mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
from copy import copy
|
|
from collections import defaultdict
|
|
|
|
required = object()
|
|
|
|
class Optimizer(object):
|
|
|
|
def __init__(self, params, defaults):
|
|
self.state = defaultdict(dict)
|
|
self.param_groups = list(params)
|
|
if not isinstance(self.param_groups[0], dict):
|
|
self.param_groups = [{'params': self.param_groups}]
|
|
|
|
param_set = set()
|
|
for group in self.param_groups:
|
|
group['params'] = list(group['params'])
|
|
group_set = set(group['params'])
|
|
if not param_set.isdisjoint(group_set):
|
|
raise ValueError("some parameters appear in more than one "
|
|
"parameter group")
|
|
param_set.update(group_set)
|
|
|
|
for name, default in defaults.items():
|
|
for i, group in enumerate(self.param_groups):
|
|
if default is required and name not in group:
|
|
raise ValueError("parameter group " + str(i) + " didn't "
|
|
"specify a value of required optimization parameter "
|
|
+ name)
|
|
else:
|
|
group.setdefault(name, default)
|
|
|
|
def __getstate__(self):
|
|
return {
|
|
'state': self.state,
|
|
'parameters': self.parameters,
|
|
}
|
|
|
|
def state_dict(self):
|
|
return self.__getstate__()
|
|
|
|
def _forward_backward(self, forward_closure):
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
assert p.requires_grad, "optimizing a parameter that doesn't " \
|
|
"require gradients"
|
|
p.grad.zero_()
|
|
loss = forward_closure()
|
|
loss.backward()
|
|
return loss
|
|
|
|
def step(self, forward_closure):
|
|
raise NotImplementedError
|
|
|