Files
pytorch/test/cpp/api/tensor_options_cuda.cpp
Nikita Shulga 3a66a1cb99 [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841)
Summary:
Add cppcoreguidelines-avoid-magic-numbers exclusion to clang-tidy
Remove existing nolint warnings using following script:
```
for file in `git ls-files | grep -v \.py`; do gsed '/^ *\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)/d' -i  $file; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57841

Reviewed By: samestep

Differential Revision: D28295045

Pulled By: malfet

fbshipit-source-id: 7c6e8d1213c9593f169ed3df6a916498f1a97163
2021-05-07 20:02:33 -07:00

83 lines
3.0 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <torch/cuda.h>
// NB: This file is compiled even in CPU build (for some reason), so
// make sure you don't include any CUDA only headers.
using namespace at;
// TODO: This might be generally helpful aliases elsewhere.
at::Device CPUDevice() {
return at::Device(at::kCPU);
}
at::Device CUDADevice(DeviceIndex index) {
return at::Device(at::kCUDA, index);
}
// A macro so we don't lose location information when an assertion fails.
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
ASSERT_TRUE( \
options.device().index() == Device((device_), (index_)).index()); \
ASSERT_EQ(typeMetaToScalarType(options.dtype()), (type_)); \
ASSERT_TRUE(options.layout() == (layout_))
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \
ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
ASSERT_EQ(tensor.scalar_type(), (type_)); \
ASSERT_TRUE(tensor.options().layout() == (layout_))
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, ConstructsWellFromCUDATypes_CUDA) {
auto options = CUDA(kFloat).options();
REQUIRE_OPTIONS(kCUDA, -1, kFloat, kStrided);
options = CUDA(kInt).options();
REQUIRE_OPTIONS(kCUDA, -1, kInt, kStrided);
options = getDeprecatedTypeProperties(Backend::SparseCUDA, kFloat).options();
REQUIRE_OPTIONS(kCUDA, -1, kFloat, kSparse);
options = getDeprecatedTypeProperties(Backend::SparseCUDA, kByte).options();
REQUIRE_OPTIONS(kCUDA, -1, kByte, kSparse);
// NOLINTNEXTLINE(bugprone-argument-comment,cppcoreguidelines-avoid-magic-numbers)
options = CUDA(kFloat).options(/*device=*/5);
REQUIRE_OPTIONS(kCUDA, 5, kFloat, kStrided);
options =
// NOLINTNEXTLINE(bugprone-argument-comment,cppcoreguidelines-avoid-magic-numbers)
getDeprecatedTypeProperties(Backend::SparseCUDA, kFloat).options(/*device=*/5);
REQUIRE_OPTIONS(kCUDA, 5, kFloat, kSparse);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, ConstructsWellFromCUDATensors_MultiCUDA) {
auto options = empty(5, device(kCUDA).dtype(kDouble)).options();
REQUIRE_OPTIONS(kCUDA, 0, kDouble, kStrided);
options = empty(5, getDeprecatedTypeProperties(Backend::SparseCUDA, kByte)).options();
REQUIRE_OPTIONS(kCUDA, 0, kByte, kSparse);
if (torch::cuda::device_count() > 1) {
Tensor tensor;
{
DeviceGuard guard(CUDADevice(1));
tensor = empty(5, device(kCUDA));
}
options = tensor.options();
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
{
DeviceGuard guard(CUDADevice(1));
tensor = empty(5, device(kCUDA).layout(kSparse));
}
options = tensor.options();
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kSparse);
}
}