Files
pytorch/torch/optim/optimizer.py
2016-10-05 08:46:34 -07:00

54 lines
1.7 KiB
Python

from copy import copy
from collections import defaultdict
required = object()
class Optimizer(object):
def __init__(self, params, defaults):
self.state = defaultdict(dict)
self.param_groups = list(params)
if not isinstance(self.param_groups[0], dict):
self.param_groups = [{'params': self.param_groups}]
param_set = set()
for group in self.param_groups:
group['params'] = list(group['params'])
group_set = set(group['params'])
if not param_set.isdisjoint(group_set):
raise ValueError("some parameters appear in more than one "
"parameter group")
param_set.update(group_set)
for name, default in defaults.items():
for i, group in enumerate(self.param_groups):
if default is required and name not in group:
raise ValueError("parameter group " + str(i) + " didn't "
"specify a value of required optimization parameter "
+ name)
else:
group.setdefault(name, default)
def __getstate__(self):
return {
'state': self.state,
'parameters': self.parameters,
}
def state_dict(self):
return self.__getstate__()
def _forward_backward(self, forward_closure):
for group in self.param_groups:
for p in group['params']:
assert p.requires_grad, "optimizing a parameter that doesn't " \
"require gradients"
p.grad.zero_()
loss = forward_closure()
loss.backward()
return loss
def step(self, forward_closure):
raise NotImplementedError