Files
pytorch/test/test_sort_and_select.py
Khushi Agrawal 3ded7b1da3 Replace get_all_ type macros with the ATen dispatch macros. (#71561)
Summary:
Hi, Team!
The PR is motivated from https://github.com/pytorch/pytorch/pull/71153#discussion_r782446738. It aims to replace `get_all` type macros with the ATen dispatch macros.

The files it iterates over are: (Thanks, Lezcano, for the idea!!)

<details>
<summary>

`test/test_autograd.py`</summary>

<p>

```python
43:from torch.testing._internal.common_dtype import get_all_dtypes
8506:        floating_dt = [dt for dt in get_all_dtypes() if dt.is_floating_point]
```

</p>
</details>

<details>
<summary>

`test/test_binary_ufuncs.py`</summary>

<p>

```python
26:    all_types_and_complex_and, integral_types_and, get_all_dtypes, get_all_int_dtypes, get_all_math_dtypes,
27:    get_all_complex_dtypes, get_all_fp_dtypes,
935:    dtypes(*get_all_dtypes(include_bool=False, include_complex=False))
1035:    dtypes(*get_all_dtypes(
1488:    dtypes(*(get_all_dtypes(include_bool=False, include_bfloat16=False)))
1879:    dtypes(*product(get_all_dtypes(include_complex=False), get_all_dtypes(include_complex=False)))
1887:    dtypes(*(get_all_int_dtypes() + [torch.bool]))
1913:    dtypes(*(get_all_fp_dtypes()))
1941:    dtypes(*(get_all_fp_dtypes()))
1977:    dtypes(*product(get_all_complex_dtypes(), get_all_dtypes()))
2019:    dtypes(*product(get_all_fp_dtypes(), get_all_fp_dtypes()))
2048:    dtypes(*get_all_dtypes())
2110:    dtypes(*product(get_all_dtypes(include_complex=False),
2111:                     get_all_dtypes(include_complex=False)))
2128:            types = [torch.bool, torch.bfloat16] + get_all_int_dtypes()
2173:        if dtypes[1] in get_all_fp_dtypes():
2178:    dtypes(*product(get_all_fp_dtypes(),
2179:                     get_all_fp_dtypes()))
2260:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')) - {torch.complex64, torch.complex128})
2261:    dtypes(*set(get_all_math_dtypes('cpu')) - {torch.complex64, torch.complex128})
2273:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')) - {torch.complex64, torch.complex128})
2274:    dtypes(*set(get_all_math_dtypes('cpu')) - {torch.complex64, torch.complex128})
2307:    dtypes(*get_all_math_dtypes('cpu'))
2319:    dtypes(*get_all_fp_dtypes(include_bfloat16=False))
2331:    dtypes(*get_all_int_dtypes())
2356:    dtypes(*get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
2393:        if dtype in get_all_int_dtypes():
2614:    dtypes(*get_all_dtypes())
2624:    dtypes(*tuple(itertools.combinations_with_replacement(get_all_dtypes(), 2)))
2806:    dtypes(*list(product(get_all_dtypes(include_complex=False),
2807:                          get_all_dtypes(include_complex=False))))
2866:    dtypes(*list(product(get_all_complex_dtypes(),
2867:                          get_all_complex_dtypes())))
2902:    dtypes(*product(get_all_dtypes(), get_all_dtypes()))
2906:    dtypes(*product(get_all_dtypes(), get_all_dtypes()))
2910:    dtypes(*product(get_all_dtypes(), get_all_dtypes()))
3019:        dtypes = [torch.float, torch.double] + get_all_complex_dtypes()
3221:    dtypes(*get_all_dtypes(include_complex=False))
3407:    dtypes(*list(product(get_all_dtypes(include_bool=False),
3408:                          get_all_dtypes(include_bool=False))))
3504:    dtypes(*product(get_all_dtypes(include_complex=False, include_bfloat16=False),
3505:                     get_all_dtypes(include_complex=False, include_bfloat16=False)))
3516:            if x.dtype in get_all_int_dtypes() + [torch.bool]:
3643:    dtypes(*product(get_all_dtypes(include_complex=False,
3645:                     get_all_dtypes(include_complex=False,
```

</p>
</details>

<details>
<summary>

`test/test_complex.py`</summary>

<p>

```python
6:from torch.testing._internal.common_dtype import get_all_complex_dtypes
11:    dtypes(*get_all_complex_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_foreach.py`</summary>

<p>

```python
18:    get_all_dtypes, get_all_int_dtypes, get_all_complex_dtypes, get_all_fp_dtypes,
142:            if dtype in get_all_int_dtypes():
179:            disable_fastpath = op.ref == torch.div and dtype in get_all_int_dtypes() + [torch.bool]
201:            disable_fastpath = op.ref == torch.div and dtype in get_all_int_dtypes() + [torch.bool]
205:                disable_fastpath |= dtype in get_all_int_dtypes() + [torch.bool]
211:                disable_fastpath |= dtype not in get_all_complex_dtypes()
241:                bool_int_div = op.ref == torch.div and dtype in get_all_int_dtypes() + [torch.bool]
246:                    disable_fastpath |= dtype in get_all_int_dtypes() + [torch.bool]
248:                    disable_fastpath |= dtype not in get_all_complex_dtypes()
250:                    disable_fastpath |= True and dtype not in get_all_complex_dtypes()
307:        disable_fastpath = dtype in get_all_int_dtypes() + [torch.bool]
365:        if opinfo.name == "_foreach_abs" and dtype in get_all_complex_dtypes():
376:    ops(foreach_unary_op_db, dtypes=get_all_dtypes())
393:         dtypes=get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
401:    ops(foreach_minmax_op_db, dtypes=get_all_fp_dtypes(include_bfloat16=True, include_half=True))
426:            if ord in (1, 2) and dtype in torch.testing.get_all_fp_dtypes():
439:    dtypes(*get_all_dtypes())
449:    ops(foreach_binary_op_db, dtypes=get_all_dtypes())
481:    ops(foreach_binary_op_db, dtypes=get_all_dtypes())
536:            if dtype in get_all_int_dtypes() + [torch.bool] and foreach_op == torch._foreach_div:
545:    ops(foreach_binary_op_db, dtypes=get_all_dtypes())
637:    ops(foreach_pointwise_op_db, allowed_dtypes=get_all_fp_dtypes(include_half=False, include_bfloat16=False))
```

</p>
</details>

<details>
<summary>

`test/test_linalg.py`</summary>

<p>

```python
29:    all_types, floating_types, floating_and_complex_types, get_all_dtypes, get_all_int_dtypes, get_all_complex_dtypes,
30:    get_all_fp_dtypes,
111:    dtypes(*(get_all_dtypes()))
794:        float_and_complex_dtypes = get_all_fp_dtypes() + get_all_complex_dtypes()
807:    dtypes(*(get_all_int_dtypes()))
828:    dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
841:        if dtype in get_all_complex_dtypes():
844:    dtypes(*itertools.product(get_all_dtypes(),
845:                               get_all_dtypes()))
855:        for dtypes0, dtypes1, dtypes2 in product(get_all_dtypes(), repeat=3):
5607:                  *get_all_fp_dtypes(include_half=not CUDA9, include_bfloat16=(CUDA11OrLater and SM53OrLater)))
5608:    dtypes(*(set(get_all_dtypes()) - {torch.half, torch.bool}))
5644:    dtypes(*(get_all_complex_dtypes() + get_all_fp_dtypes()))
6255:    dtypesIfCUDA(*get_all_complex_dtypes(),
6256:                  *get_all_fp_dtypes(include_bfloat16=(TEST_WITH_ROCM or (CUDA11OrLater and SM53OrLater)),
6292:    dtypesIfCUDA(*get_all_fp_dtypes(include_bfloat16=(TEST_WITH_ROCM or (CUDA11OrLater and SM53OrLater))))
6323:    dtypesIfCUDA(*get_all_complex_dtypes(),
6324:                  *get_all_fp_dtypes(include_bfloat16=(TEST_WITH_ROCM or (CUDA11OrLater and SM53OrLater))))
6325:    dtypes(*get_all_complex_dtypes(), *get_all_fp_dtypes())
6358:    dtypesIfCUDA(*([torch.float, torch.double] + get_all_complex_dtypes()))
6556:    dtypes(*get_all_fp_dtypes(), *get_all_complex_dtypes())
6668:    dtypes(*get_all_fp_dtypes(), *get_all_complex_dtypes())
6741:    dtypes(*get_all_fp_dtypes(), *get_all_complex_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_nn.py`</summary>

<p>

```python
37:from torch.testing._internal.common_dtype import integral_types, get_all_fp_dtypes, get_all_math_dtypes
50:    onlyNativeDeviceTypes, deviceCountAtLeast, largeTensorTest, expectedFailureMeta, skipMeta, get_all_device_types, \
8862:                for device in get_all_device_types():
9629:            for dt1 in get_all_math_dtypes(device):
9630:                for dt2 in get_all_math_dtypes(device):
9631:                    for dt3 in get_all_math_dtypes(device):
9648:            for input_dtype in get_all_math_dtypes(device):
9664:            for input_dtype in get_all_math_dtypes(device):
13015:    dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
13034:    dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
13159:    dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
17400:    dtypesIfCUDA(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
17768:    dtypesIfCUDA(*get_all_fp_dtypes())
17773:    dtypesIfCUDA(*get_all_fp_dtypes())
17778:    dtypesIfCUDA(*get_all_fp_dtypes())
17783:    dtypesIfCUDA(*get_all_fp_dtypes())
17788:    dtypesIfCUDA(*get_all_fp_dtypes())
17793:    dtypesIfCUDA(*get_all_fp_dtypes())
17798:    dtypesIfCUDA(*get_all_fp_dtypes())
17963:    dtypesIfCUDA(*get_all_fp_dtypes())
17977:    dtypesIfCUDA(*get_all_fp_dtypes())
18684:    def test_cross_entropy_loss_prob_target_all_reductions(self, device):
```

</p>
</details>

<details>
<summary>

`test/test_numpy_interop.py`</summary>

<p>

```python
12:from torch.testing._internal.common_dtype import get_all_dtypes
399:    dtypes(*get_all_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_ops.py`</summary>

<p>

```python
12:from torch.testing._internal.common_dtype import floating_and_complex_types_and, get_all_dtypes
86:        for dtype in get_all_dtypes():
```

</p>
</details>

<details>
<summary>

`test/test_reductions.py`</summary>

<p>

```python
16:    get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_complex_dtypes, get_all_fp_dtypes,
360:         allowed_dtypes=get_all_dtypes(include_bfloat16=False))
366:         allowed_dtypes=get_all_dtypes(include_bfloat16=False))
394:         allowed_dtypes=get_all_dtypes(include_bfloat16=False))
750:        for dtype in [dtype for dtype in get_all_math_dtypes('cpu') if dtype != torch.float16]:
1404:    dtypes(*get_all_dtypes(include_bool=False, include_complex=False))
1457:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1458:              get_all_complex_dtypes()))
1465:            return dtype in get_all_int_dtypes()
1494:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False)))
1501:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False)))
1507:    dtypes(*(get_all_complex_dtypes()))
1514:        dtypes = list(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False))
1523:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False)))
1531:        if dtype in get_all_fp_dtypes():
1608:    dtypes(*(get_all_dtypes(include_half=True, include_bfloat16=False,
1837:    dtypes(*get_all_dtypes(include_bool=False, include_complex=False))
1855:    dtypes(*(set(get_all_dtypes(include_bool=False, include_complex=False)) - {torch.uint8}))
3219:        for dtype in get_all_dtypes(include_half=True, include_bfloat16=False,
```

</p>
</details>

<details>
<summary>

`test/test_serialization.py`</summary>

<p>

```python
26:from torch.testing._internal.common_dtype import get_all_dtypes
586:        for device, dtype in product(devices, get_all_dtypes()):
589:            for other_dtype in get_all_dtypes():
```

</p>
</details>

<details>
<summary>

`test/test_shape_ops.py`</summary>

<p>

```python
18:from torch.testing._internal.common_dtype import get_all_dtypes
230:    dtypes(*get_all_dtypes(include_complex=False, include_bool=False, include_half=False,
232:    dtypesIfCUDA(*get_all_dtypes(include_complex=False, include_bool=False, include_bfloat16=False))
344:    dtypes(*get_all_dtypes())
443:    dtypes(*get_all_dtypes())
461:    dtypes(*get_all_dtypes())
570:    dtypes(*get_all_dtypes(include_complex=False))
```

</p>
</details>

<details>
<summary>

`test/test_sort_and_select.py`</summary>

<p>

```python
12:    all_types, all_types_and, floating_types_and, get_all_dtypes, get_all_int_dtypes, get_all_fp_dtypes,
136:    dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
231:    dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
296:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
647:    dtypesIfCUDA(*get_all_fp_dtypes())
678:    dtypesIfCUDA(*(get_all_dtypes(include_complex=False,
682:    dtypes(*(get_all_dtypes(include_complex=False, include_bool=False, include_half=False, include_bfloat16=False)))
739:    dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
740:    dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
799:    dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
800:    dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
```

</p>
</details>

<details>
<summary>

`test/test_sparse.py`</summary>

<p>

```python
20:from torch.testing import get_all_complex_dtypes, get_all_fp_dtypes
29:    floating_and_complex_types, floating_and_complex_types_and, get_all_dtypes, get_all_int_dtypes,
1963:            return dtype in get_all_int_dtypes()
1994:    dtypes(*get_all_dtypes(include_bool=False, include_half=False,
2103:            return dtype in get_all_int_dtypes()
2138:    dtypes(*get_all_dtypes(include_bool=False, include_half=False,
2626:        all_sparse_dtypes = get_all_dtypes(include_complex=True)
2633:        all_sparse_dtypes = get_all_dtypes(include_complex=True)
3230:    dtypes(*get_all_complex_dtypes(),
3231:            *get_all_fp_dtypes(include_half=False, include_bfloat16=False))
3234:                  *get_all_fp_dtypes(
```

</p>
</details>

<details>
<summary>

`test/test_sparse_csr.py`</summary>

<p>

```python
7:from torch.testing import get_all_complex_dtypes, get_all_fp_dtypes, floating_and_complex_types, make_tensor
17:from torch.testing._internal.common_dtype import floating_types, get_all_dtypes
120:    dtypes(*get_all_dtypes())
133:    dtypes(*get_all_dtypes())
150:    dtypes(*get_all_dtypes())
180:    dtypes(*get_all_dtypes())
201:    dtypes(*get_all_dtypes())
210:    dtypes(*get_all_dtypes())
225:    dtypes(*get_all_dtypes())
244:    dtypes(*get_all_dtypes())
263:    dtypes(*get_all_dtypes())
285:    dtypes(*get_all_dtypes())
411:    dtypes(*get_all_dtypes())
482:    dtypes(*get_all_dtypes())
502:    dtypes(*get_all_dtypes())
562:    dtypes(*get_all_dtypes())
588:    dtypesIfCUDA(*get_all_complex_dtypes(),
589:                  *get_all_fp_dtypes(include_half=SM53OrLater, include_bfloat16=SM80OrLater))
745:    dtypesIfCUDA(*get_all_complex_dtypes(),
746:                  *get_all_fp_dtypes(include_half=SM53OrLater and TEST_CUSPARSE_GENERIC,
765:    dtypesIfCUDA(*get_all_complex_dtypes(),
766:                  *get_all_fp_dtypes(include_half=SM53OrLater and TEST_CUSPARSE_GENERIC,
801:                  *torch.testing.get_all_fp_dtypes(include_bfloat16=SM80OrLater,
841:                  *torch.testing.get_all_fp_dtypes(include_bfloat16=SM80OrLater,
1182:    dtypes(*get_all_dtypes())
1276:    dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_bfloat16=False))
1286:    dtypes(*get_all_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_tensor_creation_ops.py`</summary>

<p>

```python
21:    onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta, get_all_device_types)
23:    get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
150:        for dt in get_all_dtypes():
160:        for dt in get_all_dtypes():
314:        dtypes = [dtype for dtype in get_all_dtypes() if dtype != torch.bfloat16]
1012:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1013:              get_all_complex_dtypes()))
1032:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1033:              get_all_complex_dtypes()))
1050:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1051:              get_all_complex_dtypes()))
1745:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1779:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1868:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1926:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1954:            do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, torch_device)
1956:            do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, None)
1957:            do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, torch_device)
2538:        for device in get_all_device_types():
2645:        for dtype in get_all_dtypes():
2678:    dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False) +
2679:              get_all_complex_dtypes()))
2716:    dtypes(*get_all_fp_dtypes(include_half=False, include_bfloat16=False))
2827:            for dt in get_all_dtypes():
2913:    dtypes(*get_all_dtypes(include_bool=False, include_half=False))
2914:    dtypesIfCUDA(*get_all_dtypes(include_bool=False, include_half=True))
3028:    dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
3033:    dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
3074:    dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_complex=False))
3075:    dtypesIfCUDA(*((get_all_int_dtypes() + [torch.float32, torch.float16, torch.bfloat16])
3077:                    else get_all_dtypes(include_bool=False, include_half=True, include_complex=False)))
3873:    dtypes(*get_all_dtypes())
3884:    dtypes(*get_all_dtypes(include_bool=False))
3916:            for other in get_all_dtypes():
3922:    dtypes(*get_all_dtypes())
3932:    dtypes(*get_all_dtypes(include_bool=False))
3955:    dtypes(*get_all_dtypes(include_bool=False))
3961:    dtypes(*get_all_dtypes(include_bool=False))
3965:    dtypes(*get_all_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_testing.py`</summary>

<p>

```python
25:from torch.testing._internal.common_dtype import get_all_dtypes
31:    dtypes(*(get_all_dtypes(include_half=True, include_bfloat16=False,
```

</p>
</details>

<details>
<summary>

`test/test_torch.py`</summary>

<p>

```python
51:    expectedAlertNondeterministic, get_all_device_types, skipXLA)
57:    get_all_fp_dtypes, get_all_int_dtypes, get_all_math_dtypes, get_all_dtypes, get_all_complex_dtypes
296:            for d in get_all_device_types():
323:            for device in get_all_device_types():
324:                for dt1 in get_all_dtypes():
325:                    for dt2 in get_all_dtypes():
343:            all_dtypes = get_all_dtypes()
350:            all_dtypes = get_all_dtypes()
781:            for dtype in get_all_dtypes():
986:            for device in get_all_device_types():
1017:            for device in get_all_device_types():
1018:                for dtype in get_all_math_dtypes(device):
2792:            for device in get_all_device_types():
3186:    dtypes(*get_all_dtypes())
3195:        for error_dtype in get_all_dtypes():
3203:    dtypes(*get_all_dtypes())
3212:        for error_dtype in get_all_dtypes():
4539:    dtypes(*get_all_fp_dtypes())
4545:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
4577:    dtypes(*get_all_fp_dtypes(include_half=False, include_bfloat16=False))
4578:    dtypesIfCPU(*(get_all_fp_dtypes(include_half=False, include_bfloat16=True)))
4579:    dtypesIfCUDA(*(get_all_fp_dtypes(include_bfloat16=False)))
4599:    dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
4600:    dtypesIfCPU(*(get_all_dtypes(include_half=False, include_bfloat16=False, include_complex=False)))
4601:    dtypesIfCUDA(*(get_all_dtypes(include_bfloat16=False, include_complex=False)))
4613:        for p_dtype in get_all_fp_dtypes(include_half=device.startswith('cuda'), include_bfloat16=False):
4628:    dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
4629:    dtypesIfCUDA(*(get_all_fp_dtypes(include_bfloat16=False)))
4640:    dtypes(*get_all_fp_dtypes())
4723:    dtypes(*get_all_fp_dtypes())
4735:    dtypes(*get_all_fp_dtypes(include_bfloat16=False))
4736:    dtypesIfCUDA(*get_all_fp_dtypes())
4747:    dtypes(*get_all_fp_dtypes())
4761:    dtypes(*get_all_fp_dtypes())
4771:    dtypes(*get_all_fp_dtypes())
4792:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
5302:    dtypes(*get_all_dtypes(include_bfloat16=False))
5322:    dtypes(*get_all_dtypes(include_half=False, include_bfloat16=False))
5323:    dtypesIfCPU(*get_all_dtypes(include_bfloat16=False))
5324:    dtypesIfCUDA(*get_all_dtypes(include_bfloat16=False))
5591:        for dt in get_all_dtypes():
5611:        for dt in get_all_dtypes():
5678:        for dt in get_all_dtypes():
5696:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')))
5697:    dtypes(*set(get_all_math_dtypes('cpu')))
5746:    dtypes(*get_all_dtypes())
5780:    dtypes(*get_all_dtypes())
5885:    dtypes(*get_all_dtypes())
5902:    dtypes(*get_all_dtypes())
5945:    dtypes(*get_all_dtypes())
5979:    dtypes(*get_all_dtypes(include_bool=False))
6049:    dtypes(*get_all_dtypes(include_bool=False))
6092:    dtypes(*(get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
6093:              get_all_complex_dtypes()))
6094:    dtypesIfCPU(*get_all_dtypes())
6095:    dtypesIfCUDA(*get_all_dtypes())
6122:    dtypes(*(get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
6123:              get_all_complex_dtypes()))
6124:    dtypesIfCPU(*get_all_dtypes())
6125:    dtypesIfCUDA(*get_all_dtypes())
6163:    dtypes(*(get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
6164:              get_all_complex_dtypes()))
6165:    dtypesIfCPU(*get_all_dtypes())
6166:    dtypesIfCUDA(*get_all_dtypes())
6190:    dtypes(*(get_all_complex_dtypes() +
6191:              get_all_int_dtypes()))
6238:    dtypes(*get_all_dtypes())
6323:    dtypes(*get_all_dtypes())
6389:    dtypes(*product(get_all_dtypes(), (torch.uint8, torch.bool)))
6699:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')))
6700:    dtypes(*set(get_all_math_dtypes('cpu')))
7452:    dtypes(*get_all_dtypes(include_bool=False))
7461:    dtypes(*get_all_dtypes(include_bool=False))
7477:    dtypes(*get_all_dtypes(include_bool=False))
7496:    dtypes(*get_all_dtypes(include_bool=False))
7538:    dtypes(*get_all_dtypes(include_bool=False))
8162:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes() +
8163:              get_all_complex_dtypes()))
8175:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes() +
8176:              get_all_complex_dtypes()))
```

</p>
</details>

<details>
<summary>

`test/test_type_promotion.py`</summary>

<p>

```python
14:    get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_fp_dtypes
187:        for dtype in get_all_dtypes():
262:        dtypes1 = get_all_math_dtypes('cuda')
263:        dtypes2 = get_all_math_dtypes(device)
339:    dtypes(*itertools.product(get_all_dtypes(), get_all_dtypes()))
468:            for dt1 in get_all_math_dtypes(device):
469:                for dt2 in get_all_math_dtypes(device):
519:            for dt1 in get_all_math_dtypes(device):
520:                for dt2 in get_all_math_dtypes(device):
528:        for dt in get_all_math_dtypes(device):
561:        for dtype in get_all_dtypes():
766:                                          dtypes=get_all_math_dtypes(device))
771:                                          dtypes=get_all_math_dtypes(device))
782:                                          dtypes=get_all_math_dtypes(device))
879:        dtypes = get_all_dtypes(include_bfloat16=False)
898:        dtypes = get_all_dtypes(include_bfloat16=False, include_bool=False)
965:    dtypesIfCUDA(*itertools.product(get_all_dtypes(include_bfloat16=False, include_complex=False),
966:                                     get_all_dtypes(include_bfloat16=False, include_complex=False)))
967:    dtypes(*itertools.product(get_all_dtypes(include_half=False, include_bfloat16=False,
969:                               get_all_dtypes(include_half=False, include_bfloat16=False,
976:            return dtype in get_all_int_dtypes() + [torch.bool]
979:            return dtype in get_all_fp_dtypes(include_half=True, include_bfloat16=False)
```

</p>
</details>

<details>
<summary>

`test/test_unary_ufuncs.py`</summary>

<p>

```python
24:    floating_types_and, all_types_and_complex_and, floating_and_complex_types_and, get_all_dtypes, get_all_math_dtypes,
25:    get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
517:    dtypes(*(get_all_int_dtypes() + [torch.bool] +
518:              get_all_fp_dtypes(include_bfloat16=False)))
596:    dtypes(*get_all_fp_dtypes(include_half=True, include_bfloat16=False))
611:        invalid_input_dtypes = get_all_int_dtypes() + \
612:            get_all_complex_dtypes() + \
619:        for dtype in get_all_fp_dtypes(include_half=True, include_bfloat16=False):
1048:    dtypes(*get_all_math_dtypes('cpu'))
1182:    dtypesIfCUDA(*get_all_fp_dtypes())
1190:    dtypesIfCUDA(*get_all_fp_dtypes())
1205:    dtypesIfCUDA(*get_all_fp_dtypes())
1215:    dtypesIfCUDA(*get_all_fp_dtypes())
1307:    dtypes(*(get_all_dtypes(include_bool=False)))
1349:    dtypes(*(get_all_fp_dtypes(include_half=False) +
1350:              get_all_complex_dtypes()))
1351:    dtypesIfCUDA(*(get_all_fp_dtypes(include_half=True) +
1352:                    get_all_complex_dtypes()))
```

</p>
</details>

<details>
<summary>

`test/test_view_ops.py`</summary>

<p>

```python
19:    get_all_dtypes, get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
124:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
131:    dtypes(*get_all_dtypes(include_bfloat16=False))
213:            for view_dtype in [*get_all_fp_dtypes(), *get_all_complex_dtypes()]:
220:    dtypes(*get_all_dtypes())
224:        for view_dtype in get_all_dtypes():
305:    dtypes(*get_all_complex_dtypes(include_complex32=True))
343:    dtypes(*get_all_dtypes())
354:    dtypes(*get_all_dtypes())
364:    dtypes(*get_all_dtypes())
374:    dtypes(*get_all_dtypes())
384:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
395:    dtypes(*get_all_complex_dtypes())
426:    dtypes(*get_all_complex_dtypes())
451:    dtypes(*product(get_all_complex_dtypes(), get_all_dtypes()))
1263:    dtypes(*(torch.testing.get_all_dtypes()))
1279:    dtypes(*(torch.testing.get_all_dtypes()))
1405:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1406:              get_all_complex_dtypes()))
1471:    dtypes(*get_all_dtypes(include_bfloat16=False))
1574:    dtypes(*get_all_dtypes())
1601:    dtypes(*get_all_dtypes(include_bfloat16=False))
1632:    dtypes(*get_all_dtypes(include_bfloat16=False))
1711:        for dt in get_all_dtypes():
1717:        for dt in get_all_dtypes():
1724:        for dt in get_all_dtypes():
```

</p>
</details>

I'm looking forward to your viewpoints. Thanks :)

cc: mruberry kshitij12345 anjali411

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71561

Reviewed By: samdow

Differential Revision: D34856571

Pulled By: mruberry

fbshipit-source-id: 0dca038bcad5cf69906245c496d2e61ac3876335
(cherry picked from commit b058f67b4313143efa714ab105f36e74083131b9)
2022-03-15 20:31:41 +00:00

1058 lines
47 KiB
Python

# Owner(s): ["module: tests"]
import torch
import numpy as np
import random
from torch._six import nan
from itertools import permutations, product
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import all_types, all_types_and, floating_types_and
from torch.testing._internal.common_utils import \
(TEST_WITH_ROCM, TestCase, run_tests, slowTest)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyNativeDeviceTypes,
skipCUDAIfRocm, onlyCUDA, dtypesIfCUDA, dtypesIfCPU, onlyCPU, largeTensorTest)
# TODO: remove this
SIZE = 100
class TestSortAndSelect(TestCase):
def assertIsOrdered(self, order, x, mxx, ixx, task):
SIZE = x.size(1)
if order == 'descending':
def check_order(a, b):
# `a != a` because we put NaNs
# at the end of ascending sorted lists,
# and the beginning of descending ones.
return ((a != a) | (a >= b)).all().item()
elif order == 'ascending':
def check_order(a, b):
# see above
return ((b != b) | (a <= b)).all().item()
else:
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
are_ordered = True
for k in range(1, SIZE):
self.assertTrue(check_order(mxx[:, k - 1], mxx[:, k]),
'torch.sort ({}) values unordered for {}'.format(order, task))
seen = set()
indicesCorrect = True
size0 = x.size(0)
size = x.size(x.dim() - 1)
x = x.tolist()
mxx = mxx.tolist()
ixx = ixx.tolist()
for k in range(size0):
seen.clear()
for j in range(size):
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
msg='torch.sort ({}) indices wrong for {}'.format(order, task))
seen.add(ixx[k][j])
self.assertEqual(len(seen), size)
def test_sort(self, device):
# on CUDA 2048 vs >2048 have different code path for the dim being sorted
for SIZE in (4, 2049):
x = torch.rand(4, SIZE, device=device)
res1val, res1ind = torch.sort(x)
# Test inplace
y = x.clone()
y_inds = torch.tensor((), dtype=torch.int64, device=device)
torch.sort(y, out=(y, y_inds))
x_vals, x_inds = torch.sort(x)
self.assertEqual(x_vals, y)
self.assertEqual(x_inds, y_inds)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.sort(x, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
self.assertEqual(torch.argsort(x), res1ind)
self.assertEqual(x.argsort(), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
# Test simple sort
self.assertEqual(
torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0],
torch.tensor((10, 20, 30, 40, 50), device=device),
atol=0, rtol=0
)
# Test that we still have proper sorting with duplicate keys
x = torch.floor(torch.rand(4, SIZE, device=device) * 10)
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
# DESCENDING SORT
x = torch.rand(4, SIZE, device=device)
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
# Test simple sort task
self.assertEqual(
torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[0],
torch.tensor((50, 40, 30, 20, 10), device=device),
atol=0, rtol=0
)
# Test that we still have proper sorting with duplicate keys
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
# Test sorting with NaNs
x = torch.rand(4, SIZE, device=device)
x[1][2] = float('NaN')
x[3][0] = float('NaN')
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind,
'random with NaNs')
torch.sort(x, out=(res2val, res2ind), descending=True)
self.assertIsOrdered('descending', x, res2val, res2ind,
'random with NaNs')
# FIXME: remove torch.bool from unsupported types once support is added for cub sort
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_stable_sort(self, device, dtype):
sizes = (100, 1000, 10000)
for ncopies in sizes:
x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device)
_, idx = x.sort(stable=True)
self.assertEqual(
idx[:ncopies],
torch.arange(start=0, end=2 * ncopies, step=2, device=device)
)
self.assertEqual(
idx[ncopies:],
torch.arange(start=1, end=2 * ncopies, step=2, device=device)
)
@onlyCUDA
@dtypes(torch.uint8)
@largeTensorTest('200GB') # Unfortunately 80GB A100 is not large enough
def test_sort_large(self, device, dtype):
t0 = torch.randperm(8192, device=device).to(dtype)
t = t0.view(1, 8192).expand(2 ** 18 + 1, -1).contiguous()
v, i = t.sort()
del t
iv, im = i.var_mean(dim=0)
del i
vv, vm = v.var_mean(dim=0)
del v
self.assertEqual(vv, torch.zeros_like(vv))
self.assertEqual(iv, torch.zeros_like(iv))
self.assertEqual(vm, torch.arange(255, dtype=dtype, device=device))
self.assertEqual(im, t0.sort().indices)
def _test_sort_discontiguous(self, device, dtype):
# on CUDA 2048 vs >2048 have different code path for the dim being sorted
sizes = (5, 7, 2049)
for shape in permutations(sizes):
for perm in permutations((0, 1, 2)):
for dim in range(3):
t = torch.randn(shape, device=device, dtype=dtype).permute(perm)
r1 = t.sort(dim=dim)
r2 = t.contiguous().sort(dim=dim)
self.assertEqual(r1, r2)
n = t.size(dim)
# assert ordered
self.assertTrue((r1.values.narrow(dim, 1, n - 1) >= r1.values.narrow(dim, 0, n - 1)).all())
# assert that different segments does not mix, which can easily happen
# if the stride is not handled correctly
self.assertTrue((t.unsqueeze(-1).transpose(dim, -1) == r1.values.unsqueeze(-1)).any(dim=dim).any(dim=-1).all())
# assert stride is preserved
if self.device_type == 'cuda':
# FIXME: this behavior should be true for all cases, not
# just the one specified in if condition
self.assertEqual(r1.values.stride(), t.stride())
self.assertEqual(r1.indices.stride(), t.stride())
@onlyCUDA
@dtypes(torch.float32)
def test_sort_discontiguous(self, device, dtype):
self._test_sort_discontiguous(device, dtype)
@slowTest # this test is slow on CPU, but not on CUDA
@onlyCPU
@dtypes(torch.float32)
def test_sort_discontiguous_slow(self, device, dtype):
self._test_sort_discontiguous(device, dtype)
@dtypes(torch.float32)
def test_sort_1d_output_discontiguous(self, device, dtype):
tensor = torch.randn(12, device=device, dtype=dtype)[:6]
values = torch.empty_like(tensor)[::2]
indices = torch.empty(18, device=device, dtype=torch.long)[::3]
torch.sort(tensor, out=(values, indices))
values_cont, indices_cont = tensor.sort()
self.assertEqual(indices, indices_cont)
self.assertEqual(values, values_cont)
@dtypes(torch.float32)
def test_topk_1d_output_discontiguous(self, device, dtype):
tensor = torch.randn(12, device=device, dtype=dtype)
values = torch.empty_like(tensor)[::2]
indices = torch.empty(18, device=device, dtype=torch.long)[::3]
for sorted in (True, False):
# outputs of `sorted=False` test are not guaranteed to be the same,
# but with current implementation they are
torch.topk(tensor, 6, sorted=sorted, out=(values, indices))
values_cont, indices_cont = tensor.topk(6, sorted=sorted)
self.assertEqual(indices, indices_cont)
self.assertEqual(values, values_cont)
# FIXME: remove torch.bool from unsupported types once support is added for cub sort
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_stable_sort_against_numpy(self, device, dtype):
if dtype in floating_types_and(torch.float16, torch.bfloat16):
inf = float('inf')
neg_inf = -float('inf')
nan = float('nan')
else:
if dtype != torch.bool:
# no torch.iinfo support for torch.bool
inf = torch.iinfo(dtype).max
neg_inf = torch.iinfo(dtype).min
else:
inf = True
neg_inf = ~inf
# no nan for integral types, we use inf instead for simplicity
nan = inf
def generate_samples():
from itertools import chain, combinations
for sizes in [(1025,), (10000,)]:
size = sizes[0]
# binary strings
yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0)
if self.device_type == 'cuda':
return
yield (torch.tensor([0, 1] * 100, dtype=dtype, device=device), 0)
def repeated_index_fill(t, dim, idxs, vals):
res = t
for idx, val in zip(idxs, vals):
res = res.index_fill(dim, idx, val)
return res
for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]:
size = min(*sizes)
x = (torch.randn(*sizes, device=device) * size).to(dtype)
yield (x, 0)
# Generate tensors which are being filled at random locations
# with values from the non-empty subsets of the set (inf, neg_inf, nan)
# for each dimension.
n_fill_vals = 3 # cardinality of (inf, neg_inf, nan)
for dim in range(len(sizes)):
idxs = (torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals))
vals = (inf, neg_inf, nan)
subsets = chain.from_iterable(combinations(list(zip(idxs, vals)), r)
for r in range(1, n_fill_vals + 1))
for subset in subsets:
idxs_subset, vals_subset = zip(*subset)
yield (repeated_index_fill(x, dim, idxs_subset, vals_subset), dim)
for sample, dim in generate_samples():
_, idx_torch = sample.sort(dim=dim, stable=True)
if dtype is torch.bfloat16:
sample_numpy = sample.float().cpu().numpy()
else:
sample_numpy = sample.cpu().numpy()
idx_numpy = np.argsort(sample_numpy, axis=dim, kind='stable')
self.assertEqual(idx_torch, idx_numpy)
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_msort(self, device, dtype):
def test(shape):
tensor = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9)
if tensor.size() != torch.Size([]):
if dtype is torch.bfloat16:
expected = torch.from_numpy(np.msort(tensor.float().cpu().numpy())).bfloat16()
else:
expected = torch.from_numpy(np.msort(tensor.cpu().numpy()))
else:
expected = tensor # numpy.msort() does not support empty shapes tensor
result = torch.msort(tensor)
self.assertEqual(result, expected)
out = torch.empty_like(result)
torch.msort(tensor, out=out)
self.assertEqual(out, expected)
shapes = (
[],
[0, ],
[20, ],
[1, 20],
[30, 30],
[10, 20, 30]
)
for shape in shapes:
test(shape)
def test_topk(self, device):
def topKViaSort(t, k, dim, dir):
sorted, indices = t.sort(dim, dir)
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
def compareTensors(t, res1, ind1, res2, ind2, dim):
# Values should be exactly equivalent
self.assertEqual(res1, res2, atol=0, rtol=0)
# Indices might differ based on the implementation, since there is
# no guarantee of the relative order of selection
if not ind1.eq(ind2).all():
# To verify that the indices represent equivalent elements,
# gather from the input using the topk indices and compare against
# the sort indices
vals = t.gather(dim, ind2)
self.assertEqual(res1, vals, atol=0, rtol=0)
def compare(t, k, dim, dir):
topKVal, topKInd = t.topk(k, dim, dir, True)
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
t = torch.rand(random.randint(1, SIZE),
random.randint(1, SIZE),
random.randint(1, SIZE), device=device)
for _kTries in range(3):
for _dimTries in range(3):
for transpose in (True, False):
for dir in (True, False):
testTensor = t
if transpose:
dim1 = random.randrange(t.ndimension())
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(t.ndimension())
testTensor = t.transpose(dim1, dim2)
dim = random.randrange(testTensor.ndimension())
k = random.randint(1, testTensor.size(dim))
compare(testTensor, k, dim, dir)
# This tests the code path where on CUDA, topk is implemented with sort.
t = torch.randn((2, 100000), device=device)
compare(t, 2000, 1, True)
compare(t, 2000, 1, False)
# This tests the code path where on CUDA, topk is implemented with multiblock
t = torch.randn((2, 10000), device=device)
compare(t, 2000, 1, True)
compare(t, 2000, 1, False)
def test_topk_arguments(self, device):
q = torch.randn(10, 2, 10, device=device)
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
self.assertRaises(TypeError, lambda: q.topk(4, True))
@skipCUDAIfRocm
def test_unique_dim(self, device):
self.assertFalse(hasattr(torch, 'unique_dim'))
def run_test(device, dtype):
x = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
x_empty = torch.empty(5, 0, dtype=dtype, device=device)
x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
if dtype in floating_types_and(torch.float16, torch.bfloat16):
x_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_unique_dim0 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim0 = torch.tensor([0, 0])
expected_counts_dim0 = torch.tensor([2])
expected_unique_dim1 = torch.tensor([[[0., 1.],
[1., 1.],
[2., 1.]],
[[0., 1.],
[1., 1.],
[2., 1.]]],
dtype=dtype,
device=device)
expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
[[False, True], [True, True]]],
dtype=torch.bool,
device=device)
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
expected_counts_dim1 = torch.tensor([2, 1, 1])
expected_counts_dim1_bool = torch.tensor([2, 2])
expected_unique_dim2 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim2 = torch.tensor([0, 1])
expected_counts_dim2 = torch.tensor([1, 1])
expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
if dtype in floating_types_and(torch.float16, torch.bfloat16):
expected_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
expected_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)
# dim0
x_unique = torch.unique(x, dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_counts_dim0, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
self.assertEqual(expected_counts_dim0, x_counts)
# dim1
x_unique = torch.unique(x, dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
else:
self.assertEqual(expected_unique_dim1, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_counts_dim1_bool, x_counts)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_counts_dim1, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
self.assertEqual(expected_counts_dim1_bool, x_counts)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
self.assertEqual(expected_counts_dim1, x_counts)
# dim2
x_unique = torch.unique(x, dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_counts_dim2, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
self.assertEqual(expected_counts_dim2, x_counts)
# test empty tensor
x_unique, x_inverse, x_counts = torch.unique(
x_empty,
return_inverse=True,
return_counts=True,
dim=1)
self.assertEqual(expected_unique_empty, x_unique)
self.assertEqual(expected_inverse_empty, x_inverse)
self.assertEqual(expected_counts_empty, x_counts)
# test tensor with nan
if dtype in floating_types_and(torch.float16, torch.bfloat16):
x_unique, x_inverse, x_counts = torch.unique(
x_nan,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_nan, x_unique)
self.assertEqual(expected_inverse_nan, x_inverse)
self.assertEqual(expected_counts_nan, x_counts)
# test not a well formed tensor
# Checking for runtime error, as this is the expected behaviour
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty,
return_inverse=True,
return_counts=True,
dim=1)
# test along dim2
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty_another,
return_inverse=True,
return_counts=True,
dim=2)
# test consecutive version
y = torch.tensor(
[[0, 1],
[0, 1],
[0, 1],
[1, 2],
[1, 2],
[3, 4],
[0, 1],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
# test tensor with nan
if dtype in floating_types_and(torch.float16, torch.bfloat16):
y_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_y_unique = torch.tensor(
[[0, 1],
[1, 2],
[3, 4],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
if dtype in floating_types_and(torch.float16, torch.bfloat16):
expected_y_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_y_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
expected_y_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
if x.dtype == torch.bool:
self.assertEqual(expected_y_inverse_bool, y_inverse)
self.assertEqual(expected_y_counts_bool, y_counts)
else:
self.assertEqual(expected_y_inverse, y_inverse)
self.assertEqual(expected_y_counts, y_counts)
# test tensor with nan
if dtype in floating_types_and(torch.float16, torch.bfloat16):
y_unique, y_inverse, y_counts = torch.unique_consecutive(
y_nan,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_y_unique_nan, y_unique)
self.assertEqual(expected_y_inverse_nan, y_inverse)
self.assertEqual(expected_y_counts_nan, y_counts)
run_test(device, torch.float)
run_test(device, torch.double)
run_test(device, torch.long)
run_test(device, torch.uint8)
run_test(device, torch.bool)
@onlyCUDA
def test_topk_noncontiguous_gpu(self, device):
# test different topk paths on cuda
single_block_t = torch.randn(20, device=device)[::2]
multi_block_t = torch.randn(20000, device=device)[::2]
sort_t = torch.randn(200000, device=device)[::2]
for t in (single_block_t, multi_block_t, sort_t):
for k in (5, 2000, 10000):
if k >= t.shape[0]:
continue
top1, idx1 = t.topk(k)
top2, idx2 = t.contiguous().topk(k)
self.assertEqual(top1, top2)
self.assertEqual(idx1, idx2)
def _test_topk_dtype(self, device, dtype, integral, size):
if integral:
a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max,
size=(size,), dtype=dtype, device=device)
else:
a = torch.randn(size=(size,), dtype=dtype, device=device)
sort_topk = a.sort()[0][-(size // 2):].flip(0)
topk = a.topk(size // 2)
self.assertEqual(sort_topk, topk[0]) # check values
self.assertEqual(sort_topk, a[topk[1]]) # check indices
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
def test_topk_integral(self, device, dtype):
small = 10
large = 4096
verylarge = 8192 # multi_block topk on cuda
for curr_size in (small, large, verylarge):
self._test_topk_dtype(device, dtype, True, curr_size)
@onlyCUDA
@dtypes(torch.bfloat16)
@skipCUDAIfRocm
def test_topk_bfloat16(self, device, dtype):
small = 10
large = 4096
verylarge = 8192 # multi_block topk on cuda
for curr_size in (small, large, verylarge):
self._test_topk_dtype(device, dtype, False, curr_size)
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
@dtypes(torch.float, torch.double, torch.bfloat16)
def test_topk_nonfinite(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
val, idx = x.topk(4)
expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
self.assertEqual(val, expect)
self.assertEqual(idx, [0, 1, 2, 3])
val, idx = x.topk(4, largest=False)
expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
self.assertEqual(val, expect)
self.assertEqual(idx, [5, 4, 3, 2])
def test_topk_4d(self, device):
small = 128
large = 8192
for size in (small, large):
x = torch.ones(2, size, 2, 2, device=device)
x[:, 1, :, :] *= 2.
x[:, 10, :, :] *= 1.5
val, ind = torch.topk(x, k=2, dim=1)
expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
expected_ind[:, 1, :, :] = 10
expected_val = torch.ones(2, 2, 2, 2, device=device)
expected_val[:, 0, :, :] *= 2.
expected_val[:, 1, :, :] *= 1.5
self.assertEqual(val, expected_val, atol=0, rtol=0)
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
@onlyNativeDeviceTypes
@dtypesIfCUDA(*all_types_and(torch.bfloat16))
@dtypes(*all_types())
def test_topk_zero(self, device, dtype):
if TEST_WITH_ROCM and dtype == torch.bfloat16:
return
# https://github.com/pytorch/pytorch/issues/49205
t = torch.rand(2, 2, device=device).to(dtype=dtype)
val, idx = torch.topk(t, k=0, largest=False)
self.assertEqual(val.size(), torch.Size([2, 0]))
self.assertEqual(idx.size(), torch.Size([2, 0]))
def _test_unique_scalar_empty(self, dtype, device, f):
# test scalar
x = torch.tensor(0, dtype=dtype, device=device)
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
expected_unique = torch.tensor([0], dtype=dtype, device=device)
expected_inverse = torch.tensor(0, device=device)
expected_counts = torch.tensor([1], device=device)
self.assertEqual(unique, expected_unique)
self.assertEqual(inverse, expected_inverse)
self.assertEqual(counts, expected_counts)
# test zero sized tensor
x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
expected_unique = torch.tensor([], dtype=dtype, device=device)
expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
expected_counts = torch.tensor([], dtype=torch.long, device=device)
self.assertEqual(unique, expected_unique)
self.assertEqual(inverse, expected_inverse)
self.assertEqual(counts, expected_counts)
def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
def ensure_tuple(x):
if isinstance(x, torch.Tensor):
return (x,)
return x
for return_inverse in [True, False]:
for return_counts in [True, False]:
# test with expected
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
self.assertEqual(expected_unique, ret[0])
if return_inverse:
self.assertEqual(expected_inverse, ret[1])
if return_counts:
count_index = 1 + int(return_inverse)
self.assertEqual(expected_counts, ret[count_index])
# tests per-element unique on a higher rank tensor.
y = x.view(additional_shape)
y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
self.assertEqual(expected_unique, y_unique)
self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
self.assertEqual(expected_counts, y_counts)
@dtypesIfCPU(*all_types_and(torch.bool, torch.bfloat16))
@dtypes(*all_types_and(torch.half, torch.bool))
def test_unique(self, device, dtype):
def ensure_tuple(x):
if isinstance(x, torch.Tensor):
return (x,)
return x
if dtype is torch.bool:
x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
else:
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
# test sorted unique
fs = (
lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
lambda x, **kwargs: x.unique(sorted=True, **kwargs),
)
x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x)
xs = (x, x_sliced)
for f, x in product(fs, xs):
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
self._test_unique_scalar_empty(dtype, device, f)
# test unsorted unique
fs = (
lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
lambda x, **kwargs: x.unique(sorted=False, **kwargs)
)
for f, x in product(fs, xs):
self._test_unique_scalar_empty(dtype, device, f)
for return_inverse, return_counts in product((True, False), repeat=2):
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
x_list = x.tolist()
x_unique_list = ret[0].tolist()
self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
if return_inverse:
x_inverse_list = ret[1].tolist()
for i, j in enumerate(x_inverse_list):
self.assertEqual(x_list[i], x_unique_list[j])
if return_counts:
count_index = 1 + int(return_inverse)
x_counts_list = ret[count_index].tolist()
for i, j in zip(x_unique_list, x_counts_list):
count = 0
for k in x_list:
if k == i:
count += 1
self.assertEqual(j, count)
@dtypesIfCPU(*all_types_and(torch.bool, torch.bfloat16))
@dtypes(*all_types_and(torch.half, torch.bool))
def test_unique_consecutive(self, device, dtype):
if dtype is torch.bool:
x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
else:
x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
self._test_unique_scalar_empty(dtype, device, f)
@dtypes(torch.double)
def test_kthvalue(self, device, dtype):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.tensor([], dtype=dtype, device=device)
res1ind = torch.tensor([], dtype=torch.long, device=device)
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721]
non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2]
expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2)
non_contig_cpu_t = non_contig_t.cpu()
expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2)
out_val, out_ind = non_contig_t.kthvalue(2)
self.assertEqual(expected_val, out_val, atol=0, rtol=0)
self.assertEqual(expected_ind, out_ind, atol=0, rtol=0)
self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0)
self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0)
# check that the input wasn't modified
self.assertEqual(x, x0, atol=0, rtol=0)
# simple test case (with repetitions)
y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)
# simple test case (with NaN)
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
res2val, res2ind = torch.sort(x)
for k in ks:
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
@dtypes(torch.float)
@onlyNativeDeviceTypes # Fails on XLA
def test_kthvalue_scalar(self, device, dtype):
# Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818)
# Tests that passing a scalar tensor or 1D tensor with 1 element work either way
res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1)
ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1)
self.assertEqual(res[0], ref[0].squeeze())
self.assertEqual(res[1], ref[1].squeeze())
@dtypes(*all_types())
@dtypesIfCUDA(*all_types_and(torch.half))
def test_isin(self, device, dtype):
def assert_isin_equal(a, b):
# Compare to the numpy reference implementation.
x = torch.isin(a, b)
a = a.cpu().numpy() if torch.is_tensor(a) else np.array(a)
b = b.cpu().numpy() if torch.is_tensor(b) else np.array(b)
y = np.isin(a, b)
self.assertEqual(x, y)
# multi-dim tensor, multi-dim tensor
a = torch.arange(24, device=device, dtype=dtype).reshape([2, 3, 4])
b = torch.tensor([[10, 20, 30], [0, 1, 3], [11, 22, 33]], device=device, dtype=dtype)
assert_isin_equal(a, b)
# zero-dim tensor
zero_d = torch.tensor(3, device=device, dtype=dtype)
assert_isin_equal(zero_d, b)
assert_isin_equal(a, zero_d)
assert_isin_equal(zero_d, zero_d)
# empty tensor
empty = torch.tensor([], device=device, dtype=dtype)
assert_isin_equal(empty, b)
assert_isin_equal(a, empty)
assert_isin_equal(empty, empty)
# scalar
assert_isin_equal(a, 6)
assert_isin_equal(5, b)
def define_expected(lst, invert=False):
expected = torch.tensor(lst, device=device)
if invert:
expected = expected.logical_not()
return expected
# Adapted from numpy's in1d tests
for mult in [1, 10]:
for invert in [False, True]:
a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a[0] = 8
ec = define_expected([False, False, True, True], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a[0], a[3] = 4, 8
ec = define_expected([True, False, True, False], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], device=device, dtype=dtype)
b = torch.tensor([2, 3, 4] * mult, device=device, dtype=dtype)
ec = define_expected([False, True, False, True, True, True, True, True, True,
False, True, False, False, False], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
b = torch.tensor([2, 3, 4] * mult + [5, 5, 4] * mult, device=device, dtype=dtype)
ec = define_expected([True, True, True, True, True, True, True, True, True, True,
True, False, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 7, 1, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 5], device=device, dtype=dtype)
b = torch.tensor([2, 2] * mult, device=device, dtype=dtype)
ec = define_expected([False, False], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
# multi-dimensional input case using sort-based algo
for assume_unique in [False, True]:
a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
b = torch.arange(3, 30, device=device, dtype=dtype)
ec = define_expected([[False, False, False], [True, True, True]], invert=invert)
c = torch.isin(a, b, invert=invert, assume_unique=assume_unique)
self.assertEqual(c, ec)
def test_isin_different_dtypes(self, device):
supported_types = all_types() if device == 'cpu' else all_types_and(torch.half)
for mult in [1, 10]:
for assume_unique in [False, True]:
for dtype1, dtype2 in product(supported_types, supported_types):
a = torch.tensor([1, 2, 3], device=device, dtype=dtype1)
b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2)
ec = torch.tensor([False, False, True], device=device)
c = torch.isin(a, b, assume_unique=assume_unique)
self.assertEqual(c, ec)
@onlyCUDA
@dtypes(*all_types())
def test_isin_different_devices(self, device, dtype):
a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
b = torch.arange(3, 30, device='cpu', dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isin(a, b)
c = torch.arange(6, device='cpu', dtype=dtype).reshape([2, 3])
d = torch.arange(3, 30, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isin(c, d)
instantiate_device_type_tests(TestSortAndSelect, globals())
if __name__ == '__main__':
run_tests()