Files
pytorch/tools
rzou ea141d8134 functional compiled autograd (#144707)
This PR squashes together the following commits:

https://github.com/pytorch/pytorch/pull/144115
https://github.com/pytorch/pytorch/pull/143417
https://github.com/pytorch/pytorch/pull/143405
https://github.com/pytorch/pytorch/pull/143387
https://github.com/pytorch/pytorch/pull/143304
https://github.com/pytorch/pytorch/pull/143296

This is a refactor of compiled autograd to use "functional autograd". The end goal is that it gets compiled autograd's initial capture to stop specializing on Tensor metadata, therefore allowing compiled autograd to better handle Tensor subclasses.

For more information, please read the commit messages for each PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144707
Approved by: https://github.com/bdhirsh, https://github.com/xmfan, https://github.com/jansel
2025-01-27 05:20:56 +00:00
..
2024-12-11 17:50:10 +00:00
2020-07-17 17:19:47 -07:00

This folder contains a number of scripts which are used as part of the PyTorch build process. This directory also doubles as a Python module hierarchy (thus the __init__.py).

Overview

Modern infrastructure:

  • autograd - Code generation for autograd. This includes definitions of all our derivatives.
  • jit - Code generation for JIT
  • shared - Generic infrastructure that scripts in tools may find useful.
    • module_loader.py - Makes it easier to import arbitrary Python files in a script, without having to add them to the PYTHONPATH first.

Build system pieces:

  • setup_helpers - Helper code for searching for third-party dependencies on the user system.
  • build_pytorch_libs.py - cross-platform script that builds all of the constituent libraries of PyTorch, but not the PyTorch Python extension itself.
  • build_libtorch.py - Script for building libtorch, a standalone C++ library without Python support. This build script is tested in CI.

Developer tools which you might find useful:

Important if you want to run on AMD GPU:

  • amd_build - HIPify scripts, for transpiling CUDA into AMD HIP. Right now, PyTorch and Caffe2 share logic for how to do this transpilation, but have separate entry-points for transpiling either PyTorch or Caffe2 code.
    • build_amd.py - Top-level entry point for HIPifying our codebase.

Tools which are only situationally useful: