mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/executorch/pull/6357 Pull Request resolved: https://github.com/pytorch/pytorch/pull/138364 Approved by: https://github.com/Skylion007, https://github.com/eqy
324 lines
9.4 KiB
C++
324 lines
9.4 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <c10/util/irange.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <random>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::test;
|
|
|
|
const double kPi = 3.1415926535898;
|
|
|
|
class CartPole {
|
|
// Translated from openai/gym's cartpole.py
|
|
public:
|
|
double gravity = 9.8;
|
|
double masscart = 1.0;
|
|
double masspole = 0.1;
|
|
double total_mass = (masspole + masscart);
|
|
double length = 0.5; // actually half the pole's length;
|
|
double polemass_length = (masspole * length);
|
|
double force_mag = 10.0;
|
|
double tau = 0.02; // seconds between state updates;
|
|
|
|
// Angle at which to fail the episode
|
|
double theta_threshold_radians = 12 * 2 * kPi / 360;
|
|
double x_threshold = 2.4;
|
|
int steps_beyond_done = -1;
|
|
|
|
torch::Tensor state;
|
|
double reward;
|
|
bool done;
|
|
int step_ = 0;
|
|
|
|
torch::Tensor getState() {
|
|
return state;
|
|
}
|
|
|
|
double getReward() {
|
|
return reward;
|
|
}
|
|
|
|
double isDone() {
|
|
return done;
|
|
}
|
|
|
|
void reset() {
|
|
state = torch::empty({4}).uniform_(-0.05, 0.05);
|
|
steps_beyond_done = -1;
|
|
step_ = 0;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
|
CartPole() {
|
|
reset();
|
|
}
|
|
|
|
void step(int action) {
|
|
auto x = state[0].item<float>();
|
|
auto x_dot = state[1].item<float>();
|
|
auto theta = state[2].item<float>();
|
|
auto theta_dot = state[3].item<float>();
|
|
|
|
auto force = (action == 1) ? force_mag : -force_mag;
|
|
auto costheta = std::cos(theta);
|
|
auto sintheta = std::sin(theta);
|
|
auto temp = (force + polemass_length * theta_dot * theta_dot * sintheta) /
|
|
total_mass;
|
|
auto thetaacc = (gravity * sintheta - costheta * temp) /
|
|
(length * (4.0 / 3.0 - masspole * costheta * costheta / total_mass));
|
|
auto xacc = temp - polemass_length * thetaacc * costheta / total_mass;
|
|
|
|
x = x + tau * x_dot;
|
|
x_dot = x_dot + tau * xacc;
|
|
theta = theta + tau * theta_dot;
|
|
theta_dot = theta_dot + tau * thetaacc;
|
|
state = torch::tensor({x, x_dot, theta, theta_dot});
|
|
|
|
done = x < -x_threshold || x > x_threshold ||
|
|
theta < -theta_threshold_radians || theta > theta_threshold_radians ||
|
|
step_ > 200;
|
|
|
|
if (!done) {
|
|
reward = 1.0;
|
|
} else if (steps_beyond_done == -1) {
|
|
// Pole just fell!
|
|
steps_beyond_done = 0;
|
|
reward = 0;
|
|
} else {
|
|
if (steps_beyond_done == 0) {
|
|
AT_ASSERT(false); // Can't do this
|
|
}
|
|
}
|
|
step_++;
|
|
}
|
|
};
|
|
|
|
template <typename M, typename F, typename O>
|
|
bool test_mnist(
|
|
size_t batch_size,
|
|
size_t number_of_epochs,
|
|
bool with_cuda,
|
|
M&& model,
|
|
F&& forward_op,
|
|
O&& optimizer) {
|
|
std::string mnist_path = "mnist";
|
|
if (const char* user_mnist_path = getenv("TORCH_CPP_TEST_MNIST_PATH")) {
|
|
mnist_path = user_mnist_path;
|
|
}
|
|
|
|
auto train_dataset =
|
|
torch::data::datasets::MNIST(
|
|
mnist_path, torch::data::datasets::MNIST::Mode::kTrain)
|
|
.map(torch::data::transforms::Stack<>());
|
|
|
|
auto data_loader =
|
|
torch::data::make_data_loader(std::move(train_dataset), batch_size);
|
|
|
|
torch::Device device(with_cuda ? torch::kCUDA : torch::kCPU);
|
|
model->to(device);
|
|
|
|
for ([[maybe_unused]] const auto epoch : c10::irange(number_of_epochs)) {
|
|
// NOLINTNEXTLINE(performance-for-range-copy)
|
|
for (torch::data::Example<> batch : *data_loader) {
|
|
auto data = batch.data.to(device);
|
|
auto targets = batch.target.to(device);
|
|
torch::Tensor prediction = forward_op(std::move(data));
|
|
// NOLINTNEXTLINE(performance-move-const-arg)
|
|
torch::Tensor loss = torch::nll_loss(prediction, std::move(targets));
|
|
AT_ASSERT(!torch::isnan(loss).any().item<int64_t>());
|
|
optimizer.zero_grad();
|
|
loss.backward();
|
|
optimizer.step();
|
|
}
|
|
}
|
|
|
|
torch::NoGradGuard guard;
|
|
torch::data::datasets::MNIST test_dataset(
|
|
mnist_path, torch::data::datasets::MNIST::Mode::kTest);
|
|
auto images = test_dataset.images().to(device),
|
|
targets = test_dataset.targets().to(device);
|
|
|
|
auto result = std::get<1>(forward_op(images).max(/*dim=*/1));
|
|
torch::Tensor correct = (result == targets).to(torch::kFloat32);
|
|
return correct.sum().item<float>() > (test_dataset.size().value() * 0.8);
|
|
}
|
|
|
|
struct IntegrationTest : torch::test::SeedingFixture {};
|
|
|
|
TEST_F(IntegrationTest, CartPole) {
|
|
torch::manual_seed(0);
|
|
auto model = std::make_shared<SimpleContainer>();
|
|
auto linear = model->add(Linear(4, 128), "linear");
|
|
auto policyHead = model->add(Linear(128, 2), "policy");
|
|
auto valueHead = model->add(Linear(128, 1), "action");
|
|
auto optimizer = torch::optim::Adam(model->parameters(), 1e-3);
|
|
|
|
std::vector<torch::Tensor> saved_log_probs;
|
|
std::vector<torch::Tensor> saved_values;
|
|
std::vector<float> rewards;
|
|
|
|
auto forward = [&](torch::Tensor inp) {
|
|
auto x = linear->forward(inp).clamp_min(0);
|
|
torch::Tensor actions = policyHead->forward(x);
|
|
torch::Tensor value = valueHead->forward(x);
|
|
return std::make_tuple(torch::softmax(actions, -1), value);
|
|
};
|
|
|
|
auto selectAction = [&](torch::Tensor state) {
|
|
// Only work on single state right now, change index to gather for batch
|
|
auto out = forward(state);
|
|
auto probs = torch::Tensor(std::get<0>(out));
|
|
auto value = torch::Tensor(std::get<1>(out));
|
|
auto action = probs.multinomial(1)[0].item<int32_t>();
|
|
// Compute the log prob of a multinomial distribution.
|
|
// This should probably be actually implemented in autogradpp...
|
|
auto p = probs / probs.sum(-1, true);
|
|
auto log_prob = p[action].log();
|
|
saved_log_probs.emplace_back(log_prob);
|
|
saved_values.push_back(value);
|
|
return action;
|
|
};
|
|
|
|
auto finishEpisode = [&] {
|
|
auto R = 0.;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
|
|
for (int i = rewards.size() - 1; i >= 0; i--) {
|
|
R = rewards[i] + 0.99 * R;
|
|
rewards[i] = R;
|
|
}
|
|
auto r_t = torch::from_blob(
|
|
rewards.data(), {static_cast<int64_t>(rewards.size())});
|
|
r_t = (r_t - r_t.mean()) / (r_t.std() + 1e-5);
|
|
|
|
std::vector<torch::Tensor> policy_loss;
|
|
std::vector<torch::Tensor> value_loss;
|
|
for (const auto i : c10::irange(0U, saved_log_probs.size())) {
|
|
auto advantage = r_t[i] - saved_values[i].item<float>();
|
|
policy_loss.push_back(-advantage * saved_log_probs[i]);
|
|
value_loss.push_back(
|
|
torch::smooth_l1_loss(saved_values[i], torch::ones(1) * r_t[i]));
|
|
}
|
|
|
|
auto loss =
|
|
torch::stack(policy_loss).sum() + torch::stack(value_loss).sum();
|
|
|
|
optimizer.zero_grad();
|
|
loss.backward();
|
|
optimizer.step();
|
|
|
|
rewards.clear();
|
|
saved_log_probs.clear();
|
|
saved_values.clear();
|
|
};
|
|
|
|
auto env = CartPole();
|
|
double running_reward = 10.0;
|
|
for (size_t episode = 0;; episode++) {
|
|
env.reset();
|
|
auto state = env.getState();
|
|
int t = 0;
|
|
for (; t < 10000; t++) {
|
|
auto action = selectAction(state);
|
|
env.step(action);
|
|
state = env.getState();
|
|
auto reward = env.getReward();
|
|
auto done = env.isDone();
|
|
|
|
rewards.push_back(reward);
|
|
if (done)
|
|
break;
|
|
}
|
|
|
|
running_reward = running_reward * 0.99 + t * 0.01;
|
|
finishEpisode();
|
|
/*
|
|
if (episode % 10 == 0) {
|
|
printf("Episode %i\tLast length: %5d\tAverage length: %.2f\n",
|
|
episode, t, running_reward);
|
|
}
|
|
*/
|
|
if (running_reward > 150) {
|
|
break;
|
|
}
|
|
ASSERT_LT(episode, 3000);
|
|
}
|
|
}
|
|
|
|
TEST_F(IntegrationTest, MNIST_CUDA) {
|
|
torch::manual_seed(0);
|
|
auto model = std::make_shared<SimpleContainer>();
|
|
auto conv1 = model->add(Conv2d(1, 10, 5), "conv1");
|
|
auto conv2 = model->add(Conv2d(10, 20, 5), "conv2");
|
|
auto drop = Dropout(0.3);
|
|
auto drop2d = Dropout2d(0.3);
|
|
auto linear1 = model->add(Linear(320, 50), "linear1");
|
|
auto linear2 = model->add(Linear(50, 10), "linear2");
|
|
|
|
auto forward = [&](torch::Tensor x) {
|
|
x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu();
|
|
x = conv2->forward(x);
|
|
x = drop2d->forward(x);
|
|
x = torch::max_pool2d(x, {2, 2}).relu();
|
|
|
|
x = x.view({-1, 320});
|
|
x = linear1->forward(x).clamp_min(0);
|
|
x = drop->forward(x);
|
|
x = linear2->forward(x);
|
|
x = torch::log_softmax(x, 1);
|
|
return x;
|
|
};
|
|
|
|
auto optimizer = torch::optim::SGD(
|
|
model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5));
|
|
|
|
ASSERT_TRUE(test_mnist(
|
|
32, // batch_size
|
|
3, // number_of_epochs
|
|
true, // with_cuda
|
|
model,
|
|
forward,
|
|
optimizer));
|
|
}
|
|
|
|
TEST_F(IntegrationTest, MNISTBatchNorm_CUDA) {
|
|
torch::manual_seed(0);
|
|
auto model = std::make_shared<SimpleContainer>();
|
|
auto conv1 = model->add(Conv2d(1, 10, 5), "conv1");
|
|
auto batchnorm2d = model->add(BatchNorm2d(10), "batchnorm2d");
|
|
auto conv2 = model->add(Conv2d(10, 20, 5), "conv2");
|
|
auto linear1 = model->add(Linear(320, 50), "linear1");
|
|
auto batchnorm1 = model->add(BatchNorm1d(50), "batchnorm1");
|
|
auto linear2 = model->add(Linear(50, 10), "linear2");
|
|
|
|
auto forward = [&](torch::Tensor x) {
|
|
x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu();
|
|
x = batchnorm2d->forward(x);
|
|
x = conv2->forward(x);
|
|
x = torch::max_pool2d(x, {2, 2}).relu();
|
|
|
|
x = x.view({-1, 320});
|
|
x = linear1->forward(x).clamp_min(0);
|
|
x = batchnorm1->forward(x);
|
|
x = linear2->forward(x);
|
|
x = torch::log_softmax(x, 1);
|
|
return x;
|
|
};
|
|
|
|
auto optimizer = torch::optim::SGD(
|
|
model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5));
|
|
|
|
ASSERT_TRUE(test_mnist(
|
|
32, // batch_size
|
|
3, // number_of_epochs
|
|
true, // with_cuda
|
|
model,
|
|
forward,
|
|
optimizer));
|
|
}
|