Files
pytorch/torch/testing/_internal/common_quantization.py
Nikhil Gupta 41b38f755c Revert "Reverting the PR adding Kleidiai-based int4 kernels (#145392)" (#145505)
https://github.com/pytorch/pytorch/pull/134124 was reverted by https://github.com/pytorch/pytorch/pull/145392 due to KleidiAI clone issue.

1. This reverts commit 0940eb6d44f3cf69dd840db990245cbe1f78e770 (https://github.com/pytorch/pytorch/pull/145392 )and Fixes KleidiAI mirror issue.
2. KleidiAI is now cloned from github mirror instead of arm gitlab

Change-Id: I7d6eee7214cd117d3057d615936fcc3ee6052fa2

Fixes https://github.com/pytorch/pytorch/issues/145273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145505
Approved by: https://github.com/malfet
2025-01-23 18:50:59 +00:00

3072 lines
111 KiB
Python

# mypy: ignore-errors
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
from functorch.experimental import control_flow
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
from torch.ao.nn.intrinsic import _FusedModule
import torch.distributed as dist
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM
from torch.export import export_for_training
from torch.ao.quantization import (
QuantType,
default_dynamic_qat_qconfig,
default_embedding_qat_qconfig,
default_symmetric_qnnpack_qat_qconfig,
)
from torch.ao.quantization.quantize_pt2e import (
_convert_to_reference_decomposed_fx,
convert_pt2e,
prepare_pt2e,
prepare_qat_pt2e,
)
from torch.ao.quantization.backend_config import (
get_executorch_backend_config,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
XNNPACKQuantizer,
get_symmetric_quantization_config,
)
from torch.ao.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_weight_only_qconfig, \
get_default_qat_qconfig, PerChannelMinMaxObserver, default_dynamic_quant_observer, quantize, \
QConfigMapping, get_default_qconfig_mapping, get_default_qat_qconfig_mapping
from torch.ao.quantization.quantization_mappings import (
get_default_dynamic_quant_module_mappings,
get_default_qconfig_propagation_list,
get_default_qat_module_mappings,
)
from torch.testing._internal.common_quantized import (
override_quantized_engine,
)
from torch.jit.mobile import _load_for_lite_interpreter
try:
# graph mode quantization based on fx
from torch.ao.quantization.quantize_fx import (
prepare_fx,
prepare_qat_fx,
convert_fx,
convert_to_reference_fx,
)
from torch.ao.ns.fx.ns_types import NSSingleResultValuesType, NSSubgraph
from torch.fx.graph import Node
from torch.fx import GraphModule
HAS_FX = True
except ImportError:
HAS_FX = False
import copy
import io
import functools
import os
import unittest
import numpy as np
from torch.testing import FileCheck
from typing import Callable, Any, Union, Optional
import torch._dynamo as torchdynamo
import torch.ao.quantization.quantizer.x86_inductor_quantizer as xiq
import torch.ao.quantization.quantizer.xpu_inductor_quantizer as xpuiq
from torch.ao.quantization.quantizer.x86_inductor_quantizer import X86InductorQuantizer
from torch.ao.quantization.quantizer.xpu_inductor_quantizer import XPUInductorQuantizer
import contextlib
class NodeSpec:
''' Used for checking GraphModule Node
'''
def __init__(self, op, target):
'''
op: call_function | call_module
target:
for call_function, target would be a function
for call_module, target would be the type of PyTorch module
'''
self.op = op
self.target = target
@classmethod
def call_function(cls, target):
return NodeSpec('call_function', target)
@classmethod
def call_method(cls, target):
return NodeSpec('call_method', target)
@classmethod
def call_module(cls, target):
return NodeSpec('call_module', target)
def __hash__(self):
return hash((self.op, self.target))
def __eq__(self, other):
if not isinstance(other, NodeSpec):
return NotImplemented
return self.op == other.op and self.target == other.target
def __repr__(self):
return repr(self.op) + " " + repr(self.target)
def get_supported_device_types():
return ['cpu', 'cuda'] if torch.cuda.is_available() and not TEST_WITH_ROCM else ['cpu']
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for inp in calib_data:
model(*inp)
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for _ in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
model.train()
cnt = 0
for image, target in data_loader:
print('.', end='')
cnt += 1
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
accuracy(output, target, topk=(1, 5))
if cnt >= ntrain_batches:
return
return
def ddp_setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def ddp_cleanup():
dist.destroy_process_group()
def run_ddp(rank, world_size, prepared):
ddp_setup(rank, world_size)
prepared.cuda()
prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank])
prepared.to(rank)
model_with_ddp = prepared
optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001)
train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1) # noqa: F821
ddp_cleanup()
def convert_dynamic(module):
convert(module, get_default_dynamic_quant_module_mappings(), inplace=True)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig_(model, qconfig_dict)
def _make_conv_test_input(
batch_size, in_channels_per_group, input_feature_map_size,
out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
W_zero_point, use_bias, use_channelwise,
):
in_channels = in_channels_per_group * groups
out_channels = out_channels_per_group * groups
(X_value_min, X_value_max) = (0, 4)
X_init = torch.randint(
X_value_min, X_value_max,
(batch_size, in_channels,) + input_feature_map_size)
X = X_scale * (X_init - X_zero_point).float()
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
W_scale = W_scale * out_channels
W_zero_point = W_zero_point * out_channels
# Resize W_scale and W_zero_points arrays equal to out_channels
W_scale = W_scale[:out_channels]
W_zero_point = W_zero_point[:out_channels]
# For testing, we use small values for weights and for activations so that
# no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
# qconv implementation and if there is no overflow.
# In reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
(W_value_min, W_value_max) = (-5, 5)
# The operator expects them in the format
# (out_channels, in_channels/groups,) + kernel_size
W_init = torch.randint(
W_value_min, W_value_max,
(out_channels, in_channels_per_group,) + kernel_size)
b_init = torch.randint(0, 10, (out_channels,))
if use_channelwise:
W_shape = (-1, 1) + (1,) * len(kernel_size)
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(*W_shape) * (
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
b = X_scale * W_scales_tensor * b_init.float()
W_q = torch.quantize_per_channel(
W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0,
dtype=torch.qint8)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).float()
b = X_scale * W_scale[0] * b_init.float()
W_q = torch.quantize_per_tensor(
W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
return (X, X_q, W, W_q, b if use_bias else None)
def _make_conv_add_extra_input_tensor(scale, zero_point, sizes):
(X_value_min, X_value_max) = (0, 4)
X_init = torch.randint(
X_value_min,
X_value_max,
sizes # Infer the size of tensor to do the add
)
X = scale * (X_init - zero_point).float()
X_q = torch.quantize_per_tensor(
X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
return X, X_q
def skipIfNoFBGEMM(fn):
reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
if isinstance(fn, type):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoQNNPACK(fn):
reason = 'Quantized operations require QNNPACK.'
if isinstance(fn, type):
if 'qnnpack' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'qnnpack' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def withQNNPACKBackend(fn):
# TODO(future PR): consider combining with skipIfNoQNNPACK,
# will require testing of existing callsites
reason = 'Quantized operations require QNNPACK.'
if isinstance(fn, type):
if 'qnnpack' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'qnnpack' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
with override_quantized_engine('qnnpack'):
fn(*args, **kwargs)
return wrapper
def skipIfNoONEDNN(fn):
reason = 'Quantized operations require ONEDNN.'
if isinstance(fn, type):
if 'onednn' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'onednn' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoONEDNNBF16(fn):
reason = 'Quantized operations require BF16 support.'
if isinstance(fn, type):
if not torch.ops.mkldnn._is_mkldnn_bf16_supported():
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if not torch.ops.mkldnn._is_mkldnn_bf16_supported():
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoX86(fn):
reason = 'Quantized operations require X86.'
if isinstance(fn, type):
if 'x86' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'x86' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoDynamoSupport(fn):
reason = "dynamo doesn't support."
if isinstance(fn, type):
if not torchdynamo.is_dynamo_supported():
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if not torchdynamo.is_dynamo_supported():
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoInductorSupport(fn):
reason = "inductor doesn't support."
if isinstance(fn, type):
if not torchdynamo.is_inductor_supported():
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if not torchdynamo.is_inductor_supported():
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
try:
import torchvision # noqa: F401
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
def get_script_module(model, tracing, data):
return torch.jit.trace(model, data) if tracing else torch.jit.script(model)
def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True):
"""
Convert lengths to offsets for embedding_bag
"""
tt = np.zeros((t.shape[0] + 1,), dtype=offset_type)
tt[1:] = t
tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type))
if use_begin_offset:
return tt[:-1]
return tt[1:]
def _group_quantize_tensor(w, n_bit=4, q_group_size=16):
assert w.dim() == 2
w = w.transpose(0, 1).contiguous()
assert q_group_size > 1
assert w.shape[-1] % q_group_size == 0
to_quant = w.reshape(-1, q_group_size)
assert torch.isnan(to_quant).sum() == 0
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2 ** n_bit - 1
min_int = 0
scales = (max_val - min_val).clamp(min=1e-6) / max_int
assert torch.isnan(scales).sum() == 0
zeros = min_val + scales * (2 ** (n_bit - 1))
assert torch.isnan(zeros).sum() == 0
out = to_quant.sub(min_val).div(scales).round().clamp_(min_int, max_int)
assert torch.isnan(out).sum() == 0
out = out.to(dtype=torch.int32).reshape(w.shape)
if out.device != torch.device('cpu'):
out = (out[::, ::2] << 4 | out[::, 1::2]).to(torch.uint8)
# Scales and zeros for the same q-group should be contiguous, so we can
# load as a 32-bit word
scales = scales.view(w.shape[0], -1)
zeros = zeros.view(w.shape[0], -1)
scales_and_zeros = (
torch.cat(
[
scales.reshape(scales.size(0), scales.size(1), 1),
zeros.reshape(zeros.size(0), zeros.size(1), 1),
],
2,
).transpose(0, 1).contiguous()
)
return out, scales_and_zeros
def _group_quantize_tensor_symmetric(
w, n_bit=4, groupsize=32
):
# W is of shape [K x N]
# We transpose W as Quantization is applied on [N x K]
w = w.transpose(0, 1).contiguous()
assert w.dim() == 2
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
# Calculate scale and zeros
to_quant = w.reshape(-1, groupsize)
max_val = to_quant.abs().amax(dim=1, keepdim=True)
eps = torch.finfo(max_val.dtype).eps
max_int = 2 ** (n_bit - 1) - 1 # For 4-bit, this is 7
scales = max_val.clamp(min=eps) / max_int
zeros = torch.zeros_like(scales)
# Quantize the weight
scales = scales.to(torch.float32).reshape(w.shape[0], -1)
zeros = zeros.to(torch.float32).reshape(w.shape[0], -1)
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
max_int = 2**n_bit - 1
w_int8 = to_quant.div(scales).add(8.5).to(torch.int8).clamp(max=max_int)
# We pack 2 signed int4 values in unsigned uint8 container.
# This reduces the weight size by half and improves load perf
out_uint8 = (w_int8[::, 1::2] << 4 | w_int8[::, ::2]).to(torch.uint8)
scales_and_zeros = scales.squeeze().contiguous()
return out_uint8, scales_and_zeros
def _dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
# source: https://github.com/pytorch-labs/gpt-fast/blob/main/quantize.py
# default setup for affine quantization of activations
x_dtype = x.dtype
x = x.float()
eps = torch.finfo(torch.float32).eps
# get min and max
min_val, max_val = torch.aminmax(x, dim=1)
# calculate scales and zero_points based on min and max
# reference: https://fburl.com/code/srbiybme
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
device = min_val_neg.device
# reference: https://fburl.com/code/4wll53rk
max_val_pos = torch.max(-min_val_neg, max_val_pos)
scales = max_val_pos / (float(quant_max - quant_min) / 2)
# ensure scales is the same dtype as the original tensor
scales = torch.clamp(scales, min=eps).to(x.dtype)
zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
# quantize based on qmin/qmax/scales/zp
x_div = x / scales.unsqueeze(-1)
x_round = torch.round(x_div)
x_zp = x_round + zero_points.unsqueeze(-1)
quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)
return quant, scales.to(x_dtype), zero_points
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
super().setUp()
self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
for _ in range(2)]
self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_dict = {1 : self.img_data_1d,
2 : self.img_data_2d,
3 : self.img_data_3d}
# Quant types that produce statically quantized ops
self.static_quant_types = [QuantType.STATIC, QuantType.QAT]
# All quant types for (fx based) graph mode quantization
self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT]
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization preparation, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkNoQconfig(self, module):
r"""Checks the module does not contain qconfig
"""
self.assertFalse(hasattr(module, 'qconfig'))
for child in module.children():
self.checkNoQconfig(child)
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization preparation, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module, propagate_qconfig_list=None, prepare_custom_config_dict=None):
r"""Checks the module or module's leaf descendants
have observers in preparation for quantization
"""
if propagate_qconfig_list is None:
propagate_qconfig_list = get_default_qconfig_propagation_list()
if prepare_custom_config_dict is None:
prepare_custom_config_dict = {}
float_to_observed_module_class_mapping = prepare_custom_config_dict.get("float_to_observed_custom_module_class", {})
# check if a module is a leaf module, ignoring activation_post_process attribute
def is_leaf_module(module):
submodule_name_count = 0
for name, _ in module.named_children():
if name != 'activation_post_process':
submodule_name_count += 1
return submodule_name_count == 0
if hasattr(module, 'qconfig') and module.qconfig is not None and \
((is_leaf_module(module) and not isinstance(module, torch.nn.Sequential)
and type(module) in propagate_qconfig_list) or
type(module) in float_to_observed_module_class_mapping.keys()) and \
not isinstance(module, torch.ao.quantization.DeQuantStub):
self.assertTrue(hasattr(module, 'activation_post_process'),
'module: ' + str(type(module)) + ' do not have observer')
# we don't need to check observers for child modules of the
# qat modules
if type(module) not in get_default_qat_module_mappings().values() and \
type(module) not in float_to_observed_module_class_mapping.values() and \
not isinstance(module, _FusedModule):
for child in module.children():
if type(child) in [nn.Dropout]:
continue
self.checkObservers(child, propagate_qconfig_list, prepare_custom_config_dict)
def checkQuantDequant(self, mod):
r"""Checks that mod has nn.Quantize and
nn.DeQuantize submodules inserted
"""
self.assertEqual(type(mod.quant), nnq.Quantize)
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
def checkWrappedQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnq.Linear
module, the bias is qint32, and that the module
has Quantize and DeQuantize submodules
"""
self.assertEqual(type(mod.module), nnq.Linear)
self.checkQuantDequant(mod)
def checkQuantizedLinear(self, mod):
self.assertEqual(type(mod), nnq.Linear)
def checkDynamicQuantizedLinear(self, mod, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nnqd.Linear)
self.assertEqual(mod._packed_params.dtype, dtype)
def checkDynamicQuantizedLinearRelu(self, mod, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nniqd.LinearReLU)
self.assertEqual(mod._packed_params.dtype, dtype)
def check_eager_serialization(self, ref_model, loaded_model, x):
# Check state dict serialization and torch.save APIs
model_dict = ref_model.state_dict()
b = io.BytesIO()
torch.save(model_dict, b)
b.seek(0)
# weights_only=False as we sometimes get a ScriptObect here (weird)
loaded_dict = torch.load(b, weights_only=False)
loaded_model.load_state_dict(loaded_dict)
ref_out = ref_model(*x)
load_out = loaded_model(*x)
def check_outputs(ref_out, load_out):
self.assertEqual(ref_out[0], load_out[0])
if isinstance(ref_out[1], tuple):
self.assertEqual(ref_out[1][0], load_out[1][0])
self.assertEqual(ref_out[1][1], load_out[1][1])
else:
self.assertEqual(ref_out[1], load_out[1])
check_outputs(ref_out, load_out)
b = io.BytesIO()
torch.save(ref_model, b)
b.seek(0)
# weights_only=False as this is legacy code that saves the model
loaded = torch.load(b, weights_only=False)
load_out = loaded(*x)
check_outputs(ref_out, load_out)
def check_weight_bias_api(self, ref_model, weight_keys, bias_keys):
weight = ref_model.get_weight()
bias = ref_model.get_bias()
self.assertEqual(weight_keys ^ weight.keys(), set())
self.assertEqual(bias_keys ^ bias.keys(), set())
def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.LSTM type
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkLinear(self, mod):
self.assertEqual(type(mod), torch.nn.Linear)
def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
if hasattr(mod, '_all_weight_values'):
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
scripted = torch.jit.script(orig_mod)
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
# Use first calib_data entry as trace input
traced = torch.jit.trace(orig_mod, calib_data[0])
self._checkScriptable(orig_mod, traced, calib_data, check_save_load)
# Call this twice: once for a scripted module and once for a traced module
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
# Test save/load
buffer = io.BytesIO()
torch.jit.save(script_mod, buffer)
buffer.seek(0)
loaded_mod = torch.jit.load(buffer)
# Pending __get_state_ and __set_state__ support
# See tracking task https://github.com/pytorch/pytorch/issues/23984
if check_save_load:
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
for inp in calib_data:
ref_output = orig_mod(*inp)
scripted_output = test_mod(*inp)
self.assertEqual(scripted_output, ref_output)
def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False,
check=True, eval_mode=True, dynamic=False, qconfig=None):
if debug:
print('Testing:', str(module))
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
if eval_mode:
module = module.eval()
if dynamic:
qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig}
model = get_script_module(module, tracing, inputs[0]).eval()
if debug:
print('input graph:', model.graph)
models = {}
outputs = {}
for debug in [True, False]:
if dynamic:
models[debug] = quantize_dynamic_jit(model, qconfig_dict, debug=debug)
# make sure it runs
outputs[debug] = models[debug](inputs)
else:
# module under test can contain in-place ops, and we depend on
# input data staying constant for comparisons
inputs_copy = copy.deepcopy(inputs)
models[debug] = quantize_jit(
model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False,
debug=debug)
# make sure it runs
outputs[debug] = models[debug](*inputs[0])
if debug:
print('debug graph:', models[True].graph)
print('non debug graph:', models[False].graph)
if check:
# debug and non-debug option should have the same numerics
self.assertEqual(outputs[True], outputs[False])
# non debug graph should produce quantized op
FileCheck().check(quantized_op) \
.run(models[False].graph)
return models[False]
def checkGraphModuleNodes(
self, graph_module,
expected_node=None,
expected_node_occurrence=None,
expected_node_list=None):
""" Check if GraphModule contains the target node
Args:
graph_module: the GraphModule instance we want to check
expected_node, expected_node_occurrence, expected_node_list:
see docs for checkGraphModeFxOp
"""
nodes_in_graph = {}
node_list = []
modules = dict(graph_module.named_modules(remove_duplicate=False))
for node in graph_module.graph.nodes:
n = None
if node.op == 'call_function' or node.op == 'call_method':
n = NodeSpec(node.op, node.target)
elif node.op == 'call_module':
n = NodeSpec(node.op, type(modules[node.target]))
if n is not None:
node_list.append(n)
if n in nodes_in_graph:
nodes_in_graph[n] += 1
else:
nodes_in_graph[n] = 1
if expected_node is not None:
self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) +
' not found in the graph module')
if expected_node_occurrence is not None:
for expected_node, occurrence in expected_node_occurrence.items():
if occurrence != 0:
self.assertTrue(
expected_node in nodes_in_graph,
'Check failed for node:' + str(expected_node) +
' not found')
self.assertTrue(
nodes_in_graph[expected_node] == occurrence,
'Check failed for node:' + str(expected_node) +
' Expected occurrence:' + str(occurrence) +
' Found occurrence:' + str(nodes_in_graph[expected_node]))
else:
self.assertTrue(
expected_node not in nodes_in_graph,
'Check failed for node:' + str(expected_node) +
' expected no occurrence but found')
if expected_node_list is not None:
cur_index = 0
for n in node_list:
if cur_index == len(expected_node_list):
return
if n == expected_node_list[cur_index]:
cur_index += 1
self.assertTrue(
cur_index == len(expected_node_list),
"Check failed for graph:" +
self.printGraphModule(graph_module, print_str=False) +
"Expected ordered list:" +
str(expected_node_list))
def printGraphModule(self, graph_module, print_str=True):
modules = dict(graph_module.named_modules(remove_duplicate=False))
node_infos = []
for n in graph_module.graph.nodes:
node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs]))
if n.op == 'call_module':
node_info += ' module type: ' + repr(type(modules[n.target]))
node_infos.append(node_info)
str_to_print = '\n'.join(node_infos)
if print_str:
print(str_to_print)
return str_to_print
if HAS_FX:
def assert_types_for_matched_subgraph_pairs(
self,
matched_subgraph_pairs: dict[str, tuple[NSSubgraph, NSSubgraph]],
expected_types: dict[str, tuple[tuple[Callable, Callable], tuple[Callable, Callable]]],
gm_a: GraphModule,
gm_b: GraphModule,
) -> None:
"""
Verifies that the types specified in expected_types match
the underlying objects pointed to by the nodes in matched_subgraph_pairs.
An example successful test case:
matched_subgraph_pairs = {'x0': (graph_a_conv_0_node, graph_b_conv_0_node)}
expected_types = {'x0': (nn.Conv2d, nnq.Conv2d)}
The function tests for key equivalence, and verifies types with
instance checks.
"""
def _get_underlying_op_type(
node: Node, gm: GraphModule
) -> Union[Callable, str]:
if node.op == 'call_module':
mod = getattr(gm, node.target)
return type(mod)
else:
assert node.op in ('call_function', 'call_method')
return node.target
self.assertTrue(
len(matched_subgraph_pairs) == len(expected_types),
f'Expected length of results to match, but got {len(matched_subgraph_pairs)} and {len(expected_types)}'
)
for k, v in expected_types.items():
expected_types_a, expected_types_b = v
exp_type_start_a, exp_type_end_a = expected_types_a
exp_type_start_b, exp_type_end_b = expected_types_b
subgraph_a, subgraph_b = matched_subgraph_pairs[k]
act_type_start_a = _get_underlying_op_type(subgraph_a.start_node, gm_a)
act_type_start_b = _get_underlying_op_type(subgraph_b.start_node, gm_b)
act_type_end_a = _get_underlying_op_type(subgraph_a.end_node, gm_a)
act_type_end_b = _get_underlying_op_type(subgraph_b.end_node, gm_b)
types_match = (exp_type_start_a is act_type_start_a) and \
(exp_type_end_a is act_type_end_a) and \
(exp_type_start_b is act_type_start_b) and \
(exp_type_end_b is act_type_end_b)
self.assertTrue(
types_match,
f'Type mismatch at {k}: expected {(exp_type_start_a, exp_type_end_a, exp_type_start_b, exp_type_end_b)}, '
f'got {(act_type_start_a, act_type_end_a, act_type_start_b, act_type_end_b)}'
)
def assert_ns_compare_dict_valid(
self,
act_compare_dict: dict[str, dict[str, dict[str, Any]]],
) -> None:
"""
Verifies that the act_compare_dict (output of Numeric Suite APIs) is valid:
1. for each layer, results are recorded for two models
2. number of seen tensors match
3. shapes of each pair of seen tensors match
"""
for layer_name, result_type_to_data in act_compare_dict.items():
for result_type, layer_data in result_type_to_data.items():
self.assertTrue(
len(layer_data) == 2,
f"Layer {layer_name} does not have exactly two model results.")
model_name_0, model_name_1 = layer_data.keys()
for res_idx in range(len(layer_data[model_name_0])):
layer_data_0 = layer_data[model_name_0][res_idx]
layer_data_1 = layer_data[model_name_1][res_idx]
self.assertTrue(
layer_data_0['type'] == layer_data_0['type'],
f"Layer {layer_name}, {model_name_0} and {model_name_1} do not have the same type.")
self.assertTrue(
len(layer_data_0['values']) ==
len(layer_data_1['values']),
f"Layer {layer_name}, {model_name_0} and {model_name_1} do not have the same number of seen Tensors.")
# F.conv1d weight has rank 3, and toq.conv1d unpacked weight
# has rank 4. For now, skip the length check for conv1d only.
is_weight_functional_conv1d = (
result_type == NSSingleResultValuesType.WEIGHT.value and
(
'conv1d' in layer_data_0['prev_node_target_type'] or
'conv1d' in layer_data_1['prev_node_target_type']
)
)
if not is_weight_functional_conv1d:
for idx in range(len(layer_data_0['values'])):
values_0 = layer_data_0['values'][idx]
values_1 = layer_data_1['values'][idx]
if isinstance(values_0, torch.Tensor):
self.assertTrue(
values_0.shape == values_1.shape,
f"Layer {layer_name}, {model_name_0} and {model_name_1} " +
f"have a shape mismatch at idx {idx}.")
elif isinstance(values_0, list):
values_0 = values_0[0]
values_1 = values_1[0]
self.assertTrue(
values_0.shape == values_1.shape,
f"Layer {layer_name}, {model_name_0} and {model_name_1} " +
f"have a shape mismatch at idx {idx}.")
else:
assert isinstance(values_0, tuple), \
f"unhandled type {type(values_0)}"
assert len(values_0) == 2
assert len(values_0[1]) == 2
assert values_0[0].shape == values_1[0].shape
assert values_0[1][0].shape == values_1[1][0].shape
assert values_0[1][1].shape == values_1[1][1].shape
# verify that ref_node_name is valid
ref_node_name_0 = layer_data_0['ref_node_name']
ref_node_name_1 = layer_data_1['ref_node_name']
prev_node_name_0 = layer_data_0['prev_node_name']
prev_node_name_1 = layer_data_1['prev_node_name']
if layer_data_0['type'] == NSSingleResultValuesType.NODE_OUTPUT.value:
self.assertTrue(ref_node_name_0 == prev_node_name_0)
self.assertTrue(ref_node_name_1 == prev_node_name_1)
elif layer_data_0['type'] == NSSingleResultValuesType.NODE_INPUT.value:
self.assertTrue(ref_node_name_0 != prev_node_name_0)
self.assertTrue(ref_node_name_1 != prev_node_name_1)
def checkGraphModeFxOp(
self,
model,
inputs,
quant_type,
expected_node=None,
expected_node_occurrence=None,
expected_node_list=None,
is_reference=False,
print_debug_info=False,
custom_qconfig_dict=None,
prepare_expected_node=None,
prepare_expected_node_occurrence=None,
prepare_expected_node_list=None,
prepare_custom_config=None,
backend_config=None):
""" Quantizes model with graph mode quantization on fx and check if the
quantized model contains the quantized_node
Args:
model: floating point torch.nn.Module
inputs: one positional sample input arguments for model
expected_node: NodeSpec
e.g. NodeSpec.call_function(torch.quantize_per_tensor)
expected_node_occurrence: a dict from NodeSpec to
expected number of occurrences (int)
e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1,
NodeSpec.call_method('dequantize'): 1}
expected_node_list: a list of NodeSpec, used to check the order
of the occurrence of Node
e.g. [NodeSpec.call_function(torch.quantize_per_tensor),
NodeSpec.call_module(nnq.Conv2d),
NodeSpec.call_function(F.hardtanh_),
NodeSpec.call_method('dequantize')]
is_reference: if True, enables reference mode
print_debug_info: if True, prints debug info
custom_qconfig_dict: overrides default qconfig_dict
prepare_expected_node: same as expected_node, but for prepare
prepare_expected_node_occurrence: same as
expected_node_occurrence, but for prepare
prepare_expected_node_list: same as expected_node_list, but
for prepare
Returns:
A dictionary with the following structure:
{
"prepared": ..., # the prepared model
"quantized": ..., # the quantized non-reference model
"quantized_reference": ..., # the quantized reference model
"result": ..., # the result for either quantized or
# quantized_reference model depending on the
# is_reference argument
}
"""
# TODO: make img_data a single example instead of a list
if type(inputs) == list:
inputs = inputs[0]
if quant_type == QuantType.QAT:
qconfig_mapping = get_default_qat_qconfig_mapping(torch.backends.quantized.engine)
model.train()
elif quant_type == QuantType.STATIC:
qconfig_mapping = get_default_qconfig_mapping(torch.backends.quantized.engine)
model.eval()
else:
qconfig = default_dynamic_qconfig
qconfig_mapping = QConfigMapping().set_global(qconfig)
model.eval()
if quant_type == QuantType.QAT:
prepare = prepare_qat_fx
else:
prepare = prepare_fx
# overwrite qconfig_dict with custom_qconfig_dict
if custom_qconfig_dict is not None:
assert type(custom_qconfig_dict) in (QConfigMapping, dict), \
'custom_qconfig_dict should be a QConfigMapping or a dict'
if isinstance(custom_qconfig_dict, QConfigMapping):
qconfig_mapping = custom_qconfig_dict
else:
qconfig_mapping = QConfigMapping.from_dict(custom_qconfig_dict)
prepared = prepare(
model, qconfig_mapping,
example_inputs=inputs,
prepare_custom_config=prepare_custom_config,
backend_config=backend_config)
if not quant_type == QuantType.DYNAMIC:
prepared(*inputs)
if print_debug_info:
print()
print('quant type:\n', quant_type)
print('original model:\n', model)
print()
print('prepared model:\n', prepared)
self.checkGraphModuleNodes(
prepared, prepare_expected_node,
prepare_expected_node_occurrence, prepare_expected_node_list)
prepared_copy = copy.deepcopy(prepared)
qgraph = convert_fx(copy.deepcopy(prepared))
qgraph_reference = convert_to_reference_fx(copy.deepcopy(prepared))
result = qgraph(*inputs)
result_reference = qgraph_reference(*inputs)
qgraph_copy = copy.deepcopy(qgraph)
qgraph_reference_copy = copy.deepcopy(qgraph_reference)
qgraph_to_check = qgraph_reference if is_reference else qgraph
if print_debug_info:
print()
print('quantized model:\n', qgraph_to_check)
self.printGraphModule(qgraph_to_check)
print()
self.checkGraphModuleNodes(
qgraph_to_check, expected_node, expected_node_occurrence, expected_node_list)
return {"prepared": prepared_copy,
"quantized": qgraph_copy,
"quantized_reference": qgraph_reference_copy,
"quantized_output": result,
"quantized_reference_output": result_reference}
def checkEmbeddingSerialization(self, qemb, num_embeddings, embedding_dim, indices, offsets,
set_qconfig, is_emb_bag, dtype=torch.quint8):
# Test serialization of dynamic EmbeddingBag module using state_dict
if is_emb_bag:
inputs = [indices, offsets]
else:
inputs = [indices]
emb_dict = qemb.state_dict()
b = io.BytesIO()
torch.save(emb_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
embedding_unpack = torch.ops.quantized.embedding_bag_unpack
# Check unpacked weight values explicitly
for key in emb_dict:
if isinstance(emb_dict[key], torch._C.ScriptObject):
assert isinstance(loaded_dict[key], torch._C.ScriptObject)
emb_weight = embedding_unpack(emb_dict[key])
loaded_weight = embedding_unpack(loaded_dict[key])
self.assertEqual(emb_weight, loaded_weight)
# Check state dict serialization and torch.save APIs
if is_emb_bag:
loaded_qemb = nnq.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
include_last_offset=True, mode='sum', dtype=dtype)
else:
loaded_qemb = nnq.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim, dtype=dtype)
self.check_eager_serialization(qemb, loaded_qemb, inputs)
loaded_qemb.load_state_dict(loaded_dict)
self.assertEqual(embedding_unpack(qemb._packed_params._packed_weight),
embedding_unpack(loaded_qemb._packed_params._packed_weight))
# Test JIT serialization
self.checkScriptable(qemb, [inputs], check_save_load=True)
# Test from_float call
if is_emb_bag:
float_embedding = torch.nn.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
else:
float_embedding = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
if set_qconfig:
float_qparams_observer = PerChannelMinMaxObserver.with_args(dtype=dtype,
qscheme=torch.per_channel_affine_float_qparams,
ch_axis=0)
float_embedding.qconfig = QConfig(activation=default_dynamic_quant_observer,
weight=float_qparams_observer)
prepare_dynamic(float_embedding)
float_embedding(*inputs)
if is_emb_bag:
q_embeddingbag = nnq.EmbeddingBag.from_float(float_embedding)
expected_name = "QuantizedEmbeddingBag"
else:
q_embeddingbag = nnq.Embedding.from_float(float_embedding)
expected_name = "QuantizedEmbedding"
q_embeddingbag(*inputs)
self.assertTrue(expected_name in str(q_embeddingbag))
class QuantizationLiteTestCase(QuantizationTestCase):
def _create_quantized_model(self, model_class: type[torch.nn.Module], **kwargs):
# Creates quantized model for testing mobile script modules
qengine = "qnnpack"
with override_quantized_engine(qengine):
# FIXME(rec): shouldn't qconfig be passed to quantize?
qconfig = torch.ao.quantization.get_default_qconfig(qengine) # noqa: F841
model = model_class(**kwargs)
model = quantize(model, test_only_eval_fn, [self.calib_data])
return model
def _compare_script_and_mobile(self,
model: torch.nn.Module,
input: torch.Tensor):
# Compares the numerical outputs for script and lite modules
qengine = "qnnpack"
with override_quantized_engine(qengine):
script_module = torch.jit.script(model)
script_module_result = script_module(input)
max_retry = 5
for retry in range(1, max_retry + 1):
# retries `max_retry` times; breaks iff succeeds else throws exception
try:
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
mobile_module_result = mobile_module(input)
torch.testing.assert_close(script_module_result, mobile_module_result)
mobile_module_forward_result = mobile_module.forward(input)
torch.testing.assert_close(script_module_result, mobile_module_forward_result)
mobile_module_run_method_result = mobile_module.run_method("forward", input)
torch.testing.assert_close(script_module_result, mobile_module_run_method_result)
except AssertionError as e:
if retry == max_retry:
raise e
else:
continue
break
class PT2EQuantizationTestCase(QuantizationTestCase):
"""
Base QuantizationTestCase for PT2 with some helper methods.
"""
_MAP_TO_FX_TRACED_OPS = {
torch.ops.quantized_decomposed.quantize_per_tensor: torch.ops.quantized_decomposed.quantize_per_tensor.default,
torch.ops.quantized_decomposed.dequantize_per_tensor: torch.ops.quantized_decomposed.dequantize_per_tensor.default,
torch.ops.quantized_decomposed.quantize_per_channel: torch.ops.quantized_decomposed.quantize_per_channel.default,
torch.ops.quantized_decomposed.dequantize_per_channel: torch.ops.quantized_decomposed.dequantize_per_channel.default,
torch.ops.quantized_decomposed.quantize_per_tensor.tensor: torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
}
def _test_quantizer(
self,
model,
example_inputs,
quantizer,
expected_node_occurrence,
expected_node_list=None,
check_against_fx_quant=False,
fx_qconfig_mapping=None,
export_with_dynamic_shape=False,
is_qat=False,
is_debug_mode=False,
training_ir_node_occurrence=None,
):
# resetting dynamo cache
torch._dynamo.reset()
m_eager = model.eval()
# program capture
m = copy.deepcopy(m_eager)
dynamic_shapes = tuple(
{0: torch.export.Dim("dim")} if i == 0 else None
for i in range(len(example_inputs))
)
m = export_for_training(
m,
example_inputs,
dynamic_shapes=dynamic_shapes if export_with_dynamic_shape else None,
).module()
if is_qat:
m = prepare_qat_pt2e(m, quantizer)
else:
m = prepare_pt2e(m, quantizer)
if is_debug_mode:
print("prepared model:", m)
# Calibrate
m(*example_inputs)
m = convert_pt2e(m)
if is_debug_mode:
print("quantized model", m)
pt2_quant_output = m(*example_inputs)
ns = NodeSpec
node_occurrence = {
ns.call_function(k): v for k, v in expected_node_occurrence.items()
}
if expected_node_list is None:
expected_node_list = []
node_list = [ns.call_function(n) for n in expected_node_list]
self.checkGraphModuleNodes(
m, expected_node_occurrence=node_occurrence, expected_node_list=node_list
)
if check_against_fx_quant:
qconfig_mapping = fx_qconfig_mapping
backend_config = get_executorch_backend_config()
m_copy = copy.deepcopy(m_eager)
m_fx = prepare_fx(
m_copy, qconfig_mapping, example_inputs, backend_config=backend_config
)
m_fx(*example_inputs)
m_fx = _convert_to_reference_decomposed_fx(
m_fx, backend_config=backend_config
)
m_fx = export_for_training(
m_fx,
example_inputs,
dynamic_shapes=dynamic_shapes if export_with_dynamic_shape else None,
).module()
node_occurrence = {}
for k, v in PT2EQuantizationTestCase._MAP_TO_FX_TRACED_OPS.items():
if k in expected_node_occurrence:
node_occurrence[ns.call_function(v)] = expected_node_occurrence[k]
if training_ir_node_occurrence is not None:
node_occurrence = {
ns.call_function(k): v for k, v in training_ir_node_occurrence.items()
}
self.checkGraphModuleNodes(m_fx, expected_node_occurrence=node_occurrence)
fx_quant_output = m_fx(*example_inputs)
self.assertEqual(fx_quant_output, pt2_quant_output)
return m
def _quantize(self, m, quantizer, example_inputs, is_qat: bool = False):
# resetting dynamo cache
torch._dynamo.reset()
m = export_for_training(
m,
example_inputs,
).module()
if is_qat:
m = prepare_qat_pt2e(m, quantizer)
else:
m = prepare_pt2e(m, quantizer)
m(*example_inputs)
m = convert_pt2e(m)
return m
def _get_pt2e_quantized_linear(self, is_per_channel=False) -> torch.fx.GraphModule:
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, x):
return self.linear(x)
quantizer = XNNPACKQuantizer()
operator_config = get_symmetric_quantization_config(is_per_channel=is_per_channel)
quantizer.set_global(operator_config)
example_inputs = (torch.randn(2, 2),)
m = M().eval()
return self._quantize(m, quantizer, example_inputs)
# Below are a series of toy models to use in testing quantization
class SingleLayerLinearModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class AnnotatedSingleLayerLinearModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class SingleLayerLinearDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class LinearAddModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = torch.add(x, 5)
x = self.fc2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class RNNDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRU':
self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float)
if mod_type == 'LSTM':
self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class RNNCellDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRUCell':
self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float)
if mod_type == 'LSTMCell':
self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float)
if mod_type == 'RNNReLU':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float)
if mod_type == 'RNNTanh':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class LSTMwithHiddenDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x, hid):
x, hid = self.lstm(x, hid)
return x, hid
class ConvModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class ConvTransposeModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class AnnotatedConvModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class AnnotatedConvTransposeModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class ConvBnModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class AnnotatedConvBnModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.qconfig = default_qconfig
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.dequant(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class ConvBnReLUModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class AnnotatedConvBnReLUModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=True)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.dequant(x)
return x
def fuse_model(self):
# TODO: remove this check and define two fuse_modules function on this module
if self.training:
torch.ao.quantization.fuse_modules_qat(self, [['conv', 'bn', 'relu']], inplace=True)
else:
torch.ao.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True)
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class TwoLayerConvModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.conv2 = torch.nn.Conv2d(5, 5, 1, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class TwoLayerLinearModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class LinearModelWithSubmodule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.subm = TwoLayerLinearModel()
self.fc = nn.Linear(5, 5)
def forward(self, x):
x = self.subm(x)
x = self.fc(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.subm.get_example_inputs()
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
self.fc2.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm")
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class ActivationsTestModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm")
self.quant = torch.ao.quantization.QuantStub()
self.hardswish = torch.nn.Hardswish().to(dtype=torch.float)
self.elu = torch.nn.ELU().to(dtype=torch.float)
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.hardswish(x)
x = self.elu(x)
x = self.dequant(x)
return x
class LinearReluModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class LinearReluLinearModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class LinearReluAddModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = torch.add(x, 5)
x = self.fc2(x)
self.relu = torch.nn.ReLU()
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class LinearBnLeakyReluModel(torch.nn.Module):
def __init__(self, with_bn=True):
super().__init__()
self.linear = nn.Linear(5, 5)
self.bn1d = nn.BatchNorm1d(5)
self.leaky_relu = nn.LeakyReLU(0.01)
self.with_bn = with_bn
def forward(self, x):
x = self.linear(x)
if self.with_bn:
x = self.bn1d(x)
x = self.leaky_relu(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class LinearTanhModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = nn.Linear(5, 5)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.linear(x)
x = self.tanh(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class ConvBnAddReluModel(torch.nn.Module):
def __init__(self,
with_bn=True,
with_relu=True,
left_conv=True,
two_conv=True,
use_torch_add=True):
super().__init__()
self.conv = nn.Conv2d(5, 5, (2, 2))
self.conv2 = nn.Conv2d(5, 5, (2, 2))
self.bn = nn.BatchNorm2d(5)
self.relu = nn.ReLU()
self.with_bn = with_bn
self.with_relu = with_relu
self.two_conv = two_conv
self.left_conv = left_conv
self.use_torch_add = use_torch_add
def forward(self, x1, x2):
if self.two_conv:
if self.use_torch_add:
if self.with_bn:
x = torch.add(self.bn(self.conv(x1)), self.conv2(x1))
else:
x = torch.add(self.conv(x1), self.conv2(x1))
else:
if self.with_bn:
x = self.bn(self.conv(x1)) + self.conv2(x1)
else:
x = self.conv(x1) + self.conv2(x1)
else:
if self.use_torch_add:
if self.left_conv:
if self.with_bn:
x = torch.add(self.bn(self.conv(x1)), x2)
else:
x = torch.add(self.conv(x1), x2)
else:
if self.with_bn:
x = torch.add(x2, self.bn(self.conv(x1)))
else:
x = torch.add(x2, self.conv(x1))
else:
if self.left_conv:
if self.with_bn:
x = self.bn(self.conv(x1)) + x2
else:
x = self.conv(x1) + x2
else:
if self.with_bn:
x = x2 + self.bn(self.conv(x1))
else:
x = x2 + self.conv(x1)
if self.with_relu:
x = self.relu(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5, 3, 3), torch.rand(1, 5, 2, 2))
# TODO: self.fc should be self.conv
class ConvReluModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
# TODO: self.fc should be self.conv
class ConvReluConvModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
# TODO: self.fc should be self.conv
class ConvReluAddModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = torch.add(x, 5)
x = self.fc2(x)
self.relu = torch.nn.ReLU()
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class NormalizationTestModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.quant = torch.ao.quantization.QuantStub()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.layer_norm = torch.nn.LayerNorm(8)
self.group_norm = torch.nn.GroupNorm(2, 8)
self.instance_norm1d = torch.nn.InstanceNorm1d(8)
self.instance_norm2d = torch.nn.InstanceNorm2d(8)
self.instance_norm3d = torch.nn.InstanceNorm3d(8)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.layer_norm(x)
x = self.group_norm(x.unsqueeze(-1).repeat(1, 1, 3))
x = self.instance_norm1d(x)
x = self.instance_norm2d(x.unsqueeze(-1))
x = self.instance_norm3d(x.unsqueeze(-1))
return x
class NestedModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedNestedModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
if qengine == 'fbgemm':
self.sub2.fc1.qconfig = default_per_channel_qconfig
else:
self.sub2.fc1.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedSubNestedModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
custom_options = {
'dtype': torch.quint8,
'qscheme': torch.per_tensor_affine
}
custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options),
weight=default_weight_observer)
self.sub2.fc1.qconfig = custom_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class QuantSubModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.sub2.qconfig = default_qconfig
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.fc3.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class InnerModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu1 = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
self.relu2 = torch.nn.ReLU()
def forward(self, x):
return self.relu2(self.fc2(self.relu1(self.fc1(x))))
def fuse_modules(self):
fusable_layers = []
named_children = list(self.named_children())
for idx, (current_name, layer) in enumerate(named_children):
if isinstance(layer, torch.nn.Linear):
if idx >= len(named_children) - 1:
break
if isinstance(named_children[idx + 1][1], torch.nn.ReLU):
fusable_layers.append([current_name,
named_children[idx + 1][0]])
# TODO: remove this check and define two fuse_modules function on this module
if self.training:
torch.ao.quantization.fuse_modules_qat(self, fusable_layers, inplace=True)
else:
torch.ao.quantization.fuse_modules(self, fusable_layers, inplace=True)
class FunctionalLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.rand((5, 5))
self.bias = torch.zeros(5)
def forward(self, x):
return F.linear(x, self.weight, self.bias)
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 5),)
class SingleLayerFunctionalLinearModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = FunctionalLinear()
def forward(self, x):
x = self.linear1(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.linear1.get_example_inputs()
class TwoLayerFunctionalLinearModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = FunctionalLinear()
self.linear2 = FunctionalLinear()
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.linear1.get_example_inputs()
class FunctionalLinearAddModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = FunctionalLinear()
self.linear2 = FunctionalLinear()
def forward(self, x):
x = self.linear1(x)
x = torch.add(x, 5)
x = self.linear2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.linear1.get_example_inputs()
class FunctionalLinearReluModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = FunctionalLinear()
def forward(self, x):
x = self.linear(x)
x = F.relu(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.linear.get_example_inputs()
class FunctionalLinearReluLinearModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = FunctionalLinear()
self.relu = nn.ReLU()
self.linear2 = FunctionalLinear()
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.linear1.get_example_inputs()
class FunctionalConv2d(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.rand(3, 3, 3, 3)
self.bias = torch.rand(3)
self.stride = (1, 1)
self.padding = (0, 0)
self.dilation = (1, 1)
self.groups = 1
def forward(self, x):
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
def get_example_inputs(self) -> tuple[Any, ...]:
return (torch.rand(1, 3, 5, 5),)
class SingleLayerFunctionalConvModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = FunctionalConv2d()
def forward(self, x):
x = self.conv1(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.conv1.get_example_inputs()
class TwoLayerFunctionalConvModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = FunctionalConv2d()
self.conv2 = FunctionalConv2d()
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.conv1.get_example_inputs()
class FunctionalConvReluModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = FunctionalConv2d()
def forward(self, x):
x = self.conv(x)
x = F.relu(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.conv.get_example_inputs()
class FunctionalConvReluConvModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = FunctionalConv2d()
self.relu = nn.ReLU()
self.conv2 = FunctionalConv2d()
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
return x
def get_example_inputs(self) -> tuple[Any, ...]:
return self.conv1.get_example_inputs()
class SkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self) -> None:
super().__init__()
self.sub = InnerModule()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.fuse_modules()
class AnnotatedSkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
self.sub = QuantWrapper(InnerModule())
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
# don't quantize this fc
self.fc.qconfig = None
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.module.fuse_modules()
class QuantStubModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self) -> None:
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc(x)
return self.dequant(x)
class ManualLinearQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualDropoutQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.dropout = torch.nn.Dropout(0.5)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.dropout(x)
return self.dequant(x)
class ManualLinearDynamicQATModel(torch.nn.Module):
r"""A Module that uses a dynamic QAT by default.
"""
def __init__(self, qconfig=None):
super().__init__()
self.qconfig = qconfig or default_dynamic_qat_qconfig
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class ManualConvLinearQATModel(torch.nn.Module):
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
and contains both linear and conv modules
"""
def __init__(self, qconfig=None):
super().__init__()
self.qconfig = qconfig if qconfig else torch.ao.quantization.get_default_qat_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = x.view(-1, 64).contiguous()
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualConvLinearSymmQATModel(ManualConvLinearQATModel):
r"""Same as ManualConvLinearQATModule but with Symmetric Quantization.
Supported only with qnnpack.
"""
def __init__(self) -> None:
super().__init__(default_symmetric_qnnpack_qat_qconfig)
class ManualEmbeddingBagLinear(nn.Module):
def __init__(self) -> None:
super().__init__()
self.emb = nn.EmbeddingBag(num_embeddings=10, embedding_dim=12, mode='sum')
self.emb.qconfig = default_embedding_qat_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.linear = nn.Linear(12, 1).to(dtype=torch.float)
self.qconfig = get_default_qat_qconfig("qnnpack")
def forward(self, input: torch.Tensor, offsets: Optional[torch.Tensor] = None,
per_sample_weights: Optional[torch.Tensor] = None):
x = self.emb(input, offsets, per_sample_weights)
x = self.quant(x)
x = self.linear(x)
return self.dequant(x)
class DeFusedEmbeddingBagLinear(nn.Module):
r"""A module to simulate QAT embedding bag with a linear layer,
this module uses a separate embedding and bagging op, similar
to that which is described in the EmbeddingBag documentation.
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
"""
def __init__(self) -> None:
super().__init__()
self.emb = nn.Embedding(num_embeddings=10, embedding_dim=12)
self.emb.qconfig = default_embedding_qat_qconfig
self.bagging_op = torch.sum
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.linear = nn.Linear(12, 1).to(dtype=torch.float)
self.qconfig = get_default_qat_qconfig("qnnpack")
def forward(self, input: torch.Tensor) -> torch.Tensor:
x = self.bagging_op(self.emb(input), dim=1)
x = self.quant(x)
x = self.linear(x)
return self.dequant(x)
class SubModelForFusion(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class SubModelWithoutFusion(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.conv(x))
class ModelForFusion(nn.Module):
def __init__(self, qconfig):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.sub1 = SubModelForFusion()
self.sub2 = SubModelWithoutFusion()
self.fc = nn.Linear(36, 10).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.qconfig = qconfig
self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float)
self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float)
self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float)
self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float)
self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float)
self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float)
# don't quantize sub2
self.sub2.qconfig = None
self.fc.qconfig = None
def forward(self, x):
x = x.squeeze(2)
x = self.quant(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu4(x)
x = x.unsqueeze(2)
y = x.unsqueeze(2)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.sub1(x)
x = self.dequant(x)
x = self.sub2(x)
x = x.reshape(-1, 36).contiguous()
x = self.fc(x)
y = self.conv2(y)
y = self.relu2(y)
y = self.bn2(y)
y = self.relu3(y)
y = self.dequant(y)
return x
class ConvBNReLU(nn.Sequential):
def __init__(self) -> None:
super().__init__(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=False)
)
class ModelWithSequentialFusion(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1)
self.relu1 = nn.ReLU(inplace=False)
layers = [ConvBNReLU() for _ in range(3)]
self.features = nn.Sequential(*layers)
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
self.classifier = nn.Sequential(*head)
self.seq = nn.Sequential()
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.relu1(x)
x = self.features(x)
x = torch.reshape(x, (-1, 3 * 10 * 10))
x = self.classifier(x)
x = self.seq(x)
x = self.dequant(x)
return x
class ModelForFusionWithBias(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float)
self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.dequant(x)
return x
class ModelForLinearBNFusion(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = nn.Linear(20, 10)
self.bn = nn.BatchNorm1d(10)
nn.init.uniform_(self.bn.weight)
nn.init.uniform_(self.bn.bias)
def forward(self, x):
return self.bn(self.fc(x))
class DummyObserver(torch.nn.Module):
def calculate_qparams(self):
return 1.0, 0
def forward(self, x):
return x
class ModelForConvTransposeBNFusion(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.ConvTranspose1d(3, 3, 1)
self.bn1 = nn.BatchNorm1d(3)
self.conv2 = nn.ConvTranspose2d(3, 3, 1)
self.bn2 = nn.BatchNorm2d(3)
self.conv3 = nn.ConvTranspose3d(3, 3, 1)
self.bn3 = nn.BatchNorm3d(3)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = x.unsqueeze(2)
x = self.conv2(x)
x = self.bn2(x)
x = x.unsqueeze(2)
x = self.conv3(x)
x = self.bn3(x)
return x
class ModelWithFunctionals(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mycat = nnq.FloatFunctional()
self.myadd = nnq.FloatFunctional()
self.myadd_relu = nnq.FloatFunctional()
self.mymatmul = nnq.FloatFunctional()
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# self.my_scalar_add = nnq.FloatFunctional()
# self.my_scalar_mul = nnq.FloatFunctional()
def forward(self, x):
y = self.mycat.cat([x, x, x])
z = self.myadd.add(y, y)
w = self.myadd_relu.add_relu(z, z)
u = self.mymatmul.matmul(w, w.T)
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# w = self.my_scalar_add.add_scalar(w, -0.5)
# w = self.my_scalar_mul.mul_scalar(w, 0.5)
return u
class ResNetBase(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.myop = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = torch.nn.Linear(inplanes, 1)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.myop.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
out = torch.flatten(out, 1)
out = self.fc(out)
return out
def fuse_model(self):
# TODO: remove this check and define two fuse_model function on this module
if self.training:
torch.ao.quantization.fuse_modules_qat(self, [['conv1', 'bn1', 'relu1']], inplace=True)
else:
torch.ao.quantization.fuse_modules(self, [['conv1', 'bn1', 'relu1']], inplace=True)
class ModelMultipleOps(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.skip_add.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.reshape(-1, 3 * 2 * 2)
out = self.fc(out)
return out
# Model to ensure consistency of fake quant with true quant
# Average pooling and mean operations are not modelled
# accurately with fake-quant so this model does not
# contain those operations
class ModelMultipleOpsNoAvgPool(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.maxpool = nn.MaxPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
skip = self.conv2(x)
out = self.skip_add.add(out, skip)
out = self.relu2(out)
out = self.maxpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.reshape(-1, 3 * 2 * 2)
out = self.fc(out)
return out
class EmbeddingBagModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
def forward(self, indices, offsets, per_sample_weights):
return self.emb(indices, offsets, per_sample_weights)
class EmbeddingModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
def forward(self, indices):
return self.emb(indices)
class EmbeddingWithStaticLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12)
self.fc = torch.nn.Linear(4, 2)
self.emb.qconfig = float_qparams_weight_only_qconfig
self.qconfig = default_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, indices, offsets, linear_in):
emb = self.emb(indices, offsets)
q_x = self.quant(linear_in)
fc = self.fc(q_x)
fc = self.dequant(fc)
features = torch.cat([fc] + [emb], dim=1)
return features
class DenseTopMLP(nn.Module):
def __init__(self, dense_dim, dense_out, embedding_dim, top_out_in, top_out_out) -> None:
super().__init__()
self.dense_mlp = nn.Sequential(
nn.Linear(dense_dim, dense_out),
)
self.top_mlp = nn.Sequential(
nn.Linear(dense_out + embedding_dim, top_out_in),
nn.Linear(top_out_in, top_out_out),
)
def forward(
self,
sparse_feature: torch.Tensor,
dense: torch.Tensor,
) -> torch.Tensor:
dense_feature = self.dense_mlp(dense)
features = torch.cat([dense_feature] + [sparse_feature], dim=1)
out = self.top_mlp(features)
return out
# thin wrapper around embedding bag, because tracing inside nn.Embedding
# bag is not supported at the moment and this is top level
class EmbBagWrapper(nn.Module):
def __init__(self, num_embeddings, embedding_dim):
super().__init__()
self.emb_bag = nn.EmbeddingBag(num_embeddings, embedding_dim, mode='sum')
def forward(self, indices, offsets):
return self.emb_bag(indices, offsets)
class SparseNNModel(nn.Module):
_NUM_EMBEDDINGS = 10
_EMBEDDING_DIM = 5
_DENSE_DIM = 4
_DENSE_OUTPUT = 2
_TOP_OUT_IN = 2
_TOP_OUT_OUT = 2
_TOP_MLP_DIM = 1
def __init__(self) -> None:
super().__init__()
self.model_sparse = EmbBagWrapper(self._NUM_EMBEDDINGS, self._EMBEDDING_DIM)
self.dense_top = DenseTopMLP(
self._DENSE_DIM, self._DENSE_OUTPUT, self._EMBEDDING_DIM, self._TOP_OUT_IN,
self._TOP_OUT_OUT)
def forward(
self,
sparse_indices: torch.Tensor,
sparse_offsets: torch.Tensor,
dense: torch.Tensor,
) -> torch.Tensor:
sparse_feature = self.model_sparse(sparse_indices, sparse_offsets)
out = self.dense_top(sparse_feature, dense)
return out
class TestHelperModules:
class ControlFlow(torch.nn.Module):
def forward(
self,
xs: torch.Tensor,
pred1: torch.Tensor,
pred2: torch.Tensor,
y: torch.Tensor,
) -> torch.Tensor:
def true_nested(y: torch.Tensor) -> torch.Tensor:
y = y + y
y = torch.mm(y, y)
return y
def false_nested(y: torch.Tensor) -> torch.Tensor:
return torch.mm(y, y)
def true_fn(x: torch.Tensor, pred2: torch.Tensor) -> torch.Tensor:
z = control_flow.cond(pred2, true_nested, false_nested, [x])
return x + z
def false_fn(x: torch.Tensor, _) -> torch.Tensor:
return x.cos()
def map_fn(
x: torch.Tensor, pred1: torch.Tensor, pred2: torch.Tensor, y: torch.Tensor
) -> torch.Tensor:
x = x.cos()
y = control_flow.cond(pred1, true_fn, false_fn, [y, pred2])
x = x + y
return x.sin()
y = torch.mm(y, y)
return control_flow.map(map_fn, xs, pred1, pred2, y)
def example_inputs(self):
return (torch.ones(2, 2), torch.tensor([False]), torch.tensor([False]), torch.ones(2, 2),)
class Conv2dPropAnnotaton(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)
self.linear = torch.nn.Linear(3, 3)
def forward(self, x):
x = self.conv(x)
x = x.view(-1, 3)
x = torch.nn.functional.hardtanh(x, -0.5, 0.5)
x = self.linear(x)
return x
class Conv2dWithObsSharingOps(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)
self.hardtanh = torch.nn.Hardtanh()
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
x = self.conv(x)
x = self.adaptive_avg_pool2d(x)
x = self.hardtanh(x)
x = torch.mean(x)
return x
class Conv2dWithTwoLinearPermute(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 16, 3)
self.linear1 = torch.nn.Linear(16, 8, bias=False)
self.linear2 = torch.nn.Linear(8, 8)
def forward(self, x):
conv_out = self.conv(x)
permute_out = torch.permute(conv_out, (0, 2, 3, 1))
return self.linear2(self.linear1(permute_out))
class Conv2dWithTwoLinear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 16, 3)
self.linear1 = torch.nn.Linear(64, 8, bias=False)
self.linear2 = torch.nn.Linear(8, 8)
def forward(self, x):
conv_out = self.conv(x)
reshape_out = torch.reshape(conv_out, (2, 64))
return self.linear2(self.linear1(reshape_out))
class ConvLinearWPermute(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 8, 3)
self.linear1 = torch.nn.Linear(8, 8)
def forward(self, x):
conv_out = self.conv(x)
permute_out = torch.permute(conv_out, (0, 2, 3, 1))
return self.linear1(permute_out)
class TwoLinearModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = torch.nn.Linear(8, 16, bias=False)
self.linear2 = torch.nn.Linear(16, 8)
def forward(self, x):
return self.linear2(self.linear1(x))
def example_inputs(self):
return (torch.randn(2, 8),)
class ConvMaxPool2d(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(2, 2, 1)
self.pool = torch.nn.MaxPool2d(1, 1)
def forward(self, x):
x = self.conv(x)
x = self.pool(x)
return x
class ConvWithAdaptiveAvgPool2d(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
x = self.conv(x)
x = self.adaptive_avg_pool2d(x)
return x
class ConvWithBNRelu(torch.nn.Module):
def __init__(self, relu, dim=2, bn=True, bias=True):
super().__init__()
convs = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d}
bns = {1: torch.nn.BatchNorm1d, 2: torch.nn.BatchNorm2d}
self.conv = convs[dim](3, 3, 3, bias=bias)
if bn:
self.bn = bns[dim](3)
else:
self.bn = torch.nn.Identity()
if relu:
self.relu = torch.nn.ReLU()
else:
self.relu = torch.nn.Identity()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return self.relu(x)
class ConvTWithBNRelu(torch.nn.Module):
def __init__(self, relu, dim=2, bn=True, bias=True):
super().__init__()
convts = {1: torch.nn.ConvTranspose1d, 2: torch.nn.ConvTranspose2d}
bns = {1: torch.nn.BatchNorm1d, 2: torch.nn.BatchNorm2d}
self.convt = convts[dim](3, 3, 3, bias=bias)
if bn:
self.bn = bns[dim](3)
else:
self.bn = torch.nn.Identity()
if relu:
self.relu = torch.nn.ReLU()
else:
self.relu = torch.nn.Identity()
def forward(self, x):
x = self.convt(x)
x = self.bn(x)
return self.relu(x)
class Conv2dThenConv1d(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1d = torch.nn.Conv1d(3, 3, 3)
self.conv2d = torch.nn.Conv2d(3, 3, 3)
def forward(self, x):
x = self.conv2d(x)
x = x.squeeze(0)
x = self.conv1d(x)
return x
def example_inputs(self):
return (torch.randn(1, 3, 5, 5),)
class Conv2dWithCat(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 3)
self.conv2 = torch.nn.Conv2d(3, 3, 3)
def forward(self, x, y):
x = self.conv1(x)
y = self.conv2(y)
z = torch.cat([x, y], dim=1)
return z
class Conv2dWithTwoCat(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 3)
self.conv2 = torch.nn.Conv2d(3, 3, 3)
def forward(self, x1, x2, x3, x4):
x1 = self.conv1(x1)
x2 = self.conv2(x2)
y = torch.cat([x1, x2], dim=1)
z = x3 + x4
w = torch.cat([z, y])
return w
class Conv2dWithSplit(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 3)
self.conv2 = torch.nn.Conv2d(3, 3, 3)
def forward(self, x):
x = self.conv1(x)
# use split so we get a list of Tensors
x1, x2 = torch.split(x, 2, dim=1)
y = torch.cat([x1, x2], dim=1)
return y
def example_inputs(self):
return (torch.randn(1, 3, 16, 16),)
class ThreeAdd(torch.nn.Module):
def forward(self, x1, x2, x3, x4):
y = x1 + x2
z = x3 + x4
w = y + z
return w
class EmbeddingModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
def forward(self, indices):
return self.emb(indices)
class EmbeddingConvLinearModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=8)
self.conv = torch.nn.Conv2d(8, 16, (1, 3))
self.linear = torch.nn.Linear(16, 8)
def forward(self, indices):
embeddings = self.emb(indices)
embeddings = torch.unsqueeze(embeddings, dim=0)
embeddings = torch.permute(embeddings, (0, 3, 1, 2))
conv_out = self.conv(embeddings)
conv_out = torch.permute(conv_out, (0, 2, 3, 1))
conv_out = torch.squeeze(conv_out, dim=0)
return self.linear(conv_out)
class AddInplaceAdd(torch.nn.Module):
def forward(self, x, y):
x = x + y
x += y
return x
class MulInplaceMul(torch.nn.Module):
def forward(self, x, y):
x = x * y
x *= y
return x
class AddMulScalar(torch.nn.Module):
def forward(self, x):
x = x + 3
x = x * 3
x += 3
x *= 3
return x
class ConvBnReLU2dAndLinearReLU(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv_bn_relu = TestHelperModules.ConvWithBNRelu(relu=True)
self.linear = torch.nn.Linear(3, 8, bias=False)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.conv_bn_relu(x)
permute_out = torch.permute(x, (0, 2, 3, 1))
linear_out = self.linear(permute_out)
return linear_out
class GroupwiseConv2d(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(4, 4, 3, groups=2)
def forward(self, x):
return self.conv(x)
def example_inputs(self):
return (torch.randn(2, 4, 10, 10),)
class LinearReluModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
def _generate_qdq_quantized_model(
mod, inputs, is_qat=False, is_dynamic=False, quantizer=None
):
def get_default_quantizer(is_qat, is_dynamic, inputs):
has_xpu = any(isinstance(input, torch.Tensor) and input.device.type == "xpu"
for input in inputs)
if has_xpu:
quantizer = XPUInductorQuantizer()
assert (not is_qat) and (not is_dynamic), "QAT and dynamic quantization is not supported at XPU backend currently"
quantizer.set_global(xpuiq.get_default_xpu_inductor_quantization_config())
else:
quantizer = X86InductorQuantizer()
quantizer.set_global(
xiq.get_default_x86_inductor_quantization_config(
is_qat=is_qat, is_dynamic=is_dynamic
)
)
return quantizer
maybe_no_grad = contextlib.nullcontext() if is_qat else torch.no_grad()
with maybe_no_grad:
export_model = export_for_training(
mod,
inputs,
).module()
quantizer = (
quantizer if quantizer else get_default_quantizer(is_qat, is_dynamic, inputs)
)
prepare_model = (
prepare_qat_pt2e(export_model, quantizer)
if is_qat
else prepare_pt2e(export_model, quantizer)
)
prepare_model(*inputs)
torch.ao.quantization.move_exported_model_to_eval(prepare_model)
convert_model = convert_pt2e(prepare_model)
return convert_model