_hints.USER_ERROR,
],
)
TorchFunctionModeStackVariable.register_mutation(tx)
return tx.symbolic_torch_function_state.pop_torch_function_mode()
@register(torch._C._push_on_torch_function_stack)
def handle_push_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert len(args) == 1 and not kwargs
TorchFunctionModeStackVariable.register_mutation(tx)
tx.symbolic_torch_function_state.push_torch_function_mode(args[0])
return ConstantVariable.create(None)
@register(torch._C._len_torch_function_stack)
def handle_len_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
return ConstantVariable.create(
len(tx.symbolic_torch_function_state.mode_stack)
)
@register(torch._C._get_function_stack_at)
def handle_get_stack_at(self, tx: "InstructionTranslator", *args, **kwargs):
assert len(args) == 1 and not kwargs
ind = args[0].as_python_constant()
assert ind >= 0 and ind < len(tx.symbolic_torch_function_state.mode_stack)
return tx.symbolic_torch_function_state.mode_stack[ind]
@register(torch.get_device_module.__wrapped__)
def handle_get_device_module(self, tx, *args, **kwargs):
if len(args) + len(kwargs) > 1 or (kwargs and "device" not in kwargs):
unimplemented_v2(
gb_type="improper torch.get_device_module arguments",
context=f"args={args}, kwargs={kwargs}",
explanation="torch.get_device_module accepts 1 optional argument `device`",
hints=[
*graph_break_hints.USER_ERROR,
],
)
try:
if kwargs:
device = kwargs["device"].as_python_constant()
elif args:
device = args[0].as_python_constant()
else:
device = None
module = torch.get_device_module(device)
except Exception as e:
unimplemented_v2(
gb_type="bad device argument to torch.get_device_module",
context=f"args={args}, kwargs={kwargs}",
explanation="Expected valid string/torch.device argument ('cpu', 'cuda', etc.)",
hints=[*graph_break_hints.USER_ERROR],
from_exc=e,
)
# need to guard only on no-arg get_device_module
# pyrefly: ignore # unbound-name
if device is None:
source = CallFunctionNoArgsSource(self.source)
install_guard(source.make_guard(GuardBuilder.ID_MATCH))
# assumes `module` is in the form `torch.xyz`
new_source = AttrSource(
TorchSource(),
# pyrefly: ignore # unbound-name
module.__name__.rsplit(".", maxsplit=1)[-1],
)
# pyrefly: ignore # unbound-name
return VariableTracker.build(tx, module, new_source)
@register(torch.set_default_device)
def handle_set_default_device(
self, tx: "InstructionTranslator", *args, **kwargs
):
# Today this is inserted in the graph, once TF mode
# handling is complete, we can trace the device context
# like any other TF mode and remove this special handling
# Insert the TF mode representing the device context at
# the bottom of the stack to match the eager semantics
# Running the graph will ensure that the DeviceContext mode is
# at the correct position in the stack
TorchFunctionModeStackVariable.register_mutation(tx)
if args[0].is_python_constant() and args[0].as_python_constant() is None:
TorchFunctionModeStackVariable.clear_default_device(tx)
else:
TorchFunctionModeStackVariable.register_device_context_insertion(tx)
return ConstantVariable.create(None)
return handlers
def call_function(
self,
tx: "InstructionTranslator",
args: Sequence[VariableTracker],
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
from . import ConstantVariable, SymNodeVariable, TensorVariable
from .builder import wrap_fx_proxy
if self.nonstrict_traceable:
import torch._higher_order_ops.flat_apply as flat_apply
from torch._higher_order_ops.flat_apply import (
func_to_graphable,
is_graphable_type,
)
from torch._subclasses.fake_tensor import fake_tensor_tls
from torch.utils._pytree import tree_flatten
from .base import AsPythonConstantNotImplementedError
# 1. Convert `args, kwargs` into pytree-flattened proxy forms.
#
# Rather than reconstructing `args, kwargs` into python objects and
# then tree_flatten them, we just let Dynamo symbolically interpret
# `tree_flatten((args, kwargs))`. This saves us from having to
# worry about the reconstruction logic, side effects, and guards.
packed_input_vt = TupleVariable.build(
tx, (TupleVariable.build(tx, args), ConstDictVariable.build(tx, kwargs))
)
out_vt = variables.UserFunctionVariable(tree_flatten).call_function(
tx, [packed_input_vt], {}
)
assert isinstance(out_vt, TupleVariable) and len(out_vt.items) == 2
flat_args_vts, input_spec_vt = out_vt.items
assert isinstance(flat_args_vts, ListVariable)
# Handle the case when the input contains a non-graphable type.
for flat_arg_vt in flat_args_vts.items:
arg_type = flat_arg_vt.python_type()
if not is_graphable_type(arg_type):
type_name = flat_arg_vt.python_type().__qualname__
unimplemented_v2(
gb_type="Invalid input type for nonstrict_trace-ed function",
context=f"Encountered input of type <{type_name}>.",
explanation=(
"For `nonstrict_trace`-ed functions, only basic types (e.g., torch.Tensor, int, float) "
"or pytree containers of those are allowed as inputs. The provided argument contains "
"an unsupported type."
),
hints=[
"Use one of the following to register the type with pytree:\n"
"* `torch.utils._pytree.register_constant`\n"
"* `torch.utils._pytree.register_dataclass`\n"
"* `torch.utils._pytree.register_pytree_node`",
],
)
# Since we checked with `is_graphable` above, `as_proxy` on the
# flat_arg VT should always work.
proxified_flat_args = [
flat_arg_vt.as_proxy() for flat_arg_vt in flat_args_vts.items
]
# The downstream `flat_apply` call requires the input spec; however,
# the spec not a graphable type, so we still have to reconstruct it
# into a python object, and store it as a constant attribute on the
# fx graph.
try:
input_spec = input_spec_vt.as_python_constant()
except AsPythonConstantNotImplementedError as e:
typ = e.vt.python_type()
type_name = typ.__qualname__
import torch.utils._pytree as pytree
if pytree.is_constant_class(typ):
unimplemented_v2(
gb_type="Input marked with `pytree.register_constant` constructed in the `torch.compile` region",
context=f"Input={input_spec_vt}, offending type <{type_name}>.",
explanation=(
"Calling a `nonstrict_trace`-ed function with an input that contains an object "
f"of type <{type_name}>, which was marked with `pytree.register_constant`. However, the object "
"was constructed _inside_ the `torch.compile` region. This is not supported."
),
hints=[
"Construct the object _outside_ the `torch.compile` region, or submit an issue to GitHub.",
*graph_break_hints.SUPPORTABLE,
],
from_exc=e,
)
else:
unimplemented_v2(
gb_type="Invalid use of pytree_flatten with nonstrict_trace-ed function",
context=f"Input={input_spec_vt}, offending type <{type_name}>.",
explanation=(
"Calling a `nonstrict_trace`-ed function where one of the inputs has been registered "
f"with a `pytree_flatten` that places an object of type <{type_name}> into the context."
),
hints=[
"Modifying the `pytree_flatten` to avoid placing the object into the context.",
f"Apply one of the following to <{type_name}>:\n"
"* `torch.utils._pytree.register_constant`\n"
"* `torch.utils._pytree.register_dataclass`\n"
"* `torch.utils._pytree.register_pytree_node`",
*graph_break_hints.SUPPORTABLE,
],
from_exc=e,
)
fn = self.value
def patched_fn(*args, **kwargs):
# This enables reads to global/captured tensors, and we'll just
# treat them as constants in the graph. Note that after
# AOTDispatcher, this logic would disappear.
old_val = fake_tensor_tls.allow_non_fake_inputs_override
fake_tensor_tls.allow_non_fake_inputs_override = True
try:
res = fn(*args, **kwargs)
finally: # reset even when `fn` raises
fake_tensor_tls.allow_non_fake_inputs_override = old_val
return res
# `flat_apply` wants a TreeSpec for the function input.
_, f_spec = func_to_graphable(patched_fn)
# TreeSpec isn't graphable, so we register the function and input
# specs as attributes on the graph module.
f_spec_proxy = tx.output.register_static_attr_and_return_proxy(
f"{fn.__name__}_spec", f_spec
)
input_spec_proxy = tx.output.register_static_attr_and_return_proxy(
fn.__name__ + "_input_spec",
# pyrefly: ignore # unbound-name
input_spec,
)
f_spec_proxy.node.type = type(f_spec)
# pyrefly: ignore # unbound-name
input_spec_proxy.node.type = type(input_spec)
all_args = (f_spec_proxy, input_spec_proxy, *proxified_flat_args)
# 2. Create a proxy call to `flat_apply`, then fake-tensor propagate
# the call and wrap output into a VariableTracker.
proxy = tx.output.create_proxy("call_function", flat_apply, all_args, {})
try:
# TODO support more output types once `flat_apply` supports
# pytree-able output types. We can have Dynamo trace through an
# unflatten call (just like we traced through a flatten above)
# to rebuild the actual output VT.
out_vt = wrap_fx_proxy(tx, proxy)
except (
# From `handle_traced_output`.
torch._dynamo.exc.Unsupported,
# From `flat_apply` assert on output type.
torch._dynamo.exc.TorchRuntimeError,
):
unimplemented_v2(
gb_type="Unsupported output type for nonstrict_trace-ed function",
context=f"Function: {fn.__name__}",
explanation=(
"For `nonstrict_trace`-ed functions, only basic types (e.g., torch.Tensor, int, list)"
" are allowed as output. The result of this call contains an unsupported type."
),
hints=[*graph_break_hints.SUPPORTABLE],
)
return out_vt
if self.torch_function_override_enabled(tx, args, kwargs):
return dispatch_torch_function(tx, self, args, kwargs)
if self.can_constant_fold_through() and check_unspec_or_constant_args(
args, kwargs
):
# constant fold functions need to be guarded.
if self.value in constant_fold_functions_need_guards:
source = CallFunctionNoArgsSource(self.source)
install_guard(source.make_guard(GuardBuilder.EQUALS_MATCH))
# constant fold
try:
return ConstantVariable.create(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
except (OverflowError, TypeError, ValueError) as exc:
raise_observed_exception(
type(exc),
tx,
args=list(map(ConstantVariable.create, exc.args)),
)
if self.is_tensor_method():
name = self.value.__name__
# Guard against inplace view op on input tensor (not supported)
if args and isinstance(args[0], variables.TensorVariable):
tensor_var = args[0]
# Check if input tensor and inplace_view op specifically
if tensor_var.source is not None and hasattr(torch.ops.aten, name):
fn = getattr(torch.ops.aten, name)
if (
hasattr(fn, "overloads")
and hasattr(fn, fn.overloads()[0])
and torch.Tag.inplace_view
in getattr(fn, fn.overloads()[0]).tags
):
unimplemented_v2(
gb_type="Inplace op on input tensor",
context="",
explanation=f"Attempted to trace an inplace view op on input tensor {typestr(self.value)}.",
hints=[
*graph_break_hints.SUPPORTABLE,
"Ensure you do not modify input tensor in place.",
],
)
return self.call_tensor_method(tx, args, kwargs)
special_handler = self._get_handlers().get(self.value)
if special_handler:
result = special_handler(self, tx, *args, **kwargs)
if result:
return result
any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)
all_ints_or_floats = all(
isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
for x in args
)
if (
getattr(self.value, "__module__", "") == "torch"
and self.value.__name__ in bin_ops
and any_symints_or_symfloats
and all_ints_or_floats
):
msg = f"""\
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
To support this behavior, we need to allow const-propping tensors that store symint data.
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
"""
log.warning(msg)
unimplemented_v2(
gb_type="Attempted to call torch in-graph function on only torch.SymInt arguments",
context=f"fn={self.value}, args={args}, kwargs={kwargs}",
explanation=(
f"Attempted to call {str(self.value)} (that should be put in the FX graph) on only torch.SymInt arguments. "
"Dynamo does not support this."
),
hints=[
*graph_break_hints.SUPPORTABLE,
],
)
# TODO(voz): Replace w/ dynamic shape rewrite table.
# Ideally, we would be able to do this at ctor time, but alas we need a combination
# of value + args to determine this.
fn_ = self.value
if any_symints_or_symfloats:
torch_sym_op = f"_sym_{self.value.__name__}"
if getattr(self.value, "__module__", None) == "math" and hasattr(
torch, torch_sym_op
):
fn_ = getattr(torch, torch_sym_op)
# TODO for each of the following check on `out=` or `requires_grad=`
# variant torch ops, the original function could come from a user
# defined `@allow_in_graph` function as well, which doesn't have the
# same semantics as the torch ops.
# Calling fake tensor propagation can mutate the out= tensor in
# tx.output.tracked_fakes. tracked_fakes are used to apply
# symbolic_shape guards. Mutating them destroys the information
# prior to tracing, which is essential for creating right
# guards. So save the shape now, and check later if it has
# changed. If it has, graph break.
saved_out_shapes = None
out_kwarg_vt = None
if "out" in kwargs:
out_kwarg_vt = kwargs["out"]
# e.g., out=(t1, t2, ...)
if isinstance(out_kwarg_vt, (TupleVariable, ListVariable)):
saved_out_shapes = []
for vt in out_kwarg_vt.items:
if isinstance(vt, variables.TensorVariable):
shape = vt.proxy.node.meta["example_value"].shape
else:
shape = None
saved_out_shapes.append(shape)
# e.g., out=output_tensor
if isinstance(out_kwarg_vt, variables.TensorVariable):
saved_out_shapes = out_kwarg_vt.proxy.node.meta["example_value"].shape
tensor_variable = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
*proxy_args_kwargs(args, kwargs),
),
)
# Handle e.g., `torch.ones(10, requires_grad=True)`
if (
isinstance(tensor_variable, TensorVariable)
and "requires_grad" in kwargs
and kwargs["requires_grad"].as_python_constant()
):
unimplemented_v2(
gb_type="Attempted to use tensor creation function with requires_grad=True",
context=f"fn={self.value}, args={args}, kwargs={kwargs}",
explanation="Dynamo does not support this.",
hints=[
"Create the tensor outside the compiled region.",
"Do not set `requires_grad=True`.",
*graph_break_hints.SUPPORTABLE,
],
)
# Handle e.g., `torch.add(a, b, out=result)`
if saved_out_shapes is not None:
# out variants of torch operators like torch.sort and torch.sigmoid
# mutate the tensors in the out field.
#
# However, it's non-trivial to update all references of the old
# `TensorVariable` to the new one returned (`result_var`), so we
# take the conservative approach to graph break on size changes, and
# assume other cases can fall through soundly.
#
# Note that although these tensor variablels would hold different
# proxies, the in-place mutation semantics is preserved in the FX
# graph, so we won't have correctness issues.
if isinstance(saved_out_shapes, list):
for out_tensor_vt, saved_out_shape in zip(
out_kwarg_vt.items, # type: ignore[union-attr]
saved_out_shapes,
):
if saved_out_shape is None:
# This should be extremely rare, but it's kept for now
# until we invest in enforcing the `out=` kwarg for only
# torch methods.
continue
assert isinstance(out_tensor_vt, TensorVariable)
fake_out = out_tensor_vt.proxy.node.meta["example_value"]
if saved_out_shape != fake_out.shape:
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented_v2(
gb_type="Shape mismatch with out= list of tensor variants",
context=f"fn={self.value}, args={args}, kwargs={kwargs}",
explanation=(
f"Shape mismatch when calling {self.value} with `out=`. "
f"Provided `out=` shape: {saved_out_shape}. Actual shape: {fake_out.shape}."
),
hints=[
*graph_break_hints.SUPPORTABLE,
],
)
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented_v2(
gb_type="Attempted to call op with non-contiguous `out=` list of tensors",
context=f"self.value={self.value}, args={args}, kwargs={kwargs}",
explanation="Dynamo does not support this.",
hints=[
*graph_break_hints.SUPPORTABLE,
],
)
else:
assert isinstance(out_kwarg_vt, TensorVariable)
assert "example_value" in out_kwarg_vt.proxy.node.meta
fake_out = out_kwarg_vt.proxy.node.meta["example_value"]
if saved_out_shapes != fake_out.shape:
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented_v2(
gb_type="Shape mismatch with out= tensor variant",
context=f"fn={self.value}, args={args}, kwargs={kwargs}",
explanation=(
f"Shape mismatch when calling {self.value} with `out=`. "
f"Provided `out=` shape: {saved_out_shapes}. Actual shape: {fake_out.shape}."
),
hints=[
*graph_break_hints.SUPPORTABLE,
],
)
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented_v2(
gb_type="Attempted to call op with non-contiguous `out=` tensor",
context=f"self.value={self.value}, args={args}, kwargs={kwargs}",
explanation="Dynamo does not support this.",
hints=[
*graph_break_hints.SUPPORTABLE,
],
)
return tensor_variable
def _call_ntuple(self, tx: "InstructionTranslator", args, kwargs):
"""inline behavior of torch.nn.modules.utils._ntuple"""
if self.value is torch.nn.modules.utils._ntuple:
count = args[0].as_python_constant()
else:
count = self.value.__closure__[0].cell_contents
assert isinstance(count, int)
assert not kwargs
def handle_ntuple(value):
if value.has_unpack_var_sequence(tx):
return variables.TupleVariable(
list(value.unpack_var_sequence(tx)),
)
elif value.is_python_constant():
# constant prop through it
return variables.ConstantVariable.create(
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
)
else:
unimplemented_v2(
gb_type="Attempted to use `torch.nn.modules.utils._ntuple` with unsupported argument type",
context=f"value={value}",
explanation="Dynamo does not support this.",
hints=[
"Change use of _ntuple with argument as constant or tensor.",
],
)
if self.value is torch.nn.modules.utils._ntuple:
return variables.LambdaVariable(handle_ntuple)
else:
return handle_ntuple(args[0])
@classmethod
def call_nn_parameter(cls, tx, data=None, requires_grad=True):
"""A call to torch.nn.Parameter() gets lifted to before the graph"""
if tx.export:
unimplemented_v2(
gb_type="Attempted to use `torch.nn.Parameter()` with export",
context="",
explanation="Dynamo does not support this.",
hints=[
"Do not use `torch.nn.Parameter()` with export.",
*graph_break_hints.SUPPORTABLE,
],
)
if isinstance(requires_grad, variables.VariableTracker):
try:
requires_grad = requires_grad.as_python_constant()
except NotImplementedError:
unimplemented_v2(
gb_type="non-constant `requires_grad` argument to `torch.nn.Parameter`",
context=f"requires_grad={requires_grad}",
explanation="Dynamo does not support this.",
hints=[
"Change `requires_grad` to be a bool.",
*graph_break_hints.USER_ERROR,
],
)
if not isinstance(data, variables.TensorVariable):
unimplemented_v2(
gb_type="`torch.nn.Parameter()` with unsupported data type",
context=f"data={data}",
explanation="Called `torch.nn.Parameter()` with non-Tensor argument.",
hints=[
"Ensure the argument to `torch.nn.Parameter()` is a `torch.Tensor`.",
*graph_break_hints.USER_ERROR,
],
)
# this results in cleaner graphs, but only works for inputs
# pyrefly: ignore # missing-attribute
if data.source:
return cls._nn_param_via_prefix_insert(tx, data, requires_grad)
if config.graph_break_on_nn_param_ctor:
# Need user to manually move since we cannot
unimplemented_v2(
gb_type="Attempted to use `torch.nn.Parameter()` constructor with Dynamo",
context="",
explanation="Dynamo does not support this",
hints=[
"Try to construct `torch.nn.Parameter()` outside the compiled region.",
"If this is not possible, turn `graph_break_on_nn_param_ctor` off",
*graph_break_hints.SUPPORTABLE,
],
)
# TODO[@lucaskabela]: Remove the behavior below since it is deprecated
if isinstance(
data,
TensorWithTFOverrideVariable,
# pyrefly: ignore # missing-attribute
) or is_traceable_wrapper_subclass_type(data.class_type):
unimplemented_v2(
gb_type="Attempted to use torch.nn.Parameter constructor with tensor subclass",
context=str(data),
explanation="Dynamo does not support this.",
hints=[
*graph_break_hints.SUPPORTABLE,
],
)
if not can_convert_to_tracable_parameter():
unimplemented_v2(
gb_type="`torch.nn.Parameter`: cannot convert to traceable tracable",
context="",
explanation="convert_tracable_parameter is set to False.",
hints=[
"Check usage of context manager: do_not_convert_to_tracable_parameter",
*graph_break_hints.DIFFICULT,
],
)
try:
# pyrefly: ignore # missing-attribute
shape = tuple(data.var_getattr(tx, "shape").as_python_constant())
# pyrefly: ignore # missing-attribute
dtype = data.var_getattr(tx, "dtype").as_python_constant()
# pyrefly: ignore # missing-attribute
device = data.var_getattr(tx, "device").as_python_constant()
except NotImplementedError as e:
unimplemented_v2(
gb_type="`torch.nn.Parameter` with non-constant Tensor attributes",
context=f"data={data}",
explanation="Dynamo does not support this.",
hints=[
"Ensure the Tensor argument's shape, dtype, and device are correct.",
*graph_break_hints.USER_ERROR,
],
from_exc=e,
)
placeholder = tx.output.synthetic_graph_input(
new_parameter_placeholder,
# pyrefly: ignore # unbound-name
[shape, dtype, device, requires_grad],
)
# pyrefly: ignore # missing-attribute
if data.requires_grad:
# pyrefly: ignore # missing-attribute
data = data.call_method(tx, "detach", [], {})
from .builder import wrap_fx_proxy
result = wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function",
tracable_create_parameter,
# pyrefly: ignore # missing-attribute
(data.as_proxy(), placeholder.as_proxy()),
{},
),
# In reconstruct() we should use the original parameter. The one
# returned by the graph will be an alias.
source=placeholder.source,
)
assert isinstance(result, variables.TensorVariable)
result.class_type = torch.nn.Parameter
# TODO(jansel/bdhirsh) - There is some issue with
# tracable_create_parameter. It does not seem to use the right
# grad_enabled. Since this is parameter, we can just override the
# has_grad_fn field to False to workaround the issue.
result.has_grad_fn = False
# TODO(jansel): if the new param falls out of scope, currently it won't get freed until
# the end of the graph. We should fix this.
return result
@staticmethod
def _nn_param_via_prefix_insert(tx: "InstructionTranslator", data, requires_grad):
# Alternate version if we have a .source
varname = tx.output.new_var()
# construct the nn.Parameter before the graph save it to varname
assert tx.output.root_tx is not None
cg = PyCodegen(tx.output.root_tx)
cg.add_push_null(lambda: cg.load_import_from("torch.nn", "Parameter"))
cg(data.source)
cg(variables.ConstantVariable(requires_grad))
cg.call_function(2, False)
cg.store(varname)
tx.output.pregraph_bytecode.extend(cg.get_instructions())
data_node = data.as_proxy().node
if data_node.op not in ("placeholder", "get_attr"):
unimplemented_v2(
gb_type="Unexpected type of data placeholder op for parameter construction",
context=f"data_node.op={data_node.op}",
explanation="Data node op should be placeholder or get_attr.",
hints=[
*graph_break_hints.DIFFICULT,
],
)
# add the newly constructed nn.Parameter as a graph input
source = SyntheticLocalSource(varname)
example_value = torch.nn.Parameter(
tx.output.example_value_from_input_node(data.as_proxy().node),
requires_grad=requires_grad,
)
result = VariableTracker.build(tx, example_value, source)
# Realize the VT because we will delete the guards on it in the next line.
result = result.realize()
# No need to guard on this since we already guarded on `data`.
# These guards would fail since varname doesn't exist until after the function starts
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
source
)
return result
def call_tensor_method(self, tx, args, kwargs):
return args[0].call_method(tx, self.get_function().__name__, args[1:], kwargs)
def is_tensor_method(self):
from ..trace_rules import get_tensor_method
return (
inspect.ismethoddescriptor(self.get_function())
and hasattr(self.get_function(), "__objclass__")
and self.get_function().__objclass__ == torch._C.TensorBase
) or self.get_function() in get_tensor_method()
def torch_function_override_enabled(self, tx, args, kwargs):
return (
self.get_function() in get_overridable_functions()
or isinstance(
self.get_function(),
(torch._ops.OpOverload, torch._ops.OpOverloadPacket),
)
) and can_dispatch_torch_function(tx, args, kwargs)
class DispatchKeySetVariable(BaseTorchVariable):
"""represents torch.DispatchKeySet"""
@staticmethod
def create(value, **kwargs):
return DispatchKeySetVariable(value, **kwargs)
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.DISPATCH_KEY_SET_MATCH))
return cls(value, source=source)
def is_constant_fold_method(self, name):
return name == "has"
def call_method(
self,
tx,
name,
args: list[VariableTracker],
kwargs: dict[str, VariableTracker],
) -> "VariableTracker":
if self.is_constant_fold_method(name) and check_unspec_or_constant_args(
args, kwargs
):
method = getattr(self.value, name)
return variables.ConstantVariable.create(
method(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
elif name == "highestPriorityTypeId":
return variables.EnumVariable(self.value.highestPriorityTypeId())
return super().call_method(tx, name, args, kwargs)
class FuncTorchInterpreterVariable(BaseTorchVariable):
"""represents torch._functorch.pyfunctorch.FuncTorchInterpreter"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.ID_MATCH))
return cls(value, source=source)
def call_method(
self,
tx,
name,
args: list[VariableTracker],
kwargs: dict[str, VariableTracker],
) -> "VariableTracker":
if name == "key":
return variables.EnumVariable(self.value.key())
elif name == "process":
return tx.inline_user_function_return(
variables.UserFunctionVariable(self.value.process.__func__),
[self] + args,
kwargs,
)
elif name in ["level", "batch_size", "randomness"]:
return variables.ConstantVariable.create(getattr(self.value, name)())
elif name == "lower":
assert not args and not kwargs
return variables.TemporarilyPopInterpreterStackCtxManagerVariable.create(
tx, None
)
return super().call_method(tx, name, args, kwargs)