mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase. Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944 Approved by: https://github.com/Skylion007
425 lines
16 KiB
Python
425 lines
16 KiB
Python
# Owner(s): ["module: cpp-extensions"]
|
|
|
|
import os
|
|
import re
|
|
import unittest
|
|
from itertools import repeat
|
|
from typing import get_args, get_origin, Union
|
|
|
|
import torch
|
|
import torch.backends.cudnn
|
|
import torch.testing._internal.common_utils as common
|
|
import torch.utils.cpp_extension
|
|
from torch.testing._internal.common_cuda import TEST_CUDA
|
|
from torch.testing._internal.common_utils import (
|
|
IS_WINDOWS,
|
|
skipIfTorchDynamo,
|
|
TEST_XPU,
|
|
xfailIfTorchDynamo,
|
|
)
|
|
|
|
|
|
try:
|
|
import pytest
|
|
|
|
HAS_PYTEST = True
|
|
except ImportError:
|
|
HAS_PYTEST = False
|
|
|
|
# TODO: Rewrite these tests so that they can be collected via pytest without
|
|
# using run_test.py
|
|
try:
|
|
if HAS_PYTEST:
|
|
cpp_extension = pytest.importorskip("torch_test_cpp_extension.cpp")
|
|
maia_extension = pytest.importorskip("torch_test_cpp_extension.maia")
|
|
rng_extension = pytest.importorskip("torch_test_cpp_extension.rng")
|
|
else:
|
|
import torch_test_cpp_extension.cpp as cpp_extension
|
|
import torch_test_cpp_extension.maia as maia_extension
|
|
import torch_test_cpp_extension.rng as rng_extension
|
|
except ImportError as e:
|
|
raise RuntimeError(
|
|
"test_cpp_extensions_aot.py cannot be invoked directly. Run "
|
|
"`python run_test.py -i test_cpp_extensions_aot_ninja` instead."
|
|
) from e
|
|
|
|
|
|
@torch.testing._internal.common_utils.markDynamoStrictTest
|
|
class TestCppExtensionAOT(common.TestCase):
|
|
"""Tests ahead-of-time cpp extensions
|
|
|
|
NOTE: run_test.py's test_cpp_extensions_aot_ninja target
|
|
also runs this test case, but with ninja enabled. If you are debugging
|
|
a test failure here from the CI, check the logs for which target
|
|
(test_cpp_extensions_aot_no_ninja vs test_cpp_extensions_aot_ninja)
|
|
failed.
|
|
"""
|
|
|
|
def test_extension_function(self):
|
|
x = torch.randn(4, 4)
|
|
y = torch.randn(4, 4)
|
|
z = cpp_extension.sigmoid_add(x, y)
|
|
self.assertEqual(z, x.sigmoid() + y.sigmoid())
|
|
# test pybind support torch.dtype cast.
|
|
self.assertEqual(
|
|
str(torch.float32), str(cpp_extension.get_math_type(torch.half))
|
|
)
|
|
|
|
def test_extension_module(self):
|
|
mm = cpp_extension.MatrixMultiplier(4, 8)
|
|
weights = torch.rand(8, 4, dtype=torch.double)
|
|
expected = mm.get().mm(weights)
|
|
result = mm.forward(weights)
|
|
self.assertEqual(expected, result)
|
|
|
|
def test_backward(self):
|
|
mm = cpp_extension.MatrixMultiplier(4, 8)
|
|
weights = torch.rand(8, 4, dtype=torch.double, requires_grad=True)
|
|
result = mm.forward(weights)
|
|
result.sum().backward()
|
|
tensor = mm.get()
|
|
|
|
expected_weights_grad = tensor.t().mm(torch.ones([4, 4], dtype=torch.double))
|
|
self.assertEqual(weights.grad, expected_weights_grad)
|
|
|
|
expected_tensor_grad = torch.ones([4, 4], dtype=torch.double).mm(weights.t())
|
|
self.assertEqual(tensor.grad, expected_tensor_grad)
|
|
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
|
|
def test_cuda_extension(self):
|
|
import torch_test_cpp_extension.cuda as cuda_extension
|
|
|
|
x = torch.zeros(100, device="cuda", dtype=torch.float32)
|
|
y = torch.zeros(100, device="cuda", dtype=torch.float32)
|
|
|
|
z = cuda_extension.sigmoid_add(x, y).cpu()
|
|
|
|
# 2 * sigmoid(0) = 2 * 0.5 = 1
|
|
self.assertEqual(z, torch.ones_like(z))
|
|
|
|
@unittest.skipIf(not torch.backends.mps.is_available(), "MPS not found")
|
|
def test_mps_extension(self):
|
|
import torch_test_cpp_extension.mps as mps_extension
|
|
|
|
tensor_length = 100000
|
|
x = torch.randn(tensor_length, device="cpu", dtype=torch.float32)
|
|
y = torch.randn(tensor_length, device="cpu", dtype=torch.float32)
|
|
|
|
cpu_output = mps_extension.get_cpu_add_output(x, y)
|
|
mps_output = mps_extension.get_mps_add_output(x.to("mps"), y.to("mps"))
|
|
|
|
self.assertEqual(cpu_output, mps_output.to("cpu"))
|
|
|
|
@unittest.skipIf(not TEST_XPU, "XPU not found")
|
|
@unittest.skipIf(
|
|
os.getenv("USE_NINJA", "0") == "0",
|
|
"sycl extension requires ninja to build",
|
|
)
|
|
def test_sycl_extension(self):
|
|
import torch_test_cpp_extension.sycl as sycl_extension
|
|
|
|
x = torch.zeros(100, device="xpu", dtype=torch.float32)
|
|
y = torch.zeros(100, device="xpu", dtype=torch.float32)
|
|
|
|
z = sycl_extension.sigmoid_add(x, y).cpu()
|
|
|
|
# 2 * sigmoid(0) = 2 * 0.5 = 1
|
|
self.assertEqual(z, torch.ones_like(z))
|
|
|
|
@common.skipIfRocm
|
|
@unittest.skipIf(common.IS_WINDOWS, "Windows not supported")
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
|
|
def test_cublas_extension(self):
|
|
from torch_test_cpp_extension import cublas_extension
|
|
|
|
x = torch.zeros(100, device="cuda", dtype=torch.float32)
|
|
z = cublas_extension.noop_cublas_function(x)
|
|
self.assertEqual(z, x)
|
|
|
|
@common.skipIfRocm
|
|
@unittest.skipIf(common.IS_WINDOWS, "Windows not supported")
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
|
|
def test_cusolver_extension(self):
|
|
from torch_test_cpp_extension import cusolver_extension
|
|
|
|
x = torch.zeros(100, device="cuda", dtype=torch.float32)
|
|
z = cusolver_extension.noop_cusolver_function(x)
|
|
self.assertEqual(z, x)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Not available on Windows")
|
|
def test_no_python_abi_suffix_sets_the_correct_library_name(self):
|
|
# For this test, run_test.py will call `python setup.py install` in the
|
|
# cpp_extensions/no_python_abi_suffix_test folder, where the
|
|
# `BuildExtension` class has a `no_python_abi_suffix` option set to
|
|
# `True`. This *should* mean that on Python 3, the produced shared
|
|
# library does not have an ABI suffix like
|
|
# "cpython-37m-x86_64-linux-gnu" before the library suffix, e.g. "so".
|
|
root = os.path.join("cpp_extensions", "no_python_abi_suffix_test", "build")
|
|
matches = [f for _, _, fs in os.walk(root) for f in fs if f.endswith("so")]
|
|
self.assertEqual(len(matches), 1, msg=str(matches))
|
|
self.assertEqual(matches[0], "no_python_abi_suffix_test.so", msg=str(matches))
|
|
|
|
def test_optional(self):
|
|
has_value = cpp_extension.function_taking_optional(torch.ones(5))
|
|
self.assertTrue(has_value)
|
|
has_value = cpp_extension.function_taking_optional(None)
|
|
self.assertFalse(has_value)
|
|
|
|
@common.skipIfRocm
|
|
@unittest.skipIf(common.IS_WINDOWS, "Windows not supported")
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
|
|
@unittest.skipIf(
|
|
os.getenv("USE_NINJA", "0") == "0",
|
|
"cuda extension with dlink requires ninja to build",
|
|
)
|
|
def test_cuda_dlink_libs(self):
|
|
from torch_test_cpp_extension import cuda_dlink
|
|
|
|
a = torch.randn(8, dtype=torch.float, device="cuda")
|
|
b = torch.randn(8, dtype=torch.float, device="cuda")
|
|
ref = a + b
|
|
test = cuda_dlink.add(a, b)
|
|
self.assertEqual(test, ref)
|
|
|
|
|
|
@torch.testing._internal.common_utils.markDynamoStrictTest
|
|
class TestPybindTypeCasters(common.TestCase):
|
|
"""Pybind tests for ahead-of-time cpp extensions
|
|
|
|
These tests verify the types returned from cpp code using custom type
|
|
casters. By exercising pybind, we also verify that the type casters work
|
|
properly.
|
|
|
|
For each type caster in `torch/csrc/utils/pybind.h` we create a pybind
|
|
function that takes no arguments and returns the type_caster type. The
|
|
second argument to `PYBIND11_TYPE_CASTER` should be the type we expect to
|
|
receive in python, in these tests we verify this at run-time.
|
|
"""
|
|
|
|
@staticmethod
|
|
def expected_return_type(func):
|
|
"""
|
|
Our Pybind functions have a signature of the form `() -> return_type`.
|
|
"""
|
|
# Imports needed for the `eval` below.
|
|
from typing import List, Tuple # noqa: F401, UP035
|
|
|
|
return eval(re.search("-> (.*)\n", func.__doc__).group(1))
|
|
|
|
def check(self, func):
|
|
val = func()
|
|
expected = self.expected_return_type(func)
|
|
origin = get_origin(expected)
|
|
if origin is list:
|
|
self.check_list(val, expected)
|
|
elif origin is tuple:
|
|
self.check_tuple(val, expected)
|
|
else:
|
|
self.assertIsInstance(val, expected)
|
|
|
|
def check_list(self, vals, expected):
|
|
self.assertIsInstance(vals, list)
|
|
list_type = get_args(expected)[0]
|
|
for val in vals:
|
|
self.assertIsInstance(val, list_type)
|
|
|
|
def check_tuple(self, vals, expected):
|
|
self.assertIsInstance(vals, tuple)
|
|
tuple_types = get_args(expected)
|
|
if tuple_types[1] is ...:
|
|
tuple_types = repeat(tuple_types[0])
|
|
for val, tuple_type in zip(vals, tuple_types):
|
|
self.assertIsInstance(val, tuple_type)
|
|
|
|
def check_union(self, funcs):
|
|
"""Special handling for Union type casters.
|
|
|
|
A single cpp type can sometimes be cast to different types in python.
|
|
In these cases we expect to get exactly one function per python type.
|
|
"""
|
|
# Verify that all functions have the same return type.
|
|
union_type = {self.expected_return_type(f) for f in funcs}
|
|
assert len(union_type) == 1
|
|
union_type = union_type.pop()
|
|
self.assertIs(Union, get_origin(union_type))
|
|
# SymInt is inconvenient to test, so don't require it
|
|
expected_types = set(get_args(union_type)) - {torch.SymInt}
|
|
for func in funcs:
|
|
val = func()
|
|
for tp in expected_types:
|
|
if isinstance(val, tp):
|
|
expected_types.remove(tp)
|
|
break
|
|
else:
|
|
raise AssertionError(f"{val} is not an instance of {expected_types}")
|
|
self.assertFalse(
|
|
expected_types, f"Missing functions for types {expected_types}"
|
|
)
|
|
|
|
def test_pybind_return_types(self):
|
|
functions = [
|
|
cpp_extension.get_complex,
|
|
cpp_extension.get_device,
|
|
cpp_extension.get_generator,
|
|
cpp_extension.get_intarrayref,
|
|
cpp_extension.get_memory_format,
|
|
cpp_extension.get_storage,
|
|
cpp_extension.get_symfloat,
|
|
cpp_extension.get_symintarrayref,
|
|
cpp_extension.get_tensor,
|
|
]
|
|
union_functions = [
|
|
[cpp_extension.get_symint],
|
|
]
|
|
for func in functions:
|
|
with self.subTest(msg=f"check {func.__name__}"):
|
|
self.check(func)
|
|
for funcs in union_functions:
|
|
with self.subTest(msg=f"check {[f.__name__ for f in funcs]}"):
|
|
self.check_union(funcs)
|
|
|
|
|
|
@torch.testing._internal.common_utils.markDynamoStrictTest
|
|
class TestMAIATensor(common.TestCase):
|
|
def test_unregistered(self):
|
|
torch.arange(0, 10, device="cpu")
|
|
with self.assertRaisesRegex(RuntimeError, "Could not run"):
|
|
torch.arange(0, 10, device="maia")
|
|
|
|
@skipIfTorchDynamo("dynamo cannot model maia device")
|
|
def test_zeros(self):
|
|
a = torch.empty(5, 5, device="cpu")
|
|
self.assertEqual(a.device, torch.device("cpu"))
|
|
|
|
b = torch.empty(5, 5, device="maia")
|
|
self.assertEqual(b.device, torch.device("maia", 0))
|
|
self.assertEqual(maia_extension.get_test_int(), 0)
|
|
self.assertEqual(torch.get_default_dtype(), b.dtype)
|
|
|
|
c = torch.empty((5, 5), dtype=torch.int64, device="maia")
|
|
self.assertEqual(maia_extension.get_test_int(), 0)
|
|
self.assertEqual(torch.int64, c.dtype)
|
|
|
|
def test_add(self):
|
|
a = torch.empty(5, 5, device="maia", requires_grad=True)
|
|
self.assertEqual(maia_extension.get_test_int(), 0)
|
|
|
|
b = torch.empty(5, 5, device="maia")
|
|
self.assertEqual(maia_extension.get_test_int(), 0)
|
|
|
|
a + b
|
|
self.assertEqual(maia_extension.get_test_int(), 1)
|
|
|
|
def test_conv_backend_override(self):
|
|
# To simplify tests, we use 4d input here to avoid doing view4d( which
|
|
# needs more overrides) in _convolution.
|
|
input = torch.empty(2, 4, 10, 2, device="maia", requires_grad=True)
|
|
weight = torch.empty(6, 4, 2, 2, device="maia", requires_grad=True)
|
|
bias = torch.empty(6, device="maia")
|
|
|
|
# Make sure forward is overridden
|
|
out = torch.nn.functional.conv2d(input, weight, bias, 2, 0, 1, 1)
|
|
self.assertEqual(maia_extension.get_test_int(), 2)
|
|
self.assertEqual(out.shape[0], input.shape[0])
|
|
self.assertEqual(out.shape[1], weight.shape[0])
|
|
|
|
# Make sure backward is overridden
|
|
# Double backward is dispatched to _convolution_double_backward.
|
|
# It is not tested here as it involves more computation/overrides.
|
|
grad = torch.autograd.grad(out, input, out, create_graph=True)
|
|
self.assertEqual(maia_extension.get_test_int(), 3)
|
|
self.assertEqual(grad[0].shape, input.shape)
|
|
|
|
def test_autocast_apis_for_maia_device(self):
|
|
# Default low-precision type in MAIA's autocast.
|
|
fast_dtype = torch.get_autocast_dtype("maia")
|
|
self.assertEqual(fast_dtype, torch.bfloat16)
|
|
self.assertTrue(torch._C._is_autocast_available("maia"))
|
|
|
|
@skipIfTorchDynamo(
|
|
"dynamo cannot handle maia device. Output tensor may have wrong dtype."
|
|
)
|
|
def test_matmul_autocast_float16_precision(self):
|
|
# Ensure we can change low precision dtype.
|
|
x = torch.empty((2, 4), dtype=torch.float, device="maia")
|
|
w = torch.empty((4, 2), dtype=torch.float, device="maia")
|
|
with torch.autocast(device_type="maia", dtype=torch.float16):
|
|
self.assertTrue(torch.is_autocast_enabled("maia"))
|
|
y = torch.ops.aten.matmul(x, w)
|
|
self.assertEqual(y.dtype, torch.float16)
|
|
self.assertEqual(y.shape, (2, 2))
|
|
|
|
@skipIfTorchDynamo(
|
|
"dynamo cannot handle maia device. Output tensor may have wrong dtype."
|
|
)
|
|
def test_matmul_autocast_default_precision(self):
|
|
# Use default lower precision dtype, bfloat16.
|
|
x = torch.empty((2, 4), dtype=torch.float, device="maia")
|
|
w = torch.empty((4, 2), dtype=torch.float, device="maia")
|
|
with torch.autocast(device_type="maia"):
|
|
self.assertTrue(torch.is_autocast_enabled("maia"))
|
|
y = torch.ops.aten.matmul(x, w)
|
|
self.assertEqual(y.dtype, torch.bfloat16)
|
|
self.assertEqual(y.shape, (2, 2))
|
|
|
|
|
|
@torch.testing._internal.common_utils.markDynamoStrictTest
|
|
class TestRNGExtension(common.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
@xfailIfTorchDynamo
|
|
def test_rng(self):
|
|
fourty_two = torch.full((10,), 42, dtype=torch.int64)
|
|
|
|
t = torch.empty(10, dtype=torch.int64).random_()
|
|
self.assertNotEqual(t, fourty_two)
|
|
|
|
gen = torch.Generator(device="cpu")
|
|
t = torch.empty(10, dtype=torch.int64).random_(generator=gen)
|
|
self.assertNotEqual(t, fourty_two)
|
|
|
|
self.assertEqual(rng_extension.getInstanceCount(), 0)
|
|
gen = rng_extension.createTestCPUGenerator(42)
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
copy = gen
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
self.assertEqual(gen, copy)
|
|
copy2 = rng_extension.identity(copy)
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
self.assertEqual(gen, copy2)
|
|
t = torch.empty(10, dtype=torch.int64).random_(generator=gen)
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
self.assertEqual(t, fourty_two)
|
|
del gen
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
del copy
|
|
self.assertEqual(rng_extension.getInstanceCount(), 1)
|
|
del copy2
|
|
self.assertEqual(rng_extension.getInstanceCount(), 0)
|
|
|
|
|
|
@torch.testing._internal.common_utils.markDynamoStrictTest
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
|
|
class TestTorchLibrary(common.TestCase):
|
|
def test_torch_library(self):
|
|
import torch_test_cpp_extension.torch_library # noqa: F401
|
|
|
|
def f(a: bool, b: bool):
|
|
return torch.ops.torch_library.logical_and(a, b)
|
|
|
|
self.assertTrue(f(True, True))
|
|
self.assertFalse(f(True, False))
|
|
self.assertFalse(f(False, True))
|
|
self.assertFalse(f(False, False))
|
|
s = torch.jit.script(f)
|
|
self.assertTrue(s(True, True))
|
|
self.assertFalse(s(True, False))
|
|
self.assertFalse(s(False, True))
|
|
self.assertFalse(s(False, False))
|
|
self.assertIn("torch_library::logical_and", str(s.graph))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
common.run_tests()
|