mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary:
Original commit changeset: 0bb770d2cdb2
Original Phabricator Diff: D35194935 (79e5b053b6
)
Differential Revision: D35291874
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81560
Approved by: https://github.com/ezyang
116 lines
2.6 KiB
C++
116 lines
2.6 KiB
C++
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#if !defined(USE_ROCM)
|
|
#include <cuda_profiler_api.h>
|
|
#else
|
|
#include <hip/hip_runtime_api.h>
|
|
#endif
|
|
|
|
#include <c10/cuda/CUDAException.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
namespace torch {
|
|
namespace cuda {
|
|
namespace shared {
|
|
|
|
#ifdef USE_ROCM
|
|
namespace {
|
|
hipError_t hipReturnSuccess() {
|
|
return hipSuccess;
|
|
}
|
|
} // namespace
|
|
#endif
|
|
|
|
void initCudartBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
auto cudart = m.def_submodule("_cudart", "libcudart.so bindings");
|
|
|
|
// By splitting the names of these objects into two literals we prevent the
|
|
// HIP rewrite rules from changing these names when building with HIP.
|
|
|
|
#if !defined(USE_ROCM)
|
|
py::enum_<cudaOutputMode_t>(
|
|
cudart,
|
|
"cuda"
|
|
"OutputMode")
|
|
.value("KeyValuePair", cudaKeyValuePair)
|
|
.value("CSV", cudaCSV);
|
|
#endif
|
|
|
|
py::enum_<cudaError_t>(
|
|
cudart,
|
|
"cuda"
|
|
"Error")
|
|
.value("success", cudaSuccess);
|
|
|
|
cudart.def(
|
|
"cuda"
|
|
"GetErrorString",
|
|
cudaGetErrorString);
|
|
cudart.def(
|
|
"cuda"
|
|
"ProfilerStart",
|
|
#ifdef USE_ROCM
|
|
hipReturnSuccess
|
|
#else
|
|
cudaProfilerStart
|
|
#endif
|
|
);
|
|
cudart.def(
|
|
"cuda"
|
|
"ProfilerStop",
|
|
#ifdef USE_ROCM
|
|
hipReturnSuccess
|
|
#else
|
|
cudaProfilerStop
|
|
#endif
|
|
);
|
|
cudart.def(
|
|
"cuda"
|
|
"HostRegister",
|
|
[](uintptr_t ptr, size_t size, unsigned int flags) -> cudaError_t {
|
|
return C10_CUDA_ERROR_HANDLED(
|
|
cudaHostRegister((void*)ptr, size, flags));
|
|
});
|
|
cudart.def(
|
|
"cuda"
|
|
"HostUnregister",
|
|
[](uintptr_t ptr) -> cudaError_t {
|
|
return C10_CUDA_ERROR_HANDLED(cudaHostUnregister((void*)ptr));
|
|
});
|
|
cudart.def(
|
|
"cuda"
|
|
"StreamCreate",
|
|
[](uintptr_t ptr) -> cudaError_t {
|
|
return C10_CUDA_ERROR_HANDLED(cudaStreamCreate((cudaStream_t*)ptr));
|
|
});
|
|
cudart.def(
|
|
"cuda"
|
|
"StreamDestroy",
|
|
[](uintptr_t ptr) -> cudaError_t {
|
|
return C10_CUDA_ERROR_HANDLED(cudaStreamDestroy((cudaStream_t)ptr));
|
|
});
|
|
#if !defined(USE_ROCM)
|
|
cudart.def(
|
|
"cuda"
|
|
"ProfilerInitialize",
|
|
cudaProfilerInitialize);
|
|
#endif
|
|
cudart.def(
|
|
"cuda"
|
|
"MemGetInfo",
|
|
[](int device) -> std::pair<size_t, size_t> {
|
|
c10::cuda::CUDAGuard guard(device);
|
|
size_t device_free = 0;
|
|
size_t device_total = 0;
|
|
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
|
return {device_free, device_total};
|
|
});
|
|
}
|
|
|
|
} // namespace shared
|
|
} // namespace cuda
|
|
} // namespace torch
|