Files
pytorch/torch/_C/_profiler.pyi
Shivam Raikundalia ac7acfb894 [Profiler] Create Auto-Trace Frontend for Trace ID (#139310)
Summary:
This PR adds Auto-Trace implementation for Trace ID. By default, the python side will generate a uuid in the same format as the one set in the backend by kineto. Upon running an auto-trace, the python generated trace id will overwrite the one set in kineto using the Config variable. Since we don't expect users to generate on-demand traces after an auto-trace we can simply keep overwriting the backend trace id whenever autotrace is ran. If we one day want to eventually do something like this, we simply have to add a call in kineto on the backend to generate a new ID upon start of profiling.

We also implement a custom callback in the frontend such that users can generate their own trace ids if they wish to. This works similarly as the default, only difference being that they have to manually set this callback after a profiler is generated. We use a specific call to set this rather then putting it in the frontend initializer in case users want to change the trace_id for different repeats.

Test Plan: Tested both default and custom callbacks using the verbose prints added. Trace ids on the frontend and the prints on the backend for the manifold upload matched.

Differential Revision: D65178308

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139310
Approved by: https://github.com/shengfukevin
2024-10-31 19:02:57 +00:00

246 lines
6.1 KiB
Python

from enum import Enum
from typing import Any, Literal, Optional
from typing_extensions import TypeAlias
from torch._C import device, dtype, layout
# defined in torch/csrc/profiler/python/init.cpp
class RecordScope(Enum):
FUNCTION = ...
BACKWARD_FUNCTION = ...
TORCHSCRIPT_FUNCTION = ...
KERNEL_FUNCTION_DTYPE = ...
CUSTOM_CLASS = ...
BUILD_FEATURE = ...
LITE_INTERPRETER = ...
USER_SCOPE = ...
STATIC_RUNTIME_OP = ...
STATIC_RUNTIME_MODEL = ...
class ProfilerState(Enum):
Disable = ...
CPU = ...
CUDA = ...
NVTX = ...
ITT = ...
KINETO = ...
KINETO_GPU_FALLBACK = ...
KINETO_PRIVATEUSE1_FALLBACK = ...
KINETO_PRIVATEUSE1 = ...
class ActiveProfilerType(Enum):
NONE = ...
LEGACY = ...
KINETO = ...
NVTX = ...
ITT = ...
class ProfilerActivity(Enum):
CPU = ...
CUDA = ...
XPU = ...
MTIA = ...
PrivateUse1 = ...
class _EventType(Enum):
TorchOp = ...
Backend = ...
Allocation = ...
OutOfMemory = ...
PyCall = ...
PyCCall = ...
Kineto = ...
class _ExperimentalConfig:
def __init__(
self,
profiler_metrics: list[str] = ...,
profiler_measure_per_kernel: bool = ...,
verbose: bool = ...,
performance_events: list[str] = ...,
enable_cuda_sync_events: bool = ...,
) -> None: ...
class ProfilerConfig:
def __init__(
self,
state: ProfilerState,
report_input_shapes: bool,
profile_memory: bool,
with_stack: bool,
with_flops: bool,
with_modules: bool,
experimental_config: _ExperimentalConfig,
trace_id: Optional[str] = None,
) -> None: ...
class _ProfilerEvent:
start_tid: int
start_time_ns: int
children: list[_ProfilerEvent]
# TODO(robieta): remove in favor of `self.typed`
extra_fields: (
_ExtraFields_TorchOp
| _ExtraFields_Backend
| _ExtraFields_Allocation
| _ExtraFields_OutOfMemory
| _ExtraFields_PyCall
| _ExtraFields_PyCCall
| _ExtraFields_Kineto
)
@property
def typed(
self,
) -> (
tuple[Literal[_EventType.TorchOp], _ExtraFields_TorchOp]
| tuple[Literal[_EventType.Backend], _ExtraFields_Backend]
| tuple[Literal[_EventType.Allocation], _ExtraFields_Allocation]
| tuple[Literal[_EventType.OutOfMemory], _ExtraFields_OutOfMemory]
| tuple[Literal[_EventType.PyCall], _ExtraFields_PyCall]
| tuple[Literal[_EventType.PyCCall], _ExtraFields_PyCCall]
| tuple[Literal[_EventType.Kineto], _ExtraFields_Kineto]
): ...
@property
def name(self) -> str: ...
@property
def tag(self) -> _EventType: ...
@property
def id(self) -> int: ...
@property
def parent(self) -> _ProfilerEvent | None: ...
@property
def correlation_id(self) -> int: ...
@property
def end_time_ns(self) -> int: ...
@property
def duration_time_ns(self) -> int: ...
class _TensorMetadata:
impl_ptr: int | None
storage_data_ptr: int | None
id: int | None
@property
def allocation_id(self) -> int | None: ...
@property
def layout(self) -> layout: ...
@property
def device(self) -> device: ...
@property
def dtype(self) -> dtype: ...
@property
def sizes(self) -> list[int]: ...
@property
def strides(self) -> list[int]: ...
Scalar: TypeAlias = int | float | bool | complex
Input: TypeAlias = _TensorMetadata | list[_TensorMetadata] | Scalar | None
class _ExtraFields_TorchOp:
name: str
sequence_number: int
allow_tf32_cublas: bool
@property
def inputs(self) -> list[Input]: ...
@property
def scope(self) -> RecordScope: ...
class _ExtraFields_Backend: ...
class _ExtraFields_Allocation:
ptr: int
id: int | None
alloc_size: int
total_allocated: int
total_reserved: int
@property
def allocation_id(self) -> int | None: ...
@property
def device(self) -> device: ...
class _ExtraFields_OutOfMemory: ...
class _PyFrameState:
line_number: int
function_name: str
@property
def file_name(self) -> str: ...
class _NNModuleInfo:
@property
def self_ptr(self) -> int: ...
@property
def cls_ptr(self) -> int: ...
@property
def cls_name(self) -> str: ...
@property
def parameters(
self,
) -> list[tuple[str, _TensorMetadata, _TensorMetadata | None]]: ...
class _OptimizerInfo:
@property
def parameters(
self,
) -> list[
tuple[
# Parameter
_TensorMetadata,
#
# Gradient (if present during optimizer.step())
_TensorMetadata | None,
#
# Optimizer state for Parameter as (name, tensor) pairs
list[tuple[str, _TensorMetadata]],
]
]: ...
class _ExtraFields_PyCCall:
@property
def caller(self) -> _PyFrameState: ...
class _ExtraFields_PyCall:
@property
def callsite(self) -> _PyFrameState: ...
@property
def caller(self) -> _PyFrameState: ...
@property
def module(self) -> _NNModuleInfo | None: ...
@property
def optimizer(self) -> _OptimizerInfo | None: ...
class _ExtraFields_Kineto: ...
def _add_execution_trace_observer(output_file_path: str) -> bool: ...
def _remove_execution_trace_observer() -> None: ...
def _enable_execution_trace_observer() -> None: ...
def _disable_execution_trace_observer() -> None: ...
def _set_record_concrete_inputs_enabled_val(val: bool) -> None: ...
def _set_fwd_bwd_enabled_val(val: bool) -> None: ...
def _set_cuda_sync_enabled_val(val: bool) -> None: ...
class CapturedTraceback: ...
def gather_traceback(python: bool, script: bool, cpp: bool) -> CapturedTraceback: ...
# The Dict has name, filename, line
def symbolize_tracebacks(
to_symbolize: list[CapturedTraceback],
) -> list[list[dict[str, str]]]: ...
class _RecordFunctionFast:
def __init__(
self,
name: str,
input_values: list | tuple | None = None,
keyword_values: dict | None = None,
) -> None: ...
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> None: ...