mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Let's have some fun. Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828 Approved by: https://github.com/ezyang
132 lines
4.2 KiB
C++
132 lines
4.2 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <c10/util/irange.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <test/cpp/api/init_baseline.h>
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <functional>
|
|
#include <vector>
|
|
|
|
void check_exact_values(
|
|
const std::vector<torch::Tensor>& parameters,
|
|
const std::vector<std::vector<torch::Tensor>>& expected_parameters) {
|
|
ASSERT_EQ(parameters.size(), expected_parameters.size());
|
|
|
|
for (const auto i : c10::irange(parameters.size())) {
|
|
auto layerParameters = parameters[i];
|
|
auto expectedLayerParameters = expected_parameters[i];
|
|
|
|
if (static_cast<size_t>(layerParameters.size(0)) !=
|
|
expectedLayerParameters.size()) {
|
|
std::cout << "layer #" << i
|
|
<< " layerParameters size: " << layerParameters.size(0)
|
|
<< " != "
|
|
<< " expectedLayerParameters size: "
|
|
<< expectedLayerParameters.size() << std::endl;
|
|
ASSERT_TRUE(false);
|
|
}
|
|
|
|
for (const auto p : c10::irange(layerParameters.size(0))) {
|
|
// Always compare using double dtype, regardless of the original dtype of
|
|
// the tensors
|
|
auto tensor = layerParameters[p].to(torch::kFloat64);
|
|
auto expectedTensor = expectedLayerParameters[p].to(torch::kFloat64);
|
|
|
|
if (!tensor.allclose(expectedTensor, /*rtol=*/1e-3, /*atol=*/5e-4)) {
|
|
std::cout << "layer " << i << ": " << tensor << " != " << expectedTensor
|
|
<< " (parameter " << p << ")" << std::endl;
|
|
ASSERT_TRUE(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void check_initializer_against_baseline(
|
|
std::function<void(torch::Tensor)> initializer,
|
|
std::vector<std::vector<torch::Tensor>> expected) {
|
|
torch::manual_seed(0);
|
|
|
|
auto layer1 = torch::nn::Linear(7, 15);
|
|
initializer(layer1->weight);
|
|
layer1->to(torch::kFloat64);
|
|
|
|
auto layer2 = torch::nn::Linear(15, 15);
|
|
initializer(layer2->weight);
|
|
layer2->to(torch::kFloat64);
|
|
|
|
auto layer3 = torch::nn::Linear(15, 2);
|
|
initializer(layer3->weight);
|
|
layer3->to(torch::kFloat64);
|
|
|
|
auto parameters = std::vector<torch::Tensor>{
|
|
layer1->weight,
|
|
layer2->weight,
|
|
layer3->weight,
|
|
};
|
|
|
|
check_exact_values(parameters, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_XavierUniform) {
|
|
auto expected = expected_parameters::Xavier_Uniform();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::xavier_uniform_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_XavierNormal) {
|
|
auto expected = expected_parameters::Xavier_Normal();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::xavier_normal_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_KaimingNormal) {
|
|
auto expected = expected_parameters::Kaiming_Normal();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::kaiming_normal_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_KaimingUniform) {
|
|
auto expected = expected_parameters::Kaiming_Uniform();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::kaiming_uniform_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, CanInitializeTensorThatRequiresGrad) {
|
|
auto tensor = torch::empty({3, 4}, torch::requires_grad());
|
|
ASSERT_THROWS_WITH(
|
|
tensor.fill_(1),
|
|
"a leaf Variable that requires grad "
|
|
"is being used in an in-place operation");
|
|
ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item<int32_t>(), 12);
|
|
}
|
|
|
|
TEST(InitTest, CalculateGainWithTanh) {
|
|
double gain = torch::nn::init::calculate_gain(torch::kTanh);
|
|
ASSERT_DOUBLE_EQ(gain, 5.0 / 3.0);
|
|
}
|
|
|
|
TEST(InitTest, CalculateGainWithRelu) {
|
|
double gain = torch::nn::init::calculate_gain(torch::kReLU);
|
|
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0));
|
|
}
|
|
|
|
TEST(InitTest, CalculateGainWithLeakyRelu) {
|
|
double gain = torch::nn::init::calculate_gain(torch::kLeakyReLU);
|
|
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0 / (1 + pow(0.01, 2))));
|
|
}
|
|
|
|
TEST(InitTest, CanInitializeCnnWithOrthogonal) {
|
|
torch::nn::Conv2d conv_layer(torch::nn::Conv2dOptions(3, 2, 3).stride(2));
|
|
torch::nn::init::orthogonal_(conv_layer->named_parameters()["weight"]);
|
|
}
|