mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
See #127836 for details. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127842 Approved by: https://github.com/oulgen
54 lines
1.6 KiB
Python
54 lines
1.6 KiB
Python
# mypy: allow-untyped-defs
|
|
|
|
import sys
|
|
import torch
|
|
|
|
|
|
def is_available():
|
|
return hasattr(torch._C, "_dist_autograd_init")
|
|
|
|
|
|
if is_available() and not torch._C._dist_autograd_init():
|
|
raise RuntimeError("Failed to initialize torch.distributed.autograd")
|
|
|
|
if is_available():
|
|
from torch._C._distributed_autograd import (
|
|
get_gradients,
|
|
backward,
|
|
_init,
|
|
_new_context,
|
|
_release_context,
|
|
_get_max_id,
|
|
_is_valid_context,
|
|
_retrieve_context,
|
|
_current_context,
|
|
_get_debug_info,
|
|
DistAutogradContext,
|
|
)
|
|
|
|
|
|
class context:
|
|
'''
|
|
Context object to wrap forward and backward passes when using
|
|
distributed autograd. The ``context_id`` generated in the ``with``
|
|
statement is required to uniquely identify a distributed backward pass
|
|
on all workers. Each worker stores metadata associated with this
|
|
``context_id``, which is required to correctly execute a distributed
|
|
autograd pass.
|
|
|
|
Example::
|
|
>>> # xdoctest: +SKIP
|
|
>>> import torch.distributed.autograd as dist_autograd
|
|
>>> with dist_autograd.context() as context_id:
|
|
>>> t1 = torch.rand((3, 3), requires_grad=True)
|
|
>>> t2 = torch.rand((3, 3), requires_grad=True)
|
|
>>> loss = rpc.rpc_sync("worker1", torch.add, args=(t1, t2)).sum()
|
|
>>> dist_autograd.backward(context_id, [loss])
|
|
'''
|
|
def __enter__(self):
|
|
self.autograd_context = _new_context()
|
|
return self.autograd_context._context_id()
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
_release_context(self.autograd_context._context_id())
|