mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-01 13:34:57 +08:00
Summary: Adding NEON specializations of Vectorized<double> Correcness has been checked using test_ops.py and running torch test Test Plan: Correctness: buck2 test mode/opt //caffe2/test:test_ops buck2 test mode/opt //caffe2/test:torch Performance: Added torch.float64 as data type to test within binary_test.py Reviewed By: mcfi Differential Revision: D84924406 Pull Request resolved: https://github.com/pytorch/pytorch/pull/166092 Approved by: https://github.com/malfet
209 lines
5.3 KiB
Python
209 lines
5.3 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for binary operators."""
|
|
|
|
|
|
# Benchmark ops performance with broadcast
|
|
binary_ops_bcast_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["add", torch.add],
|
|
["sub", torch.sub],
|
|
["div", torch.div],
|
|
["mul", torch.mul],
|
|
],
|
|
)
|
|
|
|
# Configs with broadcast
|
|
binary_configs_broadcast = op_bench.config_list(
|
|
attr_names=["in_one", "in_two"],
|
|
attrs=[
|
|
[[64, 1, 64], [1, 64, 1]],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu"],
|
|
"dtype": [torch.float, torch.bfloat16, torch.float64],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
class BinaryOpBcastBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, in_one, in_two, dtype, device, op_func):
|
|
self.inputs = {
|
|
"in_one": torch.randn(in_one, device=device).to(dtype=dtype),
|
|
"in_two": torch.randn(in_two, device=device).to(dtype=dtype),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, in_one, in_two):
|
|
return self.op_func(in_one, in_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_bcast_list, binary_configs_broadcast, BinaryOpBcastBenchmark
|
|
)
|
|
|
|
|
|
# Benchmark ops performance without broadcast
|
|
binary_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["add", torch.add],
|
|
["sub", torch.sub],
|
|
["div", torch.div],
|
|
["mul", torch.mul],
|
|
["asr", torch.bitwise_right_shift],
|
|
["lsl", torch.bitwise_left_shift],
|
|
["xor", torch.bitwise_xor],
|
|
],
|
|
)
|
|
|
|
binary_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
"dtype_one": [torch.int32, torch.uint8],
|
|
"dtype_two": [torch.int32, torch.uint8],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
binary_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128],
|
|
N=[32, 64],
|
|
K=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
dtype_one=[torch.int8, torch.int32, torch.uint8],
|
|
dtype_two=[torch.int8, torch.int32, torch.uint8],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class BinaryOpBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device, dtype_one, dtype_two, op_func):
|
|
self.inputs = {
|
|
"input_one": torch.randn(M, N, K, device=device).to(dtype=dtype_one),
|
|
"input_two": torch.randn(M, N, K, device=device).to(dtype=dtype_two),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, input_one, input_two):
|
|
return self.op_func(input_one, input_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_list, binary_short_configs + binary_long_configs, BinaryOpBenchmark
|
|
)
|
|
|
|
|
|
######
|
|
# Benchmark ops performance for boolean dtype
|
|
######
|
|
|
|
|
|
# Benchmark ops performance with broadcast
|
|
binary_ops_bcast_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[["logical_and", torch.logical_and]],
|
|
)
|
|
|
|
# Configs with broadcast
|
|
binary_configs_broadcast = op_bench.config_list(
|
|
attr_names=["in_one", "in_two"],
|
|
attrs=[
|
|
[[64, 1, 64], [1, 64, 1]],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu"],
|
|
"dtype": [torch.bool],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
class BinaryOpBcastBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, in_one, in_two, dtype, device, op_func):
|
|
self.inputs = {
|
|
"in_one": torch.bernoulli(0.5 * torch.ones(in_one, device=device)).to(
|
|
dtype=dtype
|
|
),
|
|
"in_two": torch.bernoulli(0.5 * torch.ones(in_two, device=device)).to(
|
|
dtype=dtype
|
|
),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, in_one, in_two):
|
|
return self.op_func(in_one, in_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_bcast_list, binary_configs_broadcast, BinaryOpBcastBenchmark
|
|
)
|
|
|
|
|
|
# Benchmark ops performance without broadcast
|
|
binary_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[["logical_and", torch.logical_and]],
|
|
)
|
|
|
|
binary_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
"dtype_one": [torch.bool],
|
|
"dtype_two": [torch.bool],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
binary_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128],
|
|
N=[32, 64],
|
|
K=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
dtype_one=[torch.bool, torch.bool],
|
|
dtype_two=[torch.bool, torch.bool],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class BinaryOpBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device, dtype_one, dtype_two, op_func):
|
|
self.inputs = {
|
|
"input_one": torch.bernoulli(0.5 * torch.ones(M, N, K, device=device)).to(
|
|
dtype=dtype_one
|
|
),
|
|
"input_two": torch.bernoulli(0.5 * torch.ones(M, N, K, device=device)).to(
|
|
dtype=dtype_two
|
|
),
|
|
}
|
|
self.op_func = op_func
|
|
|
|
def forward(self, input_one, input_two):
|
|
return self.op_func(input_one, input_two)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
binary_ops_list, binary_short_configs + binary_long_configs, BinaryOpBenchmark
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|