Files
pytorch/test/cpp/jit/test_alias_analysis.cpp
Michael Suo 42af2c7923 [jit] gtest-ify test_alias_analysis.cpp (#45018)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45018

Now that https://github.com/pytorch/pytorch/pull/44795 has landed, we
can convert the bulk of our cpp tests to use gtest APIs. Eventually
we'll want to get rid of our weird harness for cpp tests entirely in
favor of using regular gtest everywhere. This PR demonstrates some of
the benefits of this approach:
1. You don't need to register your test twice (once to define it, once
in tests.h).
2. Consequently, it's easier to have many individual test cases.
Failures can be reported independently (rather than having huge
functions to test entire modules.
3. Some nicer testing APIs, notably test fixtures.

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D23802297

Pulled By: suo

fbshipit-source-id: 774255da7716294ac573747dcd5e106e5fe3ac8f
2020-09-21 12:19:37 -07:00

1260 lines
41 KiB
C++

#include <gtest/gtest.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/ir/irparser.h>
#include "torch/csrc/jit/frontend/ir_emitter.h"
#include "torch/csrc/jit/ir/alias_analysis.h"
#include "torch/csrc/jit/runtime/custom_operator.h"
#include "torch/csrc/utils/memory.h"
namespace torch {
namespace jit {
inline c10::AliasAnalysisKind aliasAnalysisFromSchema() {
return c10::AliasAnalysisKind::FROM_SCHEMA;
}
// Fixture to set up a graph and make assertions clearer
class TopologicalMoveTest : public ::testing::Test {
protected:
TopologicalMoveTest() {
createGraph();
aliasDb = torch::make_unique<AliasDb>(graph);
}
// Nodes are named after their output.
// e.g. "a" is an alias for "the node that outputs the value `a`"
void createGraph() {
graph = std::make_shared<Graph>();
createNode("a", {});
createNode("b", {"a"});
createNode("c", {});
createNode("d", {"a", "b"});
createNode("e", {"c", "b"});
createNode("f", {"e"});
createNode("g", {"e"});
createNode("h", {"g"});
createNode("i", {"g"});
createNode("j", {"i"});
createNode("k", {"i"});
createNode("l", {"a"});
createNode("m", {}, {"l"}); // block depends on l
createNode("n", {"m"});
createNode("o", {"n"});
createNode("p", {});
createNode("q", {});
createNode("r", {"q"});
createNode("s", {"q"});
graph->lint();
}
void createNode(
const std::string& name,
const std::vector<std::string>& inputNames,
const std::vector<std::string>& blockInputNames = {}) {
std::vector<Value*> inputs;
for (const auto& name_ : inputNames) {
inputs.push_back(nodes.at(name_)->output());
}
auto node = graph->appendNode(graph->create(prim::AutogradZero, inputs));
node->output()->setDebugName(name);
nodes[name] = node;
if (blockInputNames.size() != 0) {
node->addBlock();
std::vector<Value*> blockDeps;
for (const auto& name_ : blockInputNames) {
blockDeps.push_back(nodes.at(name_)->output());
}
auto block = node->blocks().at(0);
block->appendNode(graph->create(prim::AutogradZero, blockDeps));
}
}
bool moveBeforeTopologicallyValid(
const std::string& toInsert,
const std::string& insertPoint) {
std::function<bool(Node*, Node*)> func =
[this](Node* toInsert, Node* insertPoint) {
return aliasDb->moveBeforeTopologicallyValid(toInsert, insertPoint);
};
return moveWithChecks(toInsert, insertPoint, func);
}
bool moveAfterTopologicallyValid(
const std::string& toInsert,
const std::string& insertPoint) {
std::function<bool(Node*, Node*)> func =
[this](Node* toInsert, Node* insertPoint) {
return aliasDb->moveAfterTopologicallyValid(toInsert, insertPoint);
};
return moveWithChecks(toInsert, insertPoint, func);
}
bool moveWithChecks(
const std::string& toInsert,
const std::string& insertPoint,
std::function<bool(Node*, Node*)> func) {
auto n = nodes.at(toInsert);
auto insert = nodes.at(insertPoint);
bool isAfter = n->isAfter(insert);
std::vector<Node*> originalOrdering;
Node* original = isAfter ? n->next() : n->prev();
auto curNode = original;
while (curNode != n->owningBlock()->return_node()) {
originalOrdering.push_back(curNode);
if (isAfter) {
curNode = curNode->next();
} else {
curNode = curNode->prev();
}
}
const auto couldMove = func(n, insert);
// Check the graph is okay
graph->lint();
// If this is the picture of nodes
// <some nodes> ... toInsert ... <some more nodes> ... insertPoint
// ^----------^ check that these nodes haven't moved
curNode = original;
size_t idx = 0;
while (curNode != n->owningBlock()->return_node()) {
EXPECT_TRUE(originalOrdering[idx] == curNode);
if (isAfter) {
curNode = curNode->next();
} else {
curNode = curNode->prev();
}
idx++;
}
return couldMove;
}
void checkPostCondition(
const std::string& toInsert,
const std::string& insertPoint,
bool after) {
if (after) {
EXPECT_EQ(nodes.at(toInsert)->prev(), nodes.at(insertPoint));
} else {
EXPECT_EQ(nodes.at(toInsert)->next(), nodes.at(insertPoint));
}
}
std::shared_ptr<Graph> graph;
std::unique_ptr<AliasDb> aliasDb;
std::unordered_map<std::string, Node*> nodes;
};
TEST_F(TopologicalMoveTest, SplitsDeps) {
// Check that we are removing `this`'s deps properly when we need to split
// `this` and deps (see code for what the hell that means)
EXPECT_TRUE(moveBeforeTopologicallyValid("q", "s"));
checkPostCondition("q", "s", false);
}
// Move after
TEST_F(TopologicalMoveTest, MoveAfterBackwardSimple) {
// Simple move backward
EXPECT_TRUE(moveAfterTopologicallyValid("c", "a"));
checkPostCondition("c", "a", true);
}
TEST_F(TopologicalMoveTest, MoveAfterBackwardInvalid) {
// simple invalid move backward
EXPECT_FALSE(moveAfterTopologicallyValid("d", "a"));
}
TEST_F(TopologicalMoveTest, MoveAfterNoOp) {
// doesn't actually move anything
EXPECT_TRUE(moveAfterTopologicallyValid("f", "e"));
checkPostCondition("f", "e", true);
}
TEST_F(TopologicalMoveTest, MoveAfterBackwardMultipleDeps) {
// move backward with multiple dependencies
EXPECT_TRUE(moveAfterTopologicallyValid("e", "c"));
checkPostCondition("e", "c", true);
}
TEST_F(TopologicalMoveTest, MoveAfterBackwardNonZeroWorkingSet) {
// Move backward with non-zero working set
EXPECT_TRUE(moveAfterTopologicallyValid("k", "f"));
checkPostCondition("k", "f", true);
}
TEST_F(TopologicalMoveTest, MoveAfterForwardSimple) {
// Simple move forward
EXPECT_TRUE(moveAfterTopologicallyValid("c", "d"));
checkPostCondition("c", "d", true);
}
TEST_F(TopologicalMoveTest, MoveAfterForwardNonZeroWorkingSet) {
// Move forward with non-zero working set
EXPECT_TRUE(moveAfterTopologicallyValid("f", "l"));
checkPostCondition("f", "l", true);
}
// Move before
TEST_F(TopologicalMoveTest, MoveBeforeForwardSimple) {
// Simple move forward
EXPECT_TRUE(moveBeforeTopologicallyValid("b", "d"));
checkPostCondition("b", "d", false);
}
TEST_F(TopologicalMoveTest, MoveBeforeBackwardSimple) {
// Simple move backward
EXPECT_TRUE(moveBeforeTopologicallyValid("c", "a"));
checkPostCondition("c", "a", false);
}
TEST_F(TopologicalMoveTest, MoveBeforeNoOp) {
// doesn't actually move anything
EXPECT_TRUE(moveBeforeTopologicallyValid("a", "b"));
checkPostCondition("a", "b", false);
}
TEST_F(TopologicalMoveTest, MoveBeforeForwardWithDeps) {
// move forward with deps
EXPECT_TRUE(moveBeforeTopologicallyValid("f", "m"));
checkPostCondition("f", "m", false);
}
TEST_F(TopologicalMoveTest, MoveBeforeBackwardWithDeps) {
// move backward with deps
EXPECT_TRUE(moveBeforeTopologicallyValid("l", "f"));
checkPostCondition("l", "f", false);
}
// check that dependencies in blocks are recognized
TEST_F(TopologicalMoveTest, DepsDisallowMove) {
EXPECT_FALSE(moveAfterTopologicallyValid("l", "m"));
EXPECT_FALSE(moveBeforeTopologicallyValid("m", "l"));
EXPECT_FALSE(moveAfterTopologicallyValid("n", "l"));
EXPECT_FALSE(moveBeforeTopologicallyValid("l", "n"));
}
// Test that moveAfter(n) and moveBefore(n->next()) are not necessarily
// equivalent. Here, the dependency ordering is n -> o -> p. So we can't
// move `n` after `o`, but we can move `n` before `p` (which pushes `o` after
// `p`)
TEST_F(TopologicalMoveTest, MoveAfterBeforeWithDeps) {
EXPECT_FALSE(moveAfterTopologicallyValid("n", "o"));
EXPECT_TRUE(moveBeforeTopologicallyValid("o", "p"));
checkPostCondition("o", "p", false);
}
namespace {
Node* insertIf(
Graph& g,
Value* condValue,
std::function<std::vector<Value*>()> trueInst,
std::function<std::vector<Value*>()> falseInst) {
auto if_ = g.insertNode(g.create(prim::If, 0));
if_->addInput(condValue); // condition value
auto trueBlock = if_->addBlock();
auto falseBlock = if_->addBlock();
{
// Mutate in true block
WithInsertPoint g(trueBlock);
auto outputs = trueInst();
for (auto output : outputs) {
trueBlock->registerOutput(output);
}
}
{
WithInsertPoint g(falseBlock);
auto outputs = falseInst();
for (auto output : outputs) {
falseBlock->registerOutput(output);
}
}
EXPECT_TRUE(trueBlock->outputs().size() == falseBlock->outputs().size());
for (auto output : trueBlock->outputs()) {
if_->addOutput()->setType(output->type());
}
return if_;
}
template <class Exception, class Functor>
inline void expectThrows(Functor&& functor, const char* expectMessageContains) {
try {
std::forward<Functor>(functor)();
} catch (const Exception& e) {
if (std::string(e.what()).find(expectMessageContains) ==
std::string::npos) {
AT_ERROR(
"Expected error message to contain \"",
expectMessageContains,
"\" but error message was: ",
e.what());
}
return;
}
AT_ERROR(
"Expected to throw exception containing \"",
expectMessageContains,
"\" but didn't throw");
}
} // namespace
TEST(AliasAnalysisTest, AliasingMutationBlocksMoves) {
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->addInput();
// addsB = b + b
// c = a + b
// a += b
// d = c + c
auto addsB = graph->insert(aten::add, {b, b});
auto c = graph->insert(aten::add, {a, b});
auto aMut = graph->insert(aten::add_, {a, b});
auto d = graph->insert(aten::add, {c, c});
graph->lint();
AliasDb aliasDb(graph);
// Can't move past a mutation of a used value
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(c->node(), aMut->node()));
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(d->node(), c->node()));
// b should alias to a (since they are both inputs)
EXPECT_FALSE(
aliasDb.moveAfterTopologicallyValid(addsB->node(), aMut->node()));
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(addsB->node(), c->node()));
graph->lint();
}
TEST(AliasAnalysisTest, AliasingMutationBlocksMoves2) {
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->addInput();
auto constant = graph->insertConstant(1);
auto fresh = graph->insert(aten::rand, {constant});
auto usesB = graph->insert(aten::add, {b, fresh});
auto aliasesB = graph->insert(aten::select, {a, constant, constant});
auto mutatesAliasOfB = graph->insert(aten::add_, {aliasesB, fresh});
graph->insert(aten::add, {fresh, aliasesB});
graph->lint();
AliasDb aliasDb(graph);
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(
aliasesB->node(), mutatesAliasOfB->node()));
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(
usesB->node(), mutatesAliasOfB->node()));
}
TEST(AliasAnalysisTest, SideEffectsBlockMoves) {
// Test moves across side effectful nodes
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto print1 = graph->insertNode(graph->create(prim::Print, {a}, 0));
WithInsertPoint guard(print1);
auto print2 = graph->insertNode(graph->create(prim::Print, {a, a}, 0));
AliasDb aliasDb(graph);
// def foo(a):
// print2(a, a)
// print1(a)
// test moving across each other
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(print2, print1));
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(print1, print2));
// test moving where they already are
EXPECT_TRUE(aliasDb.moveBeforeTopologicallyValid(print2, print1));
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(print1, print2));
graph->insertNode(graph->create(prim::MakeTestTensor, {}, 1));
AliasDb aliasDb2(graph);
// def foo(a):
// print2(a, a)
// non_side_effectful = makeTestTensor()
// print1(a)
// test moving with a side effectful node between
EXPECT_FALSE(aliasDb2.moveAfterTopologicallyValid(print2, print1));
EXPECT_FALSE(aliasDb2.moveBeforeTopologicallyValid(print2, print1));
EXPECT_FALSE(aliasDb2.moveAfterTopologicallyValid(print1, print2));
EXPECT_FALSE(aliasDb2.moveBeforeTopologicallyValid(print1, print2));
}
TEST(AliasAnalysisTest, MovingAcrossInnerBlocks) {
// Test moves across inner blocks
// a = rand(1)
// b = rand(1)
// if True:
// a.add_(b)
// c = a + b
auto graph = std::make_shared<Graph>();
auto constant = graph->insertConstant(1);
auto a = graph->insert(aten::rand, {constant});
auto b = graph->insert(aten::rand, {constant});
auto if_ = insertIf(
*graph,
constant,
[&]() -> std::vector<Value*> {
auto aMut = graph->insert(aten::add_, {a, b});
return {aMut};
},
[&]() -> std::vector<Value*> { return {a}; });
auto c = graph->insert(aten::add, {a, b});
graph->lint();
// we should not be able to move `c` before the if statement, since it
// may write to `a`.
AliasDb aliasDb(graph);
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(c->node(), if_));
}
TEST(AliasAnalysisTest, NoneHasNoWriters) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph():
%opt : Tensor? = prim::Constant()
%out : Tensor = prim::unchecked_unwrap_optional(%opt)
%ret.2 : Tensor = aten::div(%out, %out, %out)
return (%opt, %out, %ret.2)
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
EXPECT_FALSE(aliasDb.hasWriters(vmap["opt"]->node()));
}
TEST(AliasAnalysisTest, SafeToChangeAliasingRelationship) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%x : Tensor):
%3 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=0]()
%b : Tensor = aten::add(%x, %2, %3)
%c : Tensor = aten::add(%x, %2, %3)
%d : Tensor = aten::add(%x, %2, %3)
%e : Tensor = aten::add(%x, %2, %3)
%f : Tensor[] = prim::ListConstruct(%e)
%14 : (Tensor, Tensor) = prim::TupleConstruct(%b, %c)
return (%14)
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
// x, b, c escape scope, so we can't introduce an aliasing relationship
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["b"]));
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["x"]));
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["c"]));
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["b"]));
// e aliases the wildcard set because it's contained in a list
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["e"], vmap["x"]));
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["e"]));
// d is a temporary with no writers, safe to change aliasing relationship
// here
EXPECT_TRUE(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["d"]));
EXPECT_TRUE(aliasDb.safeToChangeAliasingRelationship(vmap["d"], vmap["c"]));
}
TEST(WriteTrackingTest, Basic) {
RegisterOperators reg({Operator(
"prim::creates_alias(Tensor(a) x) -> Tensor(a)",
[](Stack* s) {},
aliasAnalysisFromSchema())});
const auto creates_alias = Symbol::fromQualString("prim::creates_alias");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->addInput();
// aten::add(%b, %b)
// aten::add_(%a, %b)
// foo::creates_alias(%a)
auto pureNode = graph->insert(aten::add, {b, b})->node();
auto writingNode = graph->insert(aten::add_, {a, b})->node();
auto node3 = graph->insert(creates_alias, {a})->node();
auto aAlias = node3->output();
graph->lint();
AliasDb aliasDb(graph);
EXPECT_TRUE(aliasDb.mayAlias(aAlias, a));
EXPECT_TRUE(aliasDb.mayAlias(a, b));
EXPECT_FALSE(
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{a}));
EXPECT_FALSE(
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{b}));
EXPECT_TRUE(
aliasDb.writesToAlias(writingNode, std::unordered_set<const Value*>{a}));
EXPECT_TRUE(aliasDb.writesToAlias(
writingNode, std::unordered_set<const Value*>{a, b}));
EXPECT_TRUE(aliasDb.writesToAlias(
writingNode, std::unordered_set<const Value*>{aAlias}));
}
TEST(WriteTrackingTest, IsMutable) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%x: Tensor):
%b : Tensor = aten::relu_(%x)
return (%b)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto relu = *node_iter;
AliasDb aliasDb(graph);
EXPECT_TRUE(aliasDb.isMutable(relu));
}
TEST(WriteTrackingTest, IsImmutable) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%x: Tensor, %y : Tensor):
%b : Tensor = aten::mul(%x, %y)
return (%b)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto mul = *node_iter;
AliasDb aliasDb(graph);
EXPECT_FALSE(aliasDb.isMutable(mul));
}
TEST(WriteTrackingTest, HasWriters) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%x: Tensor, %y : Tensor):
%c1 : int = prim::Constant[value=1]()
%b : Tensor = aten::add_(%x, %y, %c1)
return (%b)
)IR",
&*graph,
vmap);
auto add = vmap["b"]->node();
AliasDb aliasDb(graph);
EXPECT_TRUE(aliasDb.hasWriters(add));
EXPECT_TRUE(aliasDb.isMutable(add));
}
TEST(ContainerAliasingTest, MayContainAlias) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%inp: Tensor[]):
%x : str = prim::Constant[value="a"]()
%y : Tensor = prim::Constant()
%z : Tensor = prim::Constant()
%a : (Tensor) = prim::TupleConstruct(%y)
%b : Dict(str, Tensor) = prim::DictConstruct(%x, %y)
%c : Tensor[] = prim::ListConstruct(%y)
return (%a, %b, %c)
)IR",
&*graph,
vmap);
auto str_output = vmap["x"];
auto ten_output = vmap["y"];
auto local_var = vmap["z"];
AliasDb aliasDb(graph);
EXPECT_TRUE(graph->outputs().size() == 3);
for (auto out : graph->outputs()) {
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, out));
EXPECT_FALSE(aliasDb.mayContainAlias(local_var, out));
}
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, graph->inputs()));
EXPECT_FALSE(aliasDb.mayContainAlias(local_var, graph->inputs()));
EXPECT_TRUE(aliasDb.mayContainAlias({ten_output}, graph->outputs()));
EXPECT_FALSE(aliasDb.mayContainAlias(str_output, graph->outputs()));
}
TEST(ContainerAliasingTest, PrimitveValuesDontAliasContainers) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%x : str = prim::Constant[value="a"]()
%y : int = prim::Constant[value=1]()
%a : (int) = prim::TupleConstruct(%y)
%b : Dict(str, int) = prim::DictConstruct(%x, %y)
%c : int[] = prim::ListConstruct(%y)
return (%a, %b, %c)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
node_iter++; // string
Node* int_node = *node_iter++;
AliasDb aliasDb(graph);
EXPECT_TRUE(graph->outputs().size() == 3);
// primitive values don't need to alias container
for (auto out : graph->outputs()) {
EXPECT_FALSE(aliasDb.mayContainAlias(int_node->output(), out));
}
}
TEST(ContainerAliasingTest, InputsCanAliasOutputs) {
// Test input aliasing
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%x: Tensor, %y: Tensor):
%a : (Tensor) = prim::TupleConstruct(%x)
return (%a)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto tuple_node = *node_iter;
AliasDb aliasDb(graph);
for (auto input : graph->inputs()) {
EXPECT_TRUE(aliasDb.mayContainAlias(input, tuple_node->output()));
}
EXPECT_TRUE(aliasDb.mayContainAlias(graph->inputs(), graph->outputs()));
}
// Test tuple that doesn't come from construct
TEST(ContainerAliasingTest, NestedTupleConstruct) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%x : int,
%y : Tensor,
%z : Tensor):
%3 : int = prim::Constant[value=1]()
%4 : bool = aten::eq(%x, %3)
%a : (Tensor) = prim::If(%4)
block0():
%a.1 : (Tensor) = prim::TupleConstruct(%y)
-> (%a.1)
block1():
%a.2 : (Tensor) = prim::TupleConstruct(%z)
-> (%a.2)
return (%a)
)IR",
&*graph);
AliasDb aliasDb(graph);
for (auto input : graph->inputs()) {
if (input->type() == IntType::get()) {
continue;
}
EXPECT_TRUE(aliasDb.mayContainAlias(input, graph->outputs().at(0)));
}
}
// test nested types
TEST(ContainerAliasingTest, NestedTypes) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%a : Tensor = prim::MakeTestTensor()
%a_list : Tensor[] = prim::ListConstruct(%a)
%b : Tensor = prim::MakeTestTensor()
%b_list : Tensor[] = prim::ListConstruct(%b)
%13 : (Tensor[], Tensor[]) = prim::TupleConstruct(%a_list, %b_list)
return (%13)
)IR",
&*graph);
AliasDb aliasDb(graph);
auto g_output = graph->outputs().at(0);
auto list_2 = g_output->node()->inputs().at(0);
auto list_1 = g_output->node()->inputs().at(1);
// TODO FIX assume conservatively for now
EXPECT_TRUE(aliasDb.mayContainAlias(list_1, list_2));
EXPECT_TRUE(aliasDb.mayContainAlias(list_2, list_1));
EXPECT_TRUE(aliasDb.mayContainAlias(list_1, g_output));
EXPECT_TRUE(aliasDb.mayContainAlias(list_2, g_output));
}
// simple example
TEST(ContainerAliasingTest, Simple) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%0 : Tensor = prim::Constant()
%1 : Tensor = prim::Constant()
%13 : (Tensor) = prim::TupleConstruct(%0)
return (%13)
)IR",
&*graph);
AliasDb aliasDb(graph);
auto node_iter = graph->block()->nodes().begin();
auto first_ten = *node_iter++;
auto second_ten = *node_iter++;
auto tup_node = *node_iter;
EXPECT_TRUE(aliasDb.mayContainAlias(first_ten->output(), tup_node->output()));
EXPECT_TRUE(
!aliasDb.mayContainAlias(second_ten->output(), tup_node->output()));
std::vector<Value*> first_st = {first_ten->output()};
std::vector<Value*> second_st = {second_ten->output()};
std::vector<Value*> tup_st = {tup_node->output()};
EXPECT_TRUE(aliasDb.mayContainAlias(first_st, tup_st));
EXPECT_FALSE(aliasDb.mayContainAlias(first_st, second_st));
EXPECT_FALSE(aliasDb.mayContainAlias(second_st, tup_st));
}
TEST(ContainerAliasingTest, Lists) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph():
%x : str = prim::Constant[value="a"]()
%y : Tensor = prim::Constant()
%c : Tensor[] = prim::ListConstruct(%y)
%d : Tensor[] = prim::ListConstruct(%y)
return (%c, %d)
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
auto x = vmap["x"];
auto c = vmap["c"];
EXPECT_FALSE(aliasDb.mayContainAlias(x, c));
EXPECT_FALSE(aliasDb.mayContainAlias(c, x));
auto d = vmap["d"];
EXPECT_TRUE(aliasDb.mayContainAlias(d, c));
EXPECT_TRUE(aliasDb.mayContainAlias(c, d));
}
TEST(ContainerAliasingTest, Lists2) {
// Test list container aliasing
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph():
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%2 : int[] = prim::ListConstruct(%0, %1)
%x : Tensor = prim::MakeTestTensor()
%12 : int[] = prim::ListConstruct(%0, %1)
%y : Tensor = prim::MakeTestTensor()
%22 : int[] = prim::ListConstruct(%0, %1)
%z : Tensor = prim::MakeTestTensor()
%32 : int[] = prim::ListConstruct(%0, %1)
%fresh : Tensor = prim::MakeTestTensor()
%foo : Tensor[] = prim::ListConstruct(%x, %y)
%43 : Tensor[] = aten::append(%foo, %z)
return ()
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto x = vmap["x"];
auto y = vmap["y"];
auto z = vmap["z"];
// Tensors x, y, and z went into a list, so they all may alias each other.
EXPECT_TRUE(aliasDb.mayAlias(x, y));
EXPECT_TRUE(aliasDb.mayAlias(y, z));
EXPECT_TRUE(aliasDb.mayAlias(x, z));
// But we know `fresh` didn't go into a list, so x, y, and z should not
// alias it.
auto fresh = vmap["fresh"];
EXPECT_FALSE(aliasDb.mayAlias(x, fresh));
EXPECT_FALSE(aliasDb.mayAlias(y, fresh));
EXPECT_FALSE(aliasDb.mayAlias(z, fresh));
}
TEST(ContainerAliasingTest, Conservative) {
// test "conservative" analysis writes to the inside of a container.
auto ops = torch::RegisterOperators(
"custom::conservative", [](torch::List<at::Tensor> in) { return in; });
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph():
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%2 : int[] = prim::ListConstruct(%0, %1)
%11 : Tensor = prim::MakeTestTensor()
%12 : Tensor[] = prim::ListConstruct(%11)
%out : Tensor[] = custom::conservative(%12)
%ret.2 : Tensor = aten::div(%11, %11)
return ()
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto conservativeOp = vmap["out"]->node();
auto tensor = vmap["11"];
EXPECT_TRUE(aliasDb.writesToAlias(conservativeOp, ValueSet{tensor}));
}
TEST(ContainerAliasingTest, MovesAcrossContainedWrites) {
auto ops = torch::RegisterOperators().op(
"uses::list",
torch::RegisterOperators::options()
.catchAllKernel([](torch::List<at::Tensor> in) {
return torch::rand({2, 3});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
// Write to the inside of a list. Check that we can't reorder a
// print across it.
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph():
%35 : int = prim::Constant[value=1]()
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%23 : int = prim::Constant[value=0]()
%2 : int[] = prim::ListConstruct(%0, %1)
%11 : Tensor = prim::MakeTestTensor()
%12 : int[] = prim::ListConstruct(%0, %1)
%21 : Tensor = prim::MakeTestTensor()
%l : Tensor[] = prim::ListConstruct(%11, %21)
%24 : Tensor = aten::select(%l, %23)
%25 : int[] = prim::ListConstruct(%0, %1)
%34 : Tensor = prim::MakeTestTensor()
%36 : Tensor = aten::add_(%24, %34, %35)
%37 : Tensor = uses::list(%l)
return (%37)
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto listUse = vmap["37"]->node();
auto internalWrite = vmap["36"]->node();
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
}
TEST(ContainerAliasingTest, MovesAcrossContainedWritesNested) {
// The same as above, but with a nested list
auto ops = torch::RegisterOperators().op(
"uses::list",
torch::RegisterOperators::options()
.catchAllKernel([](torch::List<at::Tensor> in) {
return torch::rand({2, 3});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
// Write to the inside of a list. Check that we can't reorder a
// print across it.
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph():
%38 : int = prim::Constant[value=1]()
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%24 : int = prim::Constant[value=0]()
%2 : int[] = prim::ListConstruct(%0, %1)
%11 : Tensor = prim::MakeTestTensor()
%12 : int[] = prim::ListConstruct(%0, %1)
%21 : Tensor = prim::MakeTestTensor()
%l : Tensor[] = prim::ListConstruct(%11, %21)
%25 : Tensor = aten::select(%l, %24)
%27 : Tensor = aten::select(%25, %24, %24)
%28 : int[] = prim::ListConstruct(%0, %1)
%37 : Tensor = prim::MakeTestTensor()
%39 : Tensor = aten::add_(%27, %37, %38)
%40 : Tensor = uses::list(%l)
return (%40)
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto listUse = vmap["40"]->node();
auto internalWrite = vmap["39"]->node();
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
}
TEST(WildcardsTest, Basic) {
RegisterOperators reg({Operator(
"prim::returns_wildcard(Tensor a) -> Tensor(*)",
[](Stack* stack) {},
aliasAnalysisFromSchema()),
Operator(
"prim::writes(Tensor(z!) a) -> Tensor(a)",
[](Stack* stack) {},
aliasAnalysisFromSchema())});
const auto returns_wildcard =
Symbol::fromQualString("prim::returns_wildcard");
const auto writes = Symbol::fromQualString("prim::writes");
auto graph = std::make_shared<Graph>();
const auto a = graph->addInput();
const auto constant = graph->insertConstant(1);
const auto fresh = graph->insert(aten::rand, {constant});
const auto fresh2 = graph->insert(aten::rand, {constant});
const auto wildcard = graph->insert(returns_wildcard, {fresh});
{
graph->lint();
AliasDb aliasDb(graph);
EXPECT_FALSE(aliasDb.mayAlias(a, fresh));
EXPECT_FALSE(aliasDb.mayAlias(wildcard, fresh));
EXPECT_TRUE(aliasDb.mayAlias(wildcard, a));
EXPECT_FALSE(aliasDb.mayAlias(ValueSet{wildcard}, ValueSet{}));
EXPECT_FALSE(aliasDb.hasWriters(wildcard->node()));
}
graph->insert(writes, {fresh2})->node();
{
graph->lint();
AliasDb aliasDb(graph);
EXPECT_FALSE(aliasDb.hasWriters(wildcard->node()));
}
const auto wildcardWrite = graph->insert(writes, {wildcard})->node();
{
graph->lint();
AliasDb aliasDb(graph);
// Test writes to wildcards
EXPECT_FALSE(aliasDb.writesToAlias(
wildcardWrite, std::unordered_set<const Value*>{fresh}));
EXPECT_FALSE(aliasDb.writesToAlias(
wildcardWrite, std::unordered_set<const Value*>{fresh2}));
EXPECT_TRUE(aliasDb.writesToAlias(
wildcardWrite, std::unordered_set<const Value*>{a}));
EXPECT_TRUE(aliasDb.hasWriters(wildcard->node()));
}
}
// test that wildcards are correctly divided by type
TEST(WildcardsTest, TypeIsolation) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%ten_list : Tensor[], %int_list : int[], %opt_ten_list : Tensor[]?):
%ten : Tensor = prim::Constant()
%4 : Tensor[] = aten::append(%ten_list, %ten)
%ten_ten_list : Tensor[][] = prim::Constant()
%int_int_list : int[][] = prim::Constant()
return ()
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
auto opt_ten_list = vmap["opt_ten_list"];
auto ten_list = vmap["ten_list"];
auto int_list = vmap["int_list"];
EXPECT_FALSE(aliasDb.hasWriters(int_list));
EXPECT_TRUE(aliasDb.hasWriters(opt_ten_list));
EXPECT_TRUE(aliasDb.hasWriters(ten_list));
EXPECT_FALSE(aliasDb.mayContainAlias(int_list, opt_ten_list));
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, opt_ten_list));
EXPECT_TRUE(aliasDb.mayAlias(ten_list, opt_ten_list));
auto list_of_tensor_lists = vmap["ten_ten_list"];
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, list_of_tensor_lists));
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, vmap["ten"]));
EXPECT_TRUE(
!aliasDb.mayContainAlias(vmap["int_int_list"], list_of_tensor_lists));
}
// test invariant container aliasing
// the containers of different type cannot alias each other,
// however they may contain elements which alias each other
TEST(WildcardsTest, InvariantContainerAliasing) {
{
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%ten_list : Tensor[], %ten_opt_list : Tensor?[]):
%ten : Tensor = prim::Constant()
%4 : Tensor[] = aten::append(%ten_list, %ten)
return ()
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
auto ten_opt_list = vmap["ten_opt_list"];
auto ten_list = vmap["ten_list"];
EXPECT_FALSE(aliasDb.hasWriters(ten_opt_list));
EXPECT_TRUE(aliasDb.hasWriters(ten_list));
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, ten_opt_list));
EXPECT_FALSE(aliasDb.mayAlias(ten_list, ten_opt_list));
}
{
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%float_3D : Float(*, *, *), %float_2D : Float(*, *)):
return ()
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
EXPECT_TRUE(aliasDb.mayAlias(vmap["float_3D"], vmap["float_2D"]));
}
{
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%float_3D_list : Float(*, *, *)[], %float_2D_list : Float(*, *)[], %ten: Tensor):
return ()
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
EXPECT_TRUE(aliasDb.mayAlias(vmap["float_3D_list"], vmap["float_2D_list"]));
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["float_3D_list"], vmap["ten"]));
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["float_2D_list"], vmap["ten"]));
}
}
TEST(AliasRegistrationTest, ConservativeWithInferredSchema) {
auto registry = torch::RegisterOperators().op(
"foo::rand1",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand1");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// Conservatively we assume there is a reference
EXPECT_TRUE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, ConservativeWithSpecifiedSchema) {
auto registry = torch::RegisterOperators().op(
"foo::rand2(Tensor arg1) -> Tensor",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand2");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// Conservatively we assume there is a reference
EXPECT_TRUE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, ConservativeWithAliasingAnnotationsShouldError) {
auto registry = torch::RegisterOperators().op(
"foo::rand3(Tensor(a) arg1) -> Tensor(b)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand3");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from
// registration.
expectThrows<c10::Error>(
[&graph] { AliasDb aliasDb(graph); },
"Tried to register operator foo::rand3(Tensor(a) arg1) -> (Tensor(b)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
TEST(AliasRegistrationTest, ConservativeWithAliasingAnnotationsShouldError2) {
auto registry = torch::RegisterOperators().op(
"foo::rand4(Tensor(a) arg1) -> Tensor(a)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand4");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from
// registration.
expectThrows<c10::Error>(
[&graph] { AliasDb aliasDb(graph); },
"Tried to register operator foo::rand4(Tensor(a) arg1) -> (Tensor(a)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
TEST(AliasRegistrationTest, FromSchemaWithInferredSchemaShouldError) {
expectThrows<c10::Error>(
[] {
torch::RegisterOperators().op(
"foo::rand5",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
},
"Tried to register operator foo::rand5(Tensor _0) -> (Tensor _0) with AliasAnalysisKind::FROM_SCHEMA, but the schema is inferred");
}
TEST(AliasRegistrationTest, FromSchemaInferredPure) {
auto registry = torch::RegisterOperators().op(
"foo::rand6(Tensor arg1) -> Tensor",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
const auto rand_op = Symbol::fromQualString("foo::rand6");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema doesn't contain alias information, which means it's pure
// (meh!)
EXPECT_FALSE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, FromSchemaAliased) {
auto registry = torch::RegisterOperators().op(
"foo::rand7(Tensor(a) arg1) -> Tensor(a)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
const auto rand_op = Symbol::fromQualString("foo::rand7");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema has an alias reference
EXPECT_TRUE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, FromSchemaPure) {
auto registry = torch::RegisterOperators().op(
"foo::rand8(Tensor(a) arg1) -> Tensor(b)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
const auto rand_op = Symbol::fromQualString("foo::rand8");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema does not have an alias reference
EXPECT_FALSE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, PureNoSchema) {
auto registry = torch::RegisterOperators().op(
"foo::rand9",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand9");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema is pure, there cannot be any alias
EXPECT_FALSE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, PureWithSchema) {
auto registry = torch::RegisterOperators().op(
"foo::rand10(Tensor arg1) -> Tensor",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand10");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema is pure, there cannot be any alias
EXPECT_FALSE(aliasDb.mayAlias(a, b));
}
TEST(AliasRegistrationTest, PureWithAnnotationsShouldError) {
auto registry = torch::RegisterOperators().op(
"foo::rand11(Tensor(a) arg1) -> Tensor(a)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand11");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from
// registration.
expectThrows<c10::Error>(
[&graph] { AliasDb aliasDb(graph); },
"Tried to register operator foo::rand11(Tensor(a) arg1) -> (Tensor(a)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
TEST(AliasRegistrationTest, PureWithAnnotationsShouldError2) {
auto registry = torch::RegisterOperators().op(
"foo::rand12(Tensor(a) arg1) -> Tensor(b)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand12");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from
// registration.
expectThrows<c10::Error>(
[&graph] { AliasDb aliasDb(graph); },
"Tried to register operator foo::rand12(Tensor(a) arg1) -> (Tensor(b)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
} // namespace jit
} // namespace torch