mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Rejecting prim::CallMethod is called out in a comment in impl.cpp, but doesn't seem to be tested. Now it is. Differential Revision: [D54338261](https://our.internmc.facebook.com/intern/diff/D54338261/) Pull Request resolved: https://github.com/pytorch/pytorch/pull/120853 Approved by: https://github.com/houseroad
1787 lines
58 KiB
C++
1787 lines
58 KiB
C++
#include <gtest/gtest.h>
|
|
#include <torch/csrc/jit/ir/alias_analysis.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/runtime/static/ProcessedNodeInputs.h>
|
|
#include <torch/csrc/jit/runtime/static/fusion.h>
|
|
#include <torch/csrc/jit/runtime/static/impl.h>
|
|
#include <torch/csrc/jit/runtime/static/memory_planner.h>
|
|
#include <torch/csrc/jit/runtime/static/ops.h>
|
|
#include <torch/csrc/jit/runtime/static/passes.h>
|
|
#include <memory>
|
|
|
|
#include "deep_wide_pt.h"
|
|
#include "test_utils.h"
|
|
|
|
using namespace torch;
|
|
using namespace torch::jit;
|
|
using namespace torch::jit::test;
|
|
|
|
C10_DECLARE_bool(static_runtime_disable_debug_memory_overlap_check);
|
|
|
|
namespace {
|
|
|
|
StaticModule makeStaticModuleFromScript(const std::string& script) {
|
|
Module m("module");
|
|
m.define(script);
|
|
return StaticModule(m);
|
|
}
|
|
|
|
bool testCanEnableStaticRuntime(const std::string& jit_script) {
|
|
script::Module module("module");
|
|
module.define(jit_script);
|
|
|
|
Method method = module.get_method("forward");
|
|
auto graph = module.get_method("forward").graph();
|
|
|
|
// here we do not freeze graph
|
|
return canEnableStaticRuntime(graph);
|
|
}
|
|
|
|
bool testCanEnableStaticRuntimeWithIR(const std::string& ir) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(ir, graph.get(), {});
|
|
return canEnableStaticRuntime(graph);
|
|
}
|
|
|
|
bool testModuleHasOp(const std::string& jit_script, const char* op_name) {
|
|
script::Module module("module");
|
|
module.define(jit_script);
|
|
|
|
return forwardHasOp(module, op_name);
|
|
}
|
|
|
|
const auto reshape_inplace_script = R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int]):
|
|
a = inp + inp
|
|
b = a.reshape(shape)
|
|
c = b.sigmoid_()
|
|
d = c + c
|
|
e = a + a
|
|
f = b + b
|
|
return (d, e, f)
|
|
)JIT";
|
|
|
|
const auto reshape_inplace_script_1 = R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int], flag: bool):
|
|
if flag:
|
|
a = inp + inp
|
|
b = a.reshape(shape)
|
|
c = b.sigmoid()
|
|
else:
|
|
a = inp * inp
|
|
b = a.sigmoid_()
|
|
c = b.reshape(shape)
|
|
d = c + c
|
|
e = a + a
|
|
f = b + b
|
|
return (d, e, f)
|
|
)JIT";
|
|
|
|
const auto sigmoid_inplace_script = R"JIT(
|
|
def forward(self, inp: Tensor):
|
|
a = torch.sigmoid(inp, out=inp).clone()
|
|
return (a)
|
|
)JIT";
|
|
|
|
} // namespace
|
|
|
|
// Test that StaticModule::value_group groups values of the graph into
|
|
// 1) Inputs/Constants and their aliases 2) Outputs and their aliases.
|
|
TEST(StaticModule, ValueGroup) {
|
|
const std::string src = R"IR(
|
|
graph(%input0 : Tensor, %input1 : Tensor):
|
|
# Constants.
|
|
%0 : int = prim::Constant[value=1]()
|
|
# Internal values.
|
|
%1 : Tensor = aten::add(%input0, %input1, %0)
|
|
# This includes aliases of output.
|
|
%2 : Tensor = aten::add(%input0, %1, %0)
|
|
# This includes output.
|
|
%3 : (Tensor) = prim::TupleConstruct(%2)
|
|
return (%3)
|
|
)IR";
|
|
auto input_graph = std::make_shared<torch::jit::Graph>();
|
|
torch::jit::parseIR(src, input_graph.get());
|
|
torch::jit::StaticModule sm(input_graph);
|
|
const Graph& graph = sm.graph();
|
|
std::vector<const Node*> nodes(graph.nodes().begin(), graph.nodes().end());
|
|
auto* root_block = sm.root_block();
|
|
const auto& value_group = sm.block_info(root_block).value_group();
|
|
|
|
std::vector<const Value*> expected_input_aliases{
|
|
graph.inputs()[0], graph.inputs()[1], nodes[0]->output()};
|
|
for (auto* value : expected_input_aliases) {
|
|
EXPECT_TRUE(value_group.isExternalAlias(value));
|
|
}
|
|
|
|
std::vector<const Value*> expected_output_aliases{
|
|
graph.outputs()[0], nodes[2]->output()};
|
|
for (auto* value : expected_output_aliases) {
|
|
EXPECT_TRUE(value_group.isOutputAlias(value));
|
|
}
|
|
EXPECT_FALSE(value_group.isAlwaysAlive(nodes[1]->output()));
|
|
EXPECT_TRUE(value_group.isAlwaysAlive(graph.inputs()[0]));
|
|
EXPECT_TRUE(value_group.isAlwaysAlive(graph.inputs()[1]));
|
|
EXPECT_TRUE(value_group.isAlwaysAlive(graph.outputs()[0]));
|
|
}
|
|
|
|
TEST(StaticModule, IsOptimizableContainerType_NonOptimizableInputs) {
|
|
// Cannot use out variants for list/tuple construction here because
|
|
// inputs are not produced by nodes with out variants.
|
|
const std::string src = R"JIT(
|
|
def forward(self, a, b):
|
|
a_alias = a.view(a.size())
|
|
non_optimizable_list = [a_alias]
|
|
non_optimizable_tuple = (b, )
|
|
return non_optimizable_list, non_optimizable_tuple
|
|
)JIT";
|
|
|
|
auto sm = makeStaticModuleFromScript(src);
|
|
const auto& graph = sm.graph();
|
|
auto* root_block = sm.root_block();
|
|
const auto& block_info = sm.block_info(root_block);
|
|
|
|
for (const Node* n : graph.nodes()) {
|
|
EXPECT_FALSE(block_info.node_is_optimizable_container_type(n));
|
|
}
|
|
}
|
|
|
|
TEST(StaticModule, IsOptimizableContainerType_WrongType) {
|
|
// Cannot use out variants for list/tuple construction here because
|
|
// types are not Tensors
|
|
const std::string src = R"JIT(
|
|
def forward(self, x: int, y: int):
|
|
a = 1 + x
|
|
b = 2 + y
|
|
non_optimizable_list = [a]
|
|
non_optimizable_tuple = (b, )
|
|
return non_optimizable_list, non_optimizable_tuple
|
|
)JIT";
|
|
|
|
auto sm = makeStaticModuleFromScript(src);
|
|
const auto& graph = sm.graph();
|
|
auto* root_block = sm.root_block();
|
|
const auto& block_info = sm.block_info(root_block);
|
|
|
|
for (const Node* n : graph.nodes()) {
|
|
EXPECT_FALSE(block_info.node_is_optimizable_container_type(n));
|
|
}
|
|
}
|
|
|
|
TEST(StaticModule, IsOptimizableContainerType_CanUseOutVariant) {
|
|
// This container should be optimizable since aten::add has an
|
|
// out variant the container contains Tensors.
|
|
const std::string src = R"JIT(
|
|
def forward(self, x):
|
|
a = torch.relu(x)
|
|
optimizable_list = [a]
|
|
return optimizable_list
|
|
)JIT";
|
|
auto sm = makeStaticModuleFromScript(src);
|
|
const auto& graph = sm.graph();
|
|
auto* root_block = sm.root_block();
|
|
const auto& block_info = sm.block_info(root_block);
|
|
|
|
for (const Node* n : graph.nodes()) {
|
|
if (n->kind() == c10::prim::ListConstruct) {
|
|
EXPECT_TRUE(block_info.node_is_optimizable_container_type(n));
|
|
} else {
|
|
EXPECT_FALSE(block_info.node_is_optimizable_container_type(n));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test operator() with rvalue inputs
|
|
TEST(StaticModule, RValueInputs) {
|
|
const std::string src = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.relu(x)
|
|
return y.clone()
|
|
)JIT";
|
|
auto sm = makeStaticModuleFromScript(src);
|
|
|
|
std::vector<IValue> input{at::randn({1})};
|
|
|
|
auto expected = sm(input, {});
|
|
auto actual = sm(std::move(input), {});
|
|
|
|
EXPECT_TRUE(expected.isTensor());
|
|
EXPECT_TRUE(actual.isTensor());
|
|
EXPECT_TRUE(expected.toTensor().equal(actual.toTensor()));
|
|
}
|
|
|
|
TEST(StaticRuntime, ModuleHasOp) {
|
|
EXPECT_TRUE(testModuleHasOp(reshape_inplace_script, "aten::sigmoid_"));
|
|
EXPECT_TRUE(testModuleHasOp(reshape_inplace_script_1, "aten::reshape"));
|
|
EXPECT_TRUE(testModuleHasOp(sigmoid_inplace_script, "aten::clone"));
|
|
EXPECT_FALSE(testModuleHasOp(reshape_inplace_script_1, "aten::add_"));
|
|
}
|
|
|
|
TEST(StaticRuntime, ReplaceWithCopy_replaces_reshape) {
|
|
auto ExpectToReplaceWithCopy = [](const std::string& jit_script) {
|
|
auto graph = getGraphFromScript(jit_script);
|
|
EXPECT_TRUE(graphHasOp(graph, "aten::reshape"));
|
|
EXPECT_FALSE(graphHasOp(graph, "static_runtime::reshape_copy"));
|
|
|
|
ReplaceWithCopy(graph);
|
|
|
|
// aten::reshape -> static_runtime::reshape_copy
|
|
EXPECT_FALSE(graphHasOp(graph, "aten::reshape"));
|
|
EXPECT_TRUE(graphHasOp(graph, "static_runtime::reshape_copy"));
|
|
};
|
|
|
|
ExpectToReplaceWithCopy(R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int]):
|
|
a = inp.reshape(shape)
|
|
return (a)
|
|
)JIT");
|
|
ExpectToReplaceWithCopy(R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int]):
|
|
a = inp * 2
|
|
b = inp * 3
|
|
c = inp.reshape(shape)
|
|
return (a, b, c)
|
|
)JIT");
|
|
ExpectToReplaceWithCopy(R"JIT(
|
|
def forward(self, cond: bool, x):
|
|
if cond:
|
|
y = x.reshape(x.shape)
|
|
else:
|
|
y = x.clone()
|
|
return y.clone()
|
|
)JIT");
|
|
}
|
|
|
|
TEST(
|
|
StaticRuntime,
|
|
ReplaceWithCopy_does_not_replace_reshape_if_input_has_writters) {
|
|
auto ExpectNotToReplaceWithCopy = [](const std::string& jit_script) {
|
|
auto graph = getGraphFromScript(jit_script);
|
|
EXPECT_TRUE(graphHasOp(graph, "aten::reshape"));
|
|
EXPECT_FALSE(graphHasOp(graph, "static_runtime::reshape_copy"));
|
|
|
|
ReplaceWithCopy(graph);
|
|
|
|
// No Replacement
|
|
EXPECT_TRUE(graphHasOp(graph, "aten::reshape"));
|
|
EXPECT_FALSE(graphHasOp(graph, "static_runtime::reshape_copy"));
|
|
};
|
|
|
|
ExpectNotToReplaceWithCopy(R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int]):
|
|
a = inp.reshape(shape)
|
|
inp *= 2
|
|
return (a)
|
|
)JIT");
|
|
ExpectNotToReplaceWithCopy(R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int]):
|
|
a = inp.reshape(shape)
|
|
a *= 2
|
|
return (a)
|
|
)JIT");
|
|
ExpectNotToReplaceWithCopy(R"JIT(
|
|
def forward(self, inp: Tensor, inp2: Tensor, shape: List[int]):
|
|
a = inp.reshape(shape)
|
|
a *= 2
|
|
b = a.reshape(shape)
|
|
return (b)
|
|
)JIT");
|
|
ExpectNotToReplaceWithCopy(R"JIT(
|
|
def forward(self, inp: Tensor, shape: List[int]):
|
|
a = inp.reshape(shape)
|
|
b = a.reshape(shape)
|
|
c = b.reshape(shape)
|
|
d = c.reshape(shape)
|
|
e = b.sigmoid_()
|
|
return (d)
|
|
)JIT");
|
|
ExpectNotToReplaceWithCopy(reshape_inplace_script);
|
|
}
|
|
|
|
TEST(StaticRuntime, CanEnableStaticRuntime) {
|
|
const auto while_script = R"JIT(
|
|
def forward(self, a: Tensor, x: int):
|
|
c = 0
|
|
while c < x:
|
|
a = a * a
|
|
c += 2
|
|
return a
|
|
)JIT";
|
|
|
|
const auto for_script = R"JIT(
|
|
def forward(self, a: Tensor, x: int):
|
|
for c in range(x):
|
|
a = a * a
|
|
return a
|
|
)JIT";
|
|
|
|
const auto if_script = R"JIT(
|
|
def forward(self, a: Tensor, b: bool):
|
|
if b:
|
|
return a
|
|
else:
|
|
return a * a
|
|
)JIT";
|
|
|
|
const auto is_script_tensors = R"JIT(
|
|
def forward(self, a: Tensor, b: Tensor):
|
|
return a is b
|
|
)JIT";
|
|
|
|
const auto is_script_none = R"JIT(
|
|
def forward(self, a: Optional[Tensor]):
|
|
return a is None
|
|
)JIT";
|
|
|
|
const auto is_not_script_tensors = R"JIT(
|
|
def forward(self, a: Tensor, b: Tensor):
|
|
return a is not b
|
|
)JIT";
|
|
|
|
const auto is_not_script_none = R"JIT(
|
|
def forward(self, a: Optional[Tensor]):
|
|
return a is not None
|
|
)JIT";
|
|
|
|
EXPECT_TRUE(testCanEnableStaticRuntime(reshape_inplace_script));
|
|
EXPECT_TRUE(testCanEnableStaticRuntime(for_script));
|
|
EXPECT_TRUE(testCanEnableStaticRuntime(while_script));
|
|
EXPECT_TRUE(testCanEnableStaticRuntime(if_script));
|
|
EXPECT_FALSE(testCanEnableStaticRuntime(is_script_tensors));
|
|
EXPECT_TRUE(testCanEnableStaticRuntime(is_script_none));
|
|
EXPECT_FALSE(testCanEnableStaticRuntime(is_not_script_tensors));
|
|
EXPECT_TRUE(testCanEnableStaticRuntime(is_not_script_none));
|
|
|
|
}
|
|
TEST(StaticRuntime, CanEnableStaticRuntimeCallMethod) {
|
|
const auto call_method = R"IR(
|
|
graph(%x : Tensor):
|
|
%1 : Tensor = prim::CallMethod[name="offsets"](%x)
|
|
return (%1)
|
|
)IR";
|
|
EXPECT_FALSE(testCanEnableStaticRuntimeWithIR(call_method));
|
|
}
|
|
|
|
TEST(StaticRuntime, CanEnableStaticRuntimeSubBlocks) {
|
|
const auto src = R"JIT(
|
|
def forward(self, a: Tensor, b: Tensor, cond: bool):
|
|
if cond:
|
|
# aten::__is__ on tensors is blocked
|
|
return a is b
|
|
return False
|
|
)JIT";
|
|
|
|
EXPECT_FALSE(testCanEnableStaticRuntime(src));
|
|
}
|
|
|
|
TEST(StaticRuntime, NestedOutput) {
|
|
// dict of tuple of list
|
|
const auto nested_output_script_0 = R"JIT(
|
|
def forward(self, a, b):
|
|
c = (a + b).relu().nan_to_num().float()
|
|
d = a.flatten().nan_to_num() * b.flatten().nan_to_num()
|
|
e = d.float().relu()
|
|
f = ([c], [d])
|
|
g = ([e], [f])
|
|
return ({"prediction":(f, g)})
|
|
)JIT";
|
|
|
|
// tuple of lists
|
|
const auto nested_output_script_1 = R"JIT(
|
|
def forward(self, a, b):
|
|
c = (a + b).relu().nan_to_num().float()
|
|
d = a.flatten().nan_to_num() * b.flatten().nan_to_num()
|
|
e = d.float().relu()
|
|
f = [c]
|
|
g = [e]
|
|
return (f, g)
|
|
)JIT";
|
|
|
|
// list of tuple of dict
|
|
const auto nested_output_script_2 = R"JIT(
|
|
def forward(self, a, b):
|
|
c = (a + b).relu().nan_to_num().float()
|
|
d = b * c
|
|
e = a.flatten().nan_to_num() * b.flatten().nan_to_num()
|
|
f = e.float().relu()
|
|
g = ({"d": d}, {"b": b})
|
|
h = ({"e": e}, {"f": f})
|
|
return [g, h]
|
|
)JIT";
|
|
|
|
// lit of dict
|
|
const auto nested_output_script_3 = R"JIT(
|
|
def forward(self, a, b):
|
|
c = (a + b).relu().nan_to_num().float()
|
|
d = b * c
|
|
e = a.flatten().nan_to_num() * b.flatten().nan_to_num()
|
|
f = e.float().relu()
|
|
g = {"d": d, "b": b}
|
|
h = {"e": e, "f": f}
|
|
return [g, h]
|
|
)JIT";
|
|
|
|
auto run_test = [&](std::vector<int64_t> shapes) {
|
|
auto a = at::randn(shapes);
|
|
auto b = at::randn(shapes);
|
|
|
|
std::vector<IValue> args{a, b};
|
|
testStaticRuntime(nested_output_script_0, args);
|
|
testStaticRuntime(nested_output_script_1, args);
|
|
testStaticRuntime(nested_output_script_2, args);
|
|
testStaticRuntime(nested_output_script_3, args);
|
|
|
|
if (shapes.size() > 0 && shapes[0] != 0) {
|
|
shapes[0] *= 3;
|
|
testStaticRuntime(
|
|
nested_output_script_0, args, {at::randn(shapes), at::randn(shapes)});
|
|
testStaticRuntime(
|
|
nested_output_script_1, args, {at::randn(shapes), at::randn(shapes)});
|
|
}
|
|
};
|
|
run_test({2, 3, 1, 2});
|
|
run_test({2, 6});
|
|
}
|
|
|
|
// test memory reuse
|
|
TEST(StaticRuntime, LongModel) {
|
|
torch::jit::Module mod = getLongScriptModel();
|
|
auto a = torch::randn({2, 2});
|
|
auto b = torch::randn({2, 2});
|
|
auto c = torch::randn({2, 2});
|
|
|
|
// run jit graph executor
|
|
std::vector<at::IValue> input_ivalues({a, b, c});
|
|
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
|
|
|
|
// run static runtime
|
|
std::vector<c10::IValue> input_tensors({a, b, c});
|
|
torch::jit::StaticModule smod(mod);
|
|
at::Tensor output_2 = smod(input_tensors, {}).toTensor();
|
|
smod.runtime().check_for_memory_leak();
|
|
EXPECT_TRUE(
|
|
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
|
|
}
|
|
|
|
TEST(StaticRuntime, TrivialModel) {
|
|
torch::jit::Module mod = getTrivialScriptModel();
|
|
auto a = torch::randn({2, 2});
|
|
auto b = torch::randn({2, 2});
|
|
auto c = torch::randn({2, 2});
|
|
|
|
// run jit graph executor
|
|
std::vector<at::IValue> input_ivalues({a, b, c});
|
|
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
|
|
|
|
// run static runtime
|
|
std::vector<c10::IValue> input_tensors({a, b, c});
|
|
torch::jit::StaticModule smod(mod);
|
|
at::Tensor output_2 = smod(input_tensors, {}).toTensor();
|
|
smod.runtime().check_for_memory_leak();
|
|
EXPECT_TRUE(
|
|
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
|
|
}
|
|
|
|
TEST(StaticRuntime, DeepWide) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
torch::jit::Module mod = getDeepAndWideSciptModel();
|
|
torch::jit::StaticModule smod(mod);
|
|
|
|
for (int batch_size : {1, 8, 32}) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
|
|
// run jit graph executor
|
|
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
|
|
auto output_1 = getTensor(mod.forward(inputs));
|
|
|
|
// run static runtime
|
|
std::vector<c10::IValue> input_tensors({ad_emb_packed, user_emb, wide});
|
|
auto outputs = smod(input_tensors, {}).toTupleRef().elements();
|
|
ASSERT_TRUE(outputs.size() > 0);
|
|
at::Tensor output_2 = outputs[0].toTensor();
|
|
smod.runtime().check_for_memory_leak();
|
|
EXPECT_TRUE(
|
|
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-5));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(StaticRuntime, KWargsAPI_1) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
auto module = getDeepAndWideSciptModel();
|
|
torch::jit::StaticModule smod(module);
|
|
|
|
for (int batch_size : {1, 8, 32}) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
{
|
|
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
|
|
|
|
// run jit graph executor
|
|
at::Tensor output_1 = getTensor(module.forward(inputs));
|
|
|
|
// run static runtime
|
|
c10::IValue output_ivalue = smod(inputs, {});
|
|
smod.runtime().check_for_memory_leak();
|
|
|
|
at::Tensor output_2 = getTensor(output_ivalue);
|
|
EXPECT_TRUE(
|
|
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-5));
|
|
|
|
// check for output aliasing
|
|
EXPECT_EQ(output_ivalue.use_count(), 1);
|
|
output_ivalue = IValue();
|
|
|
|
EXPECT_EQ(output_2.getIntrusivePtr().use_count(), 1);
|
|
}
|
|
|
|
// check for input aliasing (deep & wide does not have ops
|
|
// that create aliases of input tensors)
|
|
EXPECT_EQ(ad_emb_packed.getIntrusivePtr().use_count(), 1);
|
|
EXPECT_EQ(user_emb.getIntrusivePtr().use_count(), 1);
|
|
EXPECT_EQ(wide.getIntrusivePtr().use_count(), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(StaticRuntime, KWargsAPI_2) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
auto module = getDeepAndWideSciptModel();
|
|
torch::jit::StaticModule smod(module);
|
|
|
|
for (int batch_size : {1, 8, 32}) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
{
|
|
// run jit graph executor
|
|
std::vector<at::IValue> args({ad_emb_packed, user_emb, wide});
|
|
at::Tensor output_1 = getTensor(module.forward(args));
|
|
|
|
std::unordered_map<std::string, c10::IValue> kwargs(
|
|
{{"ad_emb_packed", ad_emb_packed},
|
|
{"user_emb", user_emb},
|
|
{"wide", wide}});
|
|
|
|
// run static runtime
|
|
c10::IValue output_ivalue = smod(std::vector<IValue>{}, kwargs);
|
|
smod.runtime().check_for_memory_leak();
|
|
|
|
at::Tensor output_2 = getTensor(output_ivalue);
|
|
EXPECT_TRUE(
|
|
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-5));
|
|
|
|
// check for output aliasing
|
|
EXPECT_EQ(output_ivalue.use_count(), 1);
|
|
output_ivalue = IValue();
|
|
|
|
EXPECT_EQ(output_2.getIntrusivePtr().use_count(), 1);
|
|
}
|
|
|
|
EXPECT_EQ(ad_emb_packed.getIntrusivePtr().use_count(), 1);
|
|
EXPECT_EQ(user_emb.getIntrusivePtr().use_count(), 1);
|
|
EXPECT_EQ(wide.getIntrusivePtr().use_count(), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(StaticRuntime, KWargsAPI_Optional) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x, y, z: Optional[Tensor] = None):
|
|
return x + y
|
|
)JIT";
|
|
|
|
torch::jit::Module mod("mod");
|
|
mod.define(src);
|
|
torch::jit::StaticModule smod(mod);
|
|
const auto kwargs = std::unordered_map<std::string, IValue>{
|
|
{"x", at::randn({1})}, {"y", at::randn({1})}};
|
|
|
|
auto expected = mod.forward({}, kwargs).toTensor();
|
|
auto actual = smod({}, kwargs).toTensor();
|
|
|
|
EXPECT_TRUE(expected.equal(actual));
|
|
}
|
|
|
|
TEST(StaticRuntime, CleanUpMemory) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
torch::jit::Module mod = getDeepAndWideSciptModel();
|
|
|
|
for (auto enable_out_variant : {true, false}) {
|
|
for (auto optimize_memory : {true, false}) {
|
|
for (auto manage_output_tensors : {true, false}) {
|
|
if (manage_output_tensors && !enable_out_variant) {
|
|
// when manage_output_tensors is enabled, enable_out_variant
|
|
// must be enabled too
|
|
continue;
|
|
}
|
|
if (optimize_memory && !enable_out_variant) {
|
|
// when optimize_memory is enabled, enable_out_variant must be
|
|
// enabled too
|
|
continue;
|
|
}
|
|
VLOG(1) << "enable_out_variant: " << enable_out_variant
|
|
<< ", optimize_memory: " << optimize_memory
|
|
<< ", manage_output_tensors: " << manage_output_tensors;
|
|
torch::jit::StaticModuleOptions opts{
|
|
enable_out_variant, optimize_memory, manage_output_tensors};
|
|
torch::jit::StaticModule smod(mod, false, opts);
|
|
torch::jit::StaticRuntime runtime(smod);
|
|
|
|
for (int batch_size : {1, 8, 32}) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
|
|
// run jit graph executor
|
|
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
|
|
auto output_1 = getTensor(mod.forward(inputs));
|
|
|
|
// run static runtime
|
|
std::vector<c10::IValue> input_tensors(
|
|
{ad_emb_packed, user_emb, wide});
|
|
auto outputs = runtime(input_tensors, {}).toTupleRef().elements();
|
|
ASSERT_TRUE(outputs.size() > 0);
|
|
auto output_2 = outputs[0].toTensor();
|
|
runtime.check_for_memory_leak();
|
|
EXPECT_TRUE(torch::allclose(
|
|
output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-5));
|
|
if (manage_output_tensors) {
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(StaticRuntime, ManageOutputTensors) {
|
|
const std::string test_graph = R"IR(
|
|
graph(%0 : Tensor):
|
|
# With manage_output_tensor enabled, this tensor is managed.
|
|
%1 : Tensor = aten::abs(%0)
|
|
# The output container object is never managed.
|
|
%2 : (Tensor) = prim::TupleConstruct(%1)
|
|
return (%2)
|
|
)IR";
|
|
auto a = at::randn({2, 2});
|
|
auto b = at::randn({3, 6});
|
|
std::vector<at::IValue> args{a};
|
|
std::vector<at::IValue> args2{b};
|
|
testStaticRuntime(test_graph, args);
|
|
testStaticRuntime(test_graph, args, args2);
|
|
}
|
|
|
|
TEST(
|
|
StaticRuntime,
|
|
ManageOutputTensorsReturnsOutputContainingManagedOutputTensor) {
|
|
const std::string test_graph = R"IR(
|
|
graph(%0 : Tensor):
|
|
# With manage_output_tensor enabled, this tensor is managed.
|
|
%1 : Tensor = aten::abs(%0)
|
|
# The output container object is never managed.
|
|
%2 : (Tensor) = prim::TupleConstruct(%1)
|
|
return (%2)
|
|
)IR";
|
|
auto g = std::make_shared<torch::jit::Graph>();
|
|
torch::jit::parseIR(test_graph, g.get());
|
|
torch::jit::StaticModuleOptions opts{
|
|
/*enable_out_variant=*/true,
|
|
/*optimize_memory=*/true,
|
|
/*manage_output_tensors=*/true};
|
|
auto a = at::randn({2, 2});
|
|
std::vector<at::IValue> args{a};
|
|
torch::jit::StaticModule smod(g, opts);
|
|
torch::jit::StaticRuntime runtime(smod);
|
|
// Profile run.
|
|
{
|
|
IValue tuple = runtime(args, {});
|
|
ASSERT_TRUE(tuple.isTuple());
|
|
ASSERT_EQ(tuple.toTupleRef().elements().size(), 1);
|
|
// Do not manage input value.
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(args[0]));
|
|
// Do not manage direct output value.
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(tuple));
|
|
IValue element = tuple.toTupleRef().elements()[0];
|
|
// Tensor to be managed, but not yet from the profile run.
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
|
|
tuple = IValue();
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
// Second run that manages output tensors.
|
|
{
|
|
IValue tuple = runtime(args, {});
|
|
ASSERT_TRUE(tuple.isTuple());
|
|
ASSERT_EQ(tuple.toTupleRef().elements().size(), 1);
|
|
// Do not manage input value.
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(args[0]));
|
|
// Do not manage direct output value.
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(tuple));
|
|
IValue element = tuple.toTupleRef().elements()[0];
|
|
// Tensor to be managed, but not yet from the profile run.
|
|
EXPECT_TRUE(runtime.isManagedOutputTensor(element));
|
|
tuple = IValue();
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
}
|
|
|
|
TEST(StaticRuntime, ManageOutputTensorsWithDeallocateOutputTensors) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
torch::jit::Module mod = getDeepAndWideSciptModel();
|
|
|
|
torch::jit::StaticModuleOptions opts{
|
|
/*enable_out_variant=*/true,
|
|
/*optimize_memory=*/true,
|
|
/*manage_output_tensors=*/true};
|
|
torch::jit::StaticModule smod(mod, false, opts);
|
|
torch::jit::StaticRuntime runtime(smod);
|
|
// Reenter the runtime with the input with the same shape/different shapes.
|
|
for (int batch_size : {8, 8, 24, 8}) {
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
std::vector<c10::IValue> input_tensors({ad_emb_packed, user_emb, wide});
|
|
runtime(input_tensors, {});
|
|
runtime.check_for_memory_leak();
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
}
|
|
|
|
TEST(StaticRuntime, ManageOutputTensorsWithoutDeallocateOutputTensors) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
torch::jit::Module mod = getDeepAndWideSciptModel();
|
|
|
|
torch::jit::StaticModuleOptions opts{
|
|
/*enable_out_variant=*/true,
|
|
/*optimize_memory=*/true,
|
|
/*manage_output_tensors=*/true};
|
|
torch::jit::StaticModule smod(mod, false, opts);
|
|
torch::jit::StaticRuntime runtime(smod);
|
|
int batch_size = 8;
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
std::vector<c10::IValue> input_tensors({ad_emb_packed, user_emb, wide});
|
|
// Profile run.
|
|
runtime(input_tensors, {});
|
|
runtime.deallocateOutputTensors();
|
|
// Run again to allocate output Tensors without deallocating them.
|
|
runtime(input_tensors, {});
|
|
// Memory leak checking fails.
|
|
EXPECT_THROW(runtime.checkOutputTensorMemoryLeaks(), std::exception);
|
|
// Calling the runtime without deallocation fails too.
|
|
EXPECT_THROW(runtime(input_tensors, {}), std::exception);
|
|
// After deallocation, everything works fine.
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
runtime(input_tensors, {});
|
|
}
|
|
|
|
TEST(StaticRuntime, DisableManageOutputTensors) {
|
|
const std::string test_graph = R"IR(
|
|
graph(%0 : Tensor):
|
|
# With manage_output_tensor enabled, this tensor is managed.
|
|
%1 : Tensor = aten::abs(%0)
|
|
# The output container object is never managed.
|
|
%2 : (Tensor) = prim::TupleConstruct(%1)
|
|
return (%2)
|
|
)IR";
|
|
auto g = std::make_shared<torch::jit::Graph>();
|
|
torch::jit::parseIR(test_graph, g.get());
|
|
torch::jit::StaticModuleOptions opts{
|
|
/*enable_out_variant=*/true,
|
|
/*optimize_memory=*/true,
|
|
/*manage_output_tensors=*/true};
|
|
auto a = at::randn({2, 2});
|
|
std::vector<at::IValue> args{a};
|
|
torch::jit::StaticModule smod(g, opts);
|
|
torch::jit::StaticRuntime runtime(smod);
|
|
// Profile run.
|
|
{
|
|
IValue tuple = runtime(args, {});
|
|
IValue element = tuple.toTupleRef().elements()[0];
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
|
|
tuple = IValue();
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
// Second run that manages output tensors.
|
|
{
|
|
IValue tuple = runtime(args, {});
|
|
IValue element = tuple.toTupleRef().elements()[0];
|
|
EXPECT_TRUE(runtime.isManagedOutputTensor(element));
|
|
tuple = IValue();
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
|
|
// Reset the runtime and start profiling again.
|
|
runtime.disableManageOutputTensors();
|
|
|
|
IValue copied_output_tensor;
|
|
IValue original_output_tensor;
|
|
// New profile run.
|
|
{
|
|
IValue tuple = runtime(args, {});
|
|
IValue element = tuple.toTupleRef().elements()[0];
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
|
|
copied_output_tensor = element.deepcopy();
|
|
original_output_tensor = element;
|
|
tuple = IValue();
|
|
// No-op since manage_output_tensor is disabled now.
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
// Ensure that `original_output_tensor` is no longer managed: even after
|
|
// calling `runtime.deallocateOutputTensors();` `original_output_tensor` still
|
|
// contains a valid value.
|
|
EXPECT_TRUE(
|
|
original_output_tensor.toTensor().equal(copied_output_tensor.toTensor()));
|
|
|
|
// Ensure that the second optimized run does not manage the output tensor
|
|
// either.
|
|
{
|
|
IValue tuple = runtime(args, {});
|
|
IValue element = tuple.toTupleRef().elements()[0];
|
|
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
|
|
copied_output_tensor = element.deepcopy();
|
|
original_output_tensor = element;
|
|
tuple = IValue();
|
|
// No-op since manage_output_tensor is disabled now.
|
|
runtime.deallocateOutputTensors();
|
|
runtime.checkOutputTensorMemoryLeaks();
|
|
}
|
|
// Ensure that `original_output_tensor` is no longer managed: even after
|
|
// calling `runtime.deallocateOutputTensors();` `original_output_tensor` still
|
|
// contains a valid value.
|
|
EXPECT_TRUE(
|
|
original_output_tensor.toTensor().equal(copied_output_tensor.toTensor()));
|
|
}
|
|
|
|
TEST(StaticRuntime, FusionPass) {
|
|
const int embedding_size = 32;
|
|
const int num_features = 50;
|
|
for (int batch_size : {1, 8, 32}) {
|
|
for (int i = 0; i < 2; ++i) {
|
|
torch::jit::Module module = getDeepAndWideSciptModel();
|
|
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
|
|
auto user_emb = torch::randn({batch_size, 1, embedding_size});
|
|
auto wide = torch::randn({batch_size, num_features});
|
|
|
|
// run jit graph executor
|
|
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
|
|
auto output_1 = getTensor(module.forward(inputs));
|
|
|
|
Method method = module.get_method("forward");
|
|
auto graph = method.graph();
|
|
fuseStaticSubgraphs(graph, 2);
|
|
bool hit = false;
|
|
for (const auto& n : module.get_method("forward").graph()->nodes()) {
|
|
if (n->kind() == torch::jit::prim::StaticSubgraph) {
|
|
hit = true;
|
|
}
|
|
}
|
|
EXPECT_TRUE(hit);
|
|
auto output_2 = getTensor(module.forward(inputs));
|
|
EXPECT_TRUE(
|
|
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-5));
|
|
}
|
|
}
|
|
}
|
|
|
|
static ProcessedNodeInputs createProcessedNodeInputs(
|
|
c10::ArrayRef<uint16_t> inputs) {
|
|
ProcessedNodeInputs result(inputs.size());
|
|
for (const auto idx : c10::irange(inputs.size())) {
|
|
result[idx] = inputs[idx];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
TEST(
|
|
ProcessedNode,
|
|
VerifyNoMemoryOverlapWithImmutableInputsWithImmutableArguments) {
|
|
const auto sigmoid_script = R"JIT(
|
|
def forward(self, inp: Tensor):
|
|
b = torch.sigmoid(inp).clone()
|
|
return (b)
|
|
)JIT";
|
|
script::Module module("module");
|
|
// Not using out= variant.
|
|
module.define(sigmoid_script);
|
|
torch::jit::StaticModule smodule(module);
|
|
Node* sigmoid_node = getNodeWithKind(smodule, "aten::sigmoid");
|
|
std::array<IValue, 2> values = {torch::randn({2, 3}), torch::randn({3, 1})};
|
|
ProcessedFunction fn(
|
|
sigmoid_node,
|
|
/*enable_out_variant=*/true,
|
|
/*check_memory_overlap=*/false);
|
|
StaticNodeInfo static_node_info(
|
|
sigmoid_node, &fn, createProcessedNodeInputs({0}), 1);
|
|
ProcessedNode pnode(static_node_info, values.data());
|
|
EXPECT_TRUE(pnode.verify_no_memory_overlap(/* force_check*/ true));
|
|
|
|
pnode.Output(0) = values[0];
|
|
EXPECT_FALSE(pnode.verify_no_memory_overlap(/* force_check*/ true));
|
|
}
|
|
|
|
TEST(ProcessedNode, VerifyNoMemoryOverlapWithImmutableInputsWithInplaceOps) {
|
|
script::Module module("module");
|
|
// Using out= variant.
|
|
module.define(sigmoid_inplace_script);
|
|
torch::jit::StaticModule smodule(module);
|
|
Node* sigmoid_node = getNodeWithKind(smodule, "aten::sigmoid");
|
|
std::array<IValue, 2> values = {torch::randn({2, 3}), torch::randn({3, 1})};
|
|
ProcessedFunction fn(
|
|
sigmoid_node,
|
|
/*enable_out_variant=*/true,
|
|
/*check_memory_overlap=*/false);
|
|
StaticNodeInfo static_node_info(
|
|
sigmoid_node, &fn, createProcessedNodeInputs({0}), 1);
|
|
ProcessedNode pnode(static_node_info, values.data());
|
|
|
|
ASSERT_EQ(&pnode.Output(0), &values[1]);
|
|
EXPECT_TRUE(pnode.verify_no_memory_overlap());
|
|
|
|
pnode.Output(0) = values[0];
|
|
EXPECT_TRUE(pnode.verify_no_memory_overlap());
|
|
}
|
|
|
|
TEST(ProcessedNode, VerifyNoMemoryOverlapWithOverlappingOutputs) {
|
|
auto g = std::make_shared<torch::jit::Graph>();
|
|
torch::jit::parseIR(
|
|
R"IR(
|
|
graph(%0):
|
|
%1 : Tensor, %2 : Tensor = prim::ListUnpack(%0)
|
|
return (%1, %2))IR",
|
|
g.get());
|
|
torch::jit::StaticModule smodule(g);
|
|
Node* list_unpack_node = getNodeWithKind(smodule, "prim::ListUnpack");
|
|
{
|
|
std::array<IValue, 3> values = {
|
|
at::randn({2, 3}), at::empty({1, 3}), at::empty({4, 5})};
|
|
ProcessedFunction fn(
|
|
list_unpack_node,
|
|
/*enable_out_variant=*/true,
|
|
/*check_memory_overlap */ false);
|
|
StaticNodeInfo list_unpack_static_node_info(
|
|
list_unpack_node, &fn, createProcessedNodeInputs({0}), 1);
|
|
ProcessedNode list_unpack_pnode(
|
|
list_unpack_static_node_info, values.data());
|
|
ASSERT_EQ(list_unpack_pnode.outputs().size(), 2);
|
|
EXPECT_TRUE(
|
|
list_unpack_pnode.verify_no_memory_overlap(/* force_check*/ true));
|
|
}
|
|
{
|
|
std::array<IValue, 3> values = {
|
|
at::randn({2, 3}), at::empty({1, 3}), at::empty({4, 5})};
|
|
ProcessedFunction fn(
|
|
list_unpack_node,
|
|
/*enable_out_variant=*/true,
|
|
/*check_memory_overlap */ false);
|
|
StaticNodeInfo list_unpack_static_node_info(
|
|
list_unpack_node, &fn, createProcessedNodeInputs({0}), 1);
|
|
ProcessedNode list_unpack_pnode(
|
|
list_unpack_static_node_info, values.data());
|
|
auto b = at::randn({2, 3});
|
|
list_unpack_pnode.Output(0) = b;
|
|
list_unpack_pnode.Output(1) = b;
|
|
EXPECT_FALSE(
|
|
list_unpack_pnode.verify_no_memory_overlap(/* force_check*/ true));
|
|
}
|
|
}
|
|
|
|
namespace test {
|
|
at::Tensor bad_add(const at::Tensor& self, int64_t b) {
|
|
if (b == 0) {
|
|
return self;
|
|
}
|
|
return at::native::add(self, b);
|
|
}
|
|
|
|
at::Tensor good_add(const at::Tensor& self, int64_t b) {
|
|
if (b == 0) {
|
|
return self;
|
|
}
|
|
return at::native::add(self, b);
|
|
}
|
|
} // namespace test
|
|
|
|
// test::bad_add has the schema with incorrect alias annotation.
|
|
// test::good_add has the correct alias annotation.
|
|
TORCH_LIBRARY_FRAGMENT(test, m) {
|
|
m.def("bad_add(Tensor self, int b=0) -> Tensor");
|
|
m.def("good_add(Tensor(a) self, int b=0) -> Tensor(a)");
|
|
}
|
|
TORCH_LIBRARY_IMPL(test, CPU, m) {
|
|
m.impl("bad_add", ::test::bad_add);
|
|
m.impl("good_add", ::test::good_add);
|
|
}
|
|
|
|
TEST(StaticRuntime, BadSchemaAliasInfo) {
|
|
FLAGS_static_runtime_disable_debug_memory_overlap_check = true;
|
|
const std::string src = R"IR(
|
|
graph(%x: Tensor, %s: int):
|
|
%c0 : int = prim::Constant[value=0]()
|
|
%c1 : int = prim::Constant[value=1]()
|
|
%a = aten::add(%x, %x, %c1)
|
|
%b1 = test::bad_add(%a, %s) # b1 aliases a
|
|
%t : (Tensor) = prim::TupleConstruct(%b1)
|
|
return (%t)
|
|
)IR";
|
|
|
|
const auto x1 = at::randn({2, 2});
|
|
// big enough to trigger resize of the internal buffer
|
|
const auto x2 = at::randn({3, 6});
|
|
testStaticRuntime(src, {x1, 0}, {x2, 10});
|
|
// This test doesn't pass yet. This is the corner case mentioned in Step 2 of
|
|
// [Check and correct bad schema alias info at runtime]
|
|
// testStaticRuntime(src, {x1, 10}, {x2, 0});
|
|
FLAGS_static_runtime_disable_debug_memory_overlap_check = false;
|
|
}
|
|
|
|
// This test repeats the last test, but with the correct schema alias
|
|
// annotations
|
|
TEST(StaticRuntime, GoodSchemaAliasInfo) {
|
|
// comment out the prim::TupleConstruct repro the failure of
|
|
// DCHECK(!isManagedOutputTensor(*outputs_[0]));
|
|
const std::string src = R"IR(
|
|
graph(%x: Tensor, %s: int):
|
|
%c0 : int = prim::Constant[value=0]()
|
|
%c1 : int = prim::Constant[value=1]()
|
|
%a = aten::add(%x, %x, %c1)
|
|
%b1 = test::good_add(%a, %s) # b1 aliases a
|
|
# return (%b1)
|
|
%t : (Tensor) = prim::TupleConstruct(%b1)
|
|
return (%t)
|
|
)IR";
|
|
|
|
const auto x1 = at::randn({2, 2});
|
|
// big enough to trigger resize of the internal buffer
|
|
const auto x2 = at::randn({3, 6});
|
|
testStaticRuntime(src, {x1, 0}, {x2, 10});
|
|
testStaticRuntime(src, {x1, 10}, {x2, 0});
|
|
}
|
|
|
|
TEST(ProcessedFunction, ProcessedFunction) {
|
|
const auto script = R"JIT(
|
|
def forward(self, inp: Tensor):
|
|
b = torch.sigmoid(inp).clone()
|
|
c = torch.transpose(b, 0, 1)
|
|
return (c)
|
|
)JIT";
|
|
script::Module module("module");
|
|
module.define(script);
|
|
torch::jit::StaticModule smodule(module);
|
|
|
|
Node* sigmoid_node = getNodeWithKind(smodule, "aten::sigmoid");
|
|
ProcessedFunction sigmoid_fn(
|
|
sigmoid_node,
|
|
/*enable_out_variant=*/true,
|
|
/*check_memory_overlap=*/false);
|
|
EXPECT_EQ(sigmoid_fn.kind(), ProcessedFunction::Kind::kOutVariant);
|
|
EXPECT_FALSE(sigmoid_fn.checkMemoryOverlap());
|
|
|
|
Node* transpose_node = getNodeWithKind(smodule, "aten::transpose");
|
|
ProcessedFunction transpose_fn(
|
|
transpose_node,
|
|
/*enable_out_variant=*/true,
|
|
/*check_memory_overlap=*/false);
|
|
EXPECT_EQ(transpose_fn.kind(), ProcessedFunction::Kind::kNativeFunction);
|
|
EXPECT_FALSE(transpose_fn.checkMemoryOverlap());
|
|
}
|
|
|
|
TEST(ManagedTensorRanges, NoAliases) {
|
|
const std::string src = R"IR(
|
|
graph(%x : Tensor):
|
|
%y : Tensor = aten::mul(%x, %x)
|
|
%z : Tensor = aten::mul(%y, %x)
|
|
%output : Tensor = aten::mul(%z, %z)
|
|
return (%output)
|
|
)IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(src, graph.get(), vmap);
|
|
|
|
auto* y = vmap["y"];
|
|
auto* z = vmap["z"];
|
|
|
|
FastSet<const Value*> managed_tensors = {y, z};
|
|
AliasDb alias_db(graph);
|
|
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, managed_tensors);
|
|
|
|
std::vector<Node*> nodes(
|
|
graph->block()->nodes().begin(), graph->block()->nodes().end());
|
|
ASSERT_EQ(nodes.size(), 3);
|
|
|
|
EXPECT_FALSE(ranges.nodeFreesManagedTensors(nodes[0]));
|
|
|
|
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[1]));
|
|
EXPECT_EQ(
|
|
ranges.availableTensorValuesAfterNode(nodes[1]),
|
|
std::vector<const Value*>{y});
|
|
|
|
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[2]));
|
|
EXPECT_EQ(
|
|
ranges.availableTensorValuesAfterNode(nodes[2]),
|
|
std::vector<const Value*>{z});
|
|
}
|
|
|
|
TEST(ManagedTensorRanges, AliasExtendingLifetimes) {
|
|
const std::string src = R"IR(
|
|
graph(%x : Tensor):
|
|
%y : Tensor = aten::mul(%x, %x)
|
|
%y_size : int[] = aten::size(%y)
|
|
%z1 : Tensor = aten::mul(%y, %y)
|
|
%y_alias : Tensor = aten::view(%y, %y_size)
|
|
%z2 : Tensor = aten::mul(%y_alias, %y_alias)
|
|
%output : Tensor = aten::mul(%z1, %z2)
|
|
return (%output)
|
|
)IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(src, graph.get(), vmap);
|
|
|
|
auto* y = vmap["y"];
|
|
auto* z1 = vmap["z1"];
|
|
auto* z2 = vmap["z2"];
|
|
|
|
FastSet<const Value*> managed_tensors = {y, z1, z2};
|
|
AliasDb alias_db(graph);
|
|
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, managed_tensors);
|
|
|
|
std::vector<Node*> nodes(
|
|
graph->block()->nodes().begin(), graph->block()->nodes().end());
|
|
ASSERT_EQ(nodes.size(), 6);
|
|
|
|
for (const auto i : c10::irange(4)) {
|
|
EXPECT_FALSE(ranges.nodeFreesManagedTensors(nodes[i]));
|
|
}
|
|
|
|
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[4]));
|
|
EXPECT_EQ(
|
|
ranges.availableTensorValuesAfterNode(nodes[4]),
|
|
std::vector<const Value*>{y});
|
|
|
|
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[5]));
|
|
const auto& available_after_5 =
|
|
ranges.availableTensorValuesAfterNode(nodes[5]);
|
|
// We don't care about the order, so convert to set. But make sure
|
|
// there are no duplicates.
|
|
FastSet<const Value*> available_after_5_set(
|
|
available_after_5.begin(), available_after_5.end());
|
|
EXPECT_EQ(available_after_5_set.size(), available_after_5.size());
|
|
EXPECT_EQ(available_after_5_set, FastSet<const Value*>({z1, z2}));
|
|
}
|
|
|
|
TEST(ManagedTensorRanges, LifetimeOverlap) {
|
|
const std::string src = R"IR(
|
|
graph(%a : Tensor):
|
|
%b : Tensor = aten::mul(%a, %a)
|
|
%c : Tensor = aten::mul(%b, %b)
|
|
%c_size : int[] = aten::size(%c)
|
|
%c_alias : Tensor = aten::view(%c, %c_size)
|
|
%d : Tensor = aten::mul(%a, %a)
|
|
%e : Tensor = aten::mul(%c_alias, %c_alias)
|
|
%output : Tensor = aten::mul(%e, %e)
|
|
return (%output)
|
|
)IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(src, graph.get(), vmap);
|
|
auto* b = vmap["b"];
|
|
auto* c = vmap["c"];
|
|
auto* d = vmap["d"];
|
|
auto* e = vmap["e"];
|
|
|
|
AliasDb alias_db(graph);
|
|
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, {b, c, d, e});
|
|
const std::vector<std::pair<Value*, Value*>> overlapping_values{
|
|
{b, c}, {c, d}, {c, e}};
|
|
|
|
const std::vector<std::pair<Value*, Value*>> disjoint_values{{b, d}, {b, e}};
|
|
|
|
for (const auto& values : overlapping_values) {
|
|
EXPECT_TRUE(ranges.lifetimesOverlap(values.first, values.second));
|
|
EXPECT_TRUE(ranges.lifetimesOverlap(values.second, values.first));
|
|
}
|
|
for (const auto& values : disjoint_values) {
|
|
EXPECT_FALSE(ranges.lifetimesOverlap(values.first, values.second));
|
|
EXPECT_FALSE(ranges.lifetimesOverlap(values.second, values.first));
|
|
}
|
|
}
|
|
|
|
TEST(ManagedTensorRanges, OverlappingLifetimesContainers) {
|
|
const std::string src = R"IR(
|
|
graph(%a : Tensor):
|
|
%b : Tensor = aten::mul(%a, %a)
|
|
%c : Tensor = aten::mul(%b, %b)
|
|
%tuple : (Tensor, Tensor) = prim::TupleConstruct(%b, %c)
|
|
%b_alias : Tensor, %c_alias : Tensor = prim::TupleUnpack(%tuple)
|
|
%d : Tensor = aten::mul(%b_alias, %c_alias)
|
|
%output : Tensor = aten::mul(%d, %d)
|
|
return (%output)
|
|
)IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(src, graph.get(), vmap);
|
|
auto* b = vmap["b"];
|
|
auto* c = vmap["c"];
|
|
auto* d = vmap["d"];
|
|
|
|
AliasDb alias_db(graph);
|
|
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, {b, c, d});
|
|
|
|
EXPECT_TRUE(ranges.lifetimesOverlap(b, c));
|
|
EXPECT_TRUE(ranges.lifetimesOverlap(b, d));
|
|
EXPECT_TRUE(ranges.lifetimesOverlap(c, d));
|
|
}
|
|
|
|
TEST(ManagedTensorRanges, OverlappingLifetimesOutputs) {
|
|
const std::string src = R"IR(
|
|
graph(%a : Tensor):
|
|
%output : Tensor = aten::mul(%a, %a)
|
|
%b : Tensor = aten::mul(%a, %a)
|
|
return (%output)
|
|
)IR";
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(src, graph.get(), vmap);
|
|
auto* b = vmap["b"];
|
|
auto* output = vmap["output"];
|
|
|
|
AliasDb alias_db(graph);
|
|
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, {b, output});
|
|
|
|
EXPECT_TRUE(ranges.lifetimesOverlap(b, output));
|
|
}
|
|
|
|
namespace {
|
|
|
|
// For checking the correctness of assignStorageToManageTensors, the following
|
|
// conditions must hold
|
|
// 1. All managed tensors are assigned to some storage group, and a tensor
|
|
// may not be assigned to more than 1 storage group.
|
|
// 2. Managed tensors with overlapping lifetimes should not be in the same
|
|
// storage group.
|
|
// 3. The number of reused tensors is >= min_reused_tensors.
|
|
void checkStorageGroups(
|
|
const std::vector<StorageGroup>& storage_groups,
|
|
const ManagedTensorRanges& ranges,
|
|
const FastMap<const Value*, at::Tensor*>& tensor_value_to_tensor,
|
|
size_t min_reused_tensors) {
|
|
// Some extra bookkeeping; construct the set of managed Tensor* and
|
|
// invert the tensor_value_to_tensor map. StorageGroup stores
|
|
// Tensor*, so this will make everything a little easier.
|
|
FastMap<at::Tensor*, const Value*> tensor_to_tensor_value;
|
|
FastSet<at::Tensor*> managed_tensors;
|
|
for (auto& key_value : tensor_value_to_tensor) {
|
|
ASSERT_EQ(
|
|
tensor_to_tensor_value.find(key_value.second),
|
|
tensor_to_tensor_value.end());
|
|
tensor_to_tensor_value.emplace(key_value.second, key_value.first);
|
|
managed_tensors.insert(key_value.second);
|
|
}
|
|
|
|
// Condition (1)
|
|
FastSet<at::Tensor*> actual_assigned_tensors;
|
|
for (const auto& storage_group : storage_groups) {
|
|
for (auto* tensor : storage_group.group()) {
|
|
ASSERT_EQ(
|
|
actual_assigned_tensors.find(tensor), actual_assigned_tensors.end());
|
|
actual_assigned_tensors.insert(tensor);
|
|
}
|
|
}
|
|
ASSERT_EQ(actual_assigned_tensors, managed_tensors);
|
|
|
|
// Condition (2)
|
|
size_t num_reused = 0;
|
|
for (const auto& storage_group : storage_groups) {
|
|
const auto& group = storage_group.group();
|
|
num_reused += group.size() - 1;
|
|
for (const auto i : c10::irange(group.size() - 1)) {
|
|
for (const auto j : c10::irange(i + 1, group.size())) {
|
|
const auto* v1 = tensor_to_tensor_value.at(group[i]);
|
|
const auto* v2 = tensor_to_tensor_value.at(group[j]);
|
|
EXPECT_FALSE(ranges.lifetimesOverlap(v1, v2));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Condition (3)
|
|
EXPECT_GE(num_reused, min_reused_tensors);
|
|
}
|
|
|
|
// A convenience function for testing assignStorageToManagedTensors. It
|
|
// takes in an IR graph as well as a map from managed tensor name to tensor
|
|
// value. It constructs all of the necessary data structures, invokes
|
|
// assignStorageToManageTensors, and verifies correctness with
|
|
// checkStorageGroups.
|
|
void testAssignStorageToManagedTensors(
|
|
const std::string& src,
|
|
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor,
|
|
size_t min_reused_tensors) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(src, graph.get(), vmap);
|
|
|
|
FastSet<const Value*> managed_tensor_values;
|
|
FastMap<const Value*, at::Tensor*> tensor_value_to_tensor;
|
|
|
|
for (auto& key_value : managed_tensor_name_to_tensor) {
|
|
const auto& tensor_name = key_value.first;
|
|
auto vmap_it = vmap.find(tensor_name);
|
|
ASSERT_TRUE(vmap_it != vmap.end());
|
|
managed_tensor_values.insert(vmap_it->second);
|
|
tensor_value_to_tensor.emplace(vmap_it->second, &key_value.second);
|
|
}
|
|
ASSERT_EQ(managed_tensor_values.size(), tensor_value_to_tensor.size());
|
|
|
|
AliasDb alias_db(graph);
|
|
auto ranges =
|
|
ManagedTensorRanges(*graph->block(), alias_db, managed_tensor_values);
|
|
auto groups = assignStorageToManagedTensors(
|
|
graph->block()->nodes(), ranges, tensor_value_to_tensor);
|
|
|
|
checkStorageGroups(
|
|
groups, ranges, tensor_value_to_tensor, min_reused_tensors);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(AssignStorageToManagedTensors, NoAliases) {
|
|
const auto src = R"IR(
|
|
graph(%a : Tensor):
|
|
%b : Tensor = aten::mul(%a, %a)
|
|
%c : Tensor = aten::mul(%b, %b)
|
|
%d : Tensor = aten::mul(%c, %c)
|
|
%e : Tensor = aten::mul(%b, %d)
|
|
%output : Tensor = aten::mul(%e, %e)
|
|
return (%output)
|
|
)IR";
|
|
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor{
|
|
{"b", at::randn({1})},
|
|
{"c", at::randn({1})},
|
|
{"d", at::randn({1})},
|
|
{"e", at::randn({1})}};
|
|
const size_t min_reused_tensors = 1;
|
|
testAssignStorageToManagedTensors(
|
|
src, std::move(managed_tensor_name_to_tensor), min_reused_tensors);
|
|
}
|
|
|
|
TEST(AssignStorageToManagedTensors, Aliases) {
|
|
const auto src = R"IR(
|
|
graph(%a : Tensor):
|
|
%b : Tensor = aten::mul(%a, %a)
|
|
%c : Tensor = aten::mul(%b, %b)
|
|
%d : Tensor = aten::mul(%c, %c)
|
|
%c_size : int[] = aten::size(%c)
|
|
%c_alias : Tensor = aten::view(%c, %c_size)
|
|
%e : Tensor = aten::mul(%b, %d)
|
|
%f : Tensor = aten::mul(%c_alias, %c_alias)
|
|
%output : Tensor = aten::mul(%e, %f)
|
|
return (%output)
|
|
)IR";
|
|
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor{
|
|
{"b", at::randn({1})},
|
|
{"c", at::randn({1})},
|
|
{"d", at::randn({1})},
|
|
{"e", at::randn({1})},
|
|
{"f", at::randn({1})}};
|
|
const size_t min_reused_tensors = 1;
|
|
testAssignStorageToManagedTensors(
|
|
src, std::move(managed_tensor_name_to_tensor), min_reused_tensors);
|
|
}
|
|
|
|
namespace {
|
|
TORCH_LIBRARY_FRAGMENT(static_runtime_tests, m) {
|
|
m.def(torch::schema(
|
|
"static_runtime_tests::variadic_outputs(Tensor a) -> ...",
|
|
at::AliasAnalysisKind::PURE_FUNCTION));
|
|
}
|
|
} // namespace
|
|
|
|
TEST(AssignStorageToManagedTensors, MultipleUnused) {
|
|
const auto src = R"IR(
|
|
graph(%a : Tensor):
|
|
%z : Tensor = aten::mul(%a, %a)
|
|
%out: Tensor = aten::mul(%z, %z)
|
|
%x : Tensor, %y : Tensor = static_runtime_tests::variadic_outputs(%a)
|
|
return (%out)
|
|
)IR";
|
|
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor{
|
|
{"z", at::randn({1})}, {"x", at::randn({1})}, {"y", at::randn({1})}};
|
|
const size_t min_reused_tensors = 1;
|
|
testAssignStorageToManagedTensors(
|
|
src, std::move(managed_tensor_name_to_tensor), min_reused_tensors);
|
|
}
|
|
|
|
namespace {
|
|
void testStaticModuleThrows(
|
|
const std::string& src,
|
|
const std::vector<IValue>& args,
|
|
const std::unordered_map<std::string, IValue>& kwargs) {
|
|
auto static_module = makeStaticModuleFromScript(src);
|
|
EXPECT_THROW(static_module(args, kwargs), c10::Error);
|
|
}
|
|
} // namespace
|
|
|
|
TEST(StaticModule, IncorrectTypesPassed) {
|
|
const std::string args_bool_script = R"JIT(
|
|
def forward(self, x: bool):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(args_bool_script, {at::randn({1})}, {});
|
|
|
|
const std::string args_tensor_script = R"JIT(
|
|
def forward(self, x: Tensor):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(args_tensor_script, {false}, {});
|
|
|
|
const std::string kwargs_int_script = R"JIT(
|
|
def forward(self, x: bool = True):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(kwargs_int_script, {}, {{"x", at::randn({1})}});
|
|
|
|
const std::string kwargs_tensor_script = R"JIT(
|
|
def forward(self, x: Tensor = torch.randn((1, ))):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(kwargs_tensor_script, {}, {{"x", 1.0}});
|
|
}
|
|
|
|
TEST(StaticModule, TooManyArgs) {
|
|
const std::string args_src = R"JIT(
|
|
def forward(self, x: int):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(args_src, {0, 1}, {});
|
|
|
|
const std::string kwargs_src = R"JIT(
|
|
def forward(self, x: int = 1):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(kwargs_src, {}, {{"y", 0}, {"x", 1}});
|
|
}
|
|
|
|
TEST(StaticModule, NotEnoughArgs) {
|
|
const std::string args_src = R"JIT(
|
|
def forward(self, x: int):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(args_src, {}, {});
|
|
|
|
const std::string kwargs_src = R"JIT(
|
|
def forward(self, *, x: int):
|
|
return x
|
|
)JIT";
|
|
testStaticModuleThrows(kwargs_src, {}, {});
|
|
}
|
|
|
|
TEST(CreateOwnedRefsForSpecialValues, TopLevel) {
|
|
const auto src = R"IR(
|
|
graph():
|
|
%c: int = prim::Constant[value=42]()
|
|
return (%c)
|
|
)IR";
|
|
|
|
auto graph = getGraphFromIR(src);
|
|
CreateOwnedRefsForSpecialValues(*graph);
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "static_runtime::create_owned_ref"));
|
|
}
|
|
|
|
TEST(CreateOwnedRefsForSpecialValues, ValueFromOuterScope) {
|
|
const auto src = R"IR(
|
|
graph(%cond: bool, %1: int):
|
|
%c: int = aten::add(%1, %1)
|
|
%x: int = prim::If(%c)
|
|
block0():
|
|
-> (%c)
|
|
block1():
|
|
-> (%c)
|
|
return (%x)
|
|
)IR";
|
|
|
|
auto graph = getGraphFromIR(src);
|
|
CreateOwnedRefsForSpecialValues(*graph);
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "static_runtime::create_owned_ref"));
|
|
}
|
|
|
|
TEST(ForceNonEmptyOutputs, TwoSubBlocks) {
|
|
const auto src = R"IR(
|
|
graph(%cond: bool):
|
|
%lst : int[] = prim::ListConstruct()
|
|
%1 : int = prim::Constant[value=1]()
|
|
%2 : int = prim::Constant[value=2]()
|
|
prim::If(%cond)
|
|
block0():
|
|
aten::append(%lst, %1)
|
|
-> ()
|
|
block1():
|
|
aten::append(%lst, %2)
|
|
-> ()
|
|
return (%lst)
|
|
)IR";
|
|
|
|
auto graph = getGraphFromIR(src);
|
|
ForceNonEmptyOutputs(*graph);
|
|
|
|
for (auto* node : graph->nodes()) {
|
|
if (node->blocks().empty()) {
|
|
continue;
|
|
}
|
|
EXPECT_EQ(node->outputs().size(), 1);
|
|
for (auto* sub_block : node->blocks()) {
|
|
EXPECT_EQ(sub_block->outputs().size(), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(EliminateExtraPermuteOps, FusesSumCorrectly) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.permute(x, (0, 2, 1))
|
|
z = torch.sum(y, dim=-1)
|
|
return z
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
|
|
auto graph = mod.get_method("forward").graph();
|
|
// turn the ListConstruct(%constant) into proper constant lists
|
|
ConstantPropagation(graph);
|
|
EliminateExtraPermuteOps(graph);
|
|
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::permute"));
|
|
auto* sum = getNodeWithKind(graph, "aten::sum");
|
|
ASSERT_NE(sum, nullptr);
|
|
auto dim = toIValue(sum->input(1));
|
|
ASSERT_TRUE(dim.has_value() && dim->isIntList());
|
|
EXPECT_EQ(dim->toIntList(), c10::List<int64_t>{1});
|
|
}
|
|
|
|
TEST(EliminateExtraPermuteOps, DoesNotFuseSumWrongDim) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.permute(x, (0, 2, 1))
|
|
z = torch.sum(y, dim=1)
|
|
return z
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
|
|
auto graph = mod.get_method("forward").graph();
|
|
// turn the ListConstruct(%constant) into proper constant lists
|
|
ConstantPropagation(graph);
|
|
EliminateExtraPermuteOps(graph);
|
|
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
|
|
}
|
|
|
|
TEST(EliminateExtraPermuteOps, DoesNotFuseSumNonConstantDim) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x, dim: int):
|
|
y = torch.permute(x, (0, 2, 1))
|
|
z = torch.sum(y, dim=dim)
|
|
return z
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
|
|
auto graph = mod.get_method("forward").graph();
|
|
// turn the ListConstruct(%constant) into proper constant lists
|
|
ConstantPropagation(graph);
|
|
EliminateExtraPermuteOps(graph);
|
|
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
|
|
}
|
|
|
|
TEST(EliminateExtraPermuteOps, FusesSoftmaxCorrectly) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x):
|
|
a = torch.permute(x, [0, 2, 1])
|
|
b = torch.softmax(a, 2)
|
|
c = torch.permute(b, [0, 2, 1])
|
|
return c.clone()
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
ConstantPropagation(graph);
|
|
EliminateExtraPermuteOps(graph);
|
|
graph->dump();
|
|
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::permute"));
|
|
auto* softmax = getNodeWithKind(graph, "aten::softmax");
|
|
ASSERT_NE(softmax, nullptr);
|
|
auto dim = toIValue(softmax->input(1));
|
|
ASSERT_TRUE(dim.has_value() && dim->isInt());
|
|
EXPECT_EQ(dim->toInt(), 1);
|
|
|
|
std::vector<IValue> args{at::randn({3, 4, 5})};
|
|
testStaticRuntime(src, args, /*args2=*/{}, /*use_allclose=*/true);
|
|
}
|
|
|
|
TEST(EliminateExtraPermuteOps, DoesNotFuseSoftmaxWrongPermuteDim) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x):
|
|
a = torch.permute(x, [0, 1, 2])
|
|
b = torch.softmax(a, 2)
|
|
c = torch.permute(b, [0, 1, 2])
|
|
return c.clone()
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
ConstantPropagation(graph);
|
|
EliminateExtraPermuteOps(graph);
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
|
|
}
|
|
|
|
TEST(EliminateExtraPermuteOps, DoesNotFuseSoftmaxWrongSoftmaxDim) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x):
|
|
a = torch.permute(x, [0, 2, 1])
|
|
b = torch.softmax(a, 0)
|
|
c = torch.permute(b, [0, 2, 1])
|
|
return c.clone()
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
ConstantPropagation(graph);
|
|
EliminateExtraPermuteOps(graph);
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
|
|
}
|
|
|
|
TEST(UseSplitAndSqueeze, Fusion) {
|
|
const auto src = R"IR(
|
|
graph(%x: Tensor):
|
|
%dim: int = prim::Constant[value=1]()
|
|
%split_size: int = prim::Constant[value=1]()
|
|
%split: Tensor[] = aten::split(%x, %split_size, %dim)
|
|
%a: Tensor, %b: Tensor = prim::ListUnpack(%split)
|
|
%c: Tensor = aten::squeeze(%a, %dim)
|
|
%d: Tensor = aten::squeeze(%b, %dim)
|
|
return (%c, %d)
|
|
)IR";
|
|
auto graph = getGraphFromIR(src);
|
|
UseSplitAndSqueeze(graph);
|
|
EXPECT_TRUE(
|
|
hasNodeWithKind(graph, "static_runtime::fused_split_and_squeeze_copy"));
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::split"));
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::squeeze"));
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "prim::ListUnpack"));
|
|
}
|
|
|
|
TEST(EliminateNoOpSlice, IntegerStart) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x: List[int]) -> List[int]:
|
|
return x[0:]
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::slice"));
|
|
EliminateNoOpSlice(graph);
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::slice"));
|
|
}
|
|
|
|
TEST(EliminateNoOpSlice, NoneStart) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x: List[int]) -> List[int]:
|
|
return x[:]
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
EliminateNoOpSlice(graph);
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::slice"));
|
|
}
|
|
|
|
#ifdef FBCODE_CAFFE2
|
|
// FuseClampNaNToNum pass is disabled externally to avoid MSVC errors in CI
|
|
TEST(FuseClampNaNToNum, FusionHappens) {
|
|
const auto src = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.clamp(x, min=0.0, max=1.0)
|
|
z = y.nan_to_num()
|
|
return z.clone()
|
|
)JIT";
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
FuseClampNaNToNum(graph);
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::clamp"));
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "aten::nan_to_num"));
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "static_runtime::clamp_nan_to_num"));
|
|
// Correctness of the op is exercised in StaticRuntime.clamp_nan_to_num
|
|
}
|
|
|
|
TEST(FuseClampNaNToNum, NoFusion) {
|
|
const auto src1 = R"JIT(
|
|
def forward(self, x, a: float, b: float):
|
|
y = torch.clamp(x, a, b)
|
|
z = y.nan_to_num()
|
|
return z.clone()
|
|
)JIT";
|
|
|
|
const auto src2 = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.clamp(x, min=0.0)
|
|
z = y.nan_to_num()
|
|
return z.clone()
|
|
)JIT";
|
|
|
|
const auto src3 = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.clamp(x, max=0.0)
|
|
z = y.nan_to_num()
|
|
return z.clone()
|
|
)JIT";
|
|
|
|
const auto src4 = R"JIT(
|
|
def forward(self, x):
|
|
y = torch.clamp(x)
|
|
z = y.nan_to_num()
|
|
return z.clone()
|
|
)JIT";
|
|
|
|
|
|
auto checkScript = [](const char* src) {
|
|
torch::jit::Module mod("m");
|
|
mod.define(src);
|
|
auto graph = mod.get_method("forward").graph();
|
|
FuseClampNaNToNum(graph);
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::clamp"));
|
|
EXPECT_TRUE(hasNodeWithKind(graph, "aten::nan_to_num"));
|
|
EXPECT_FALSE(hasNodeWithKind(graph, "static_runtime::clamp_nan_to_num"));
|
|
};
|
|
|
|
checkScript(src1);
|
|
checkScript(src2);
|
|
checkScript(src3);
|
|
checkScript(src4);
|
|
}
|
|
#endif
|