mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55320 Test Plan: Sandcastle Reviewed By: ngimel Differential Revision: D27572577 fbshipit-source-id: 97710fd2bb1303006b05828a0d1343b0b59ccb03
1107 lines
41 KiB
C++
1107 lines
41 KiB
C++
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
|
|
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
|
|
#include <torch/csrc/jit/codegen/cuda/interface.h>
|
|
#include <torch/csrc/jit/codegen/cuda/partition.h>
|
|
#include <torch/csrc/jit/frontend/ir_emitter.h>
|
|
#include <torch/csrc/jit/ir/alias_analysis.h>
|
|
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
|
|
#include <torch/csrc/jit/passes/constant_pooling.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/pass_manager.h>
|
|
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
|
|
#include <torch/csrc/jit/runtime/autodiff.h>
|
|
#include <torch/csrc/jit/runtime/custom_operator.h>
|
|
#include <torch/csrc/jit/runtime/operator.h>
|
|
|
|
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
|
|
|
|
#include <queue>
|
|
#include <unordered_map>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace fuser {
|
|
namespace cuda {
|
|
|
|
constexpr size_t NVRTC_KERNEL_ARG_LIMIT = 128;
|
|
|
|
namespace {
|
|
|
|
Value* broadcastSizes(at::ArrayRef<Value*> sizes) {
|
|
AT_ASSERT(!sizes.empty());
|
|
Graph* graph = sizes[0]->owningGraph();
|
|
Node* broadcast_n =
|
|
graph->insertNode(graph->create(prim::BroadcastSizes, sizes));
|
|
broadcast_n->output()->setType(ListType::ofInts());
|
|
return broadcast_n->output();
|
|
}
|
|
|
|
struct CudaGraphFuser {
|
|
using FusionCallback = std::function<bool(Node*)>;
|
|
|
|
Block* block_;
|
|
std::unique_ptr<AliasDb> aliasDb_;
|
|
std::shared_ptr<Graph> graph_;
|
|
Symbol kind_ = prim::CudaFusionGroup;
|
|
|
|
// nvrtc has a limit on the number of arguments allowed in a CUDA kernel.
|
|
// The specific limit is a function of constant memory size, amount available
|
|
// to pass arguments, and some implementation dependence. Select a safe
|
|
// limit here.
|
|
// This limit is also applied to other devices in the fuser by default.
|
|
// Change with setInputArgLimit
|
|
size_t subgraph_arg_limit_ = NVRTC_KERNEL_ARG_LIMIT;
|
|
|
|
CudaGraphFuser(Block* block, std::shared_ptr<Graph> graph)
|
|
: block_(block), graph_(std::move(graph)) {}
|
|
|
|
void setInputArgLimit(size_t limit) {
|
|
subgraph_arg_limit_ = limit;
|
|
}
|
|
|
|
value_list tensorInputs(Node* node) {
|
|
return filter(node->inputs(), [](Value* v) {
|
|
return v->type()->isSubtypeOf(TensorType::get());
|
|
});
|
|
}
|
|
|
|
bool calculatesSize(Node* node) {
|
|
return node->matches("aten::size(Tensor self) -> int[]");
|
|
}
|
|
|
|
bool allUsersAreThisConsumerOrCalcSizes(Node* consumer, Value* producer) {
|
|
auto defining_node = producer->node();
|
|
for (auto o : defining_node->outputs()) {
|
|
for (auto u : o->uses()) {
|
|
if (u.user != consumer && !calculatesSize(u.user))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Graph& getSubgraph(Node* n) {
|
|
AT_ASSERT(n->kind() == kind_);
|
|
return *n->g(attr::Subgraph);
|
|
}
|
|
|
|
void mergeFusionGroups(Node* consumer_group, Node* producer_group) {
|
|
// Now we have two fusion groups!
|
|
// Revert the fusion - place all inner nodes of producer back in the outer
|
|
// graph.
|
|
std::vector<Node*> temporary_nodes;
|
|
auto producer_subgraph = &getSubgraph(producer_group);
|
|
|
|
// Initialize a map of inner graph values to outer graph values
|
|
std::unordered_map<Value*, Value*> inner_to_outer;
|
|
auto inner_inputs = producer_subgraph->inputs();
|
|
auto outer_inputs = producer_group->inputs();
|
|
for (size_t i = 0; i < inner_inputs.size(); ++i) {
|
|
inner_to_outer[inner_inputs[i]] = outer_inputs[i];
|
|
}
|
|
|
|
// Clone all nodes
|
|
for (auto inner : producer_subgraph->nodes()) {
|
|
Node* outer = block_->owningGraph()->createClone(
|
|
inner, [&](Value* k) -> Value* { return inner_to_outer.at(k); });
|
|
outer->insertBefore(producer_group);
|
|
temporary_nodes.emplace_back(outer);
|
|
auto inner_outputs = inner->outputs();
|
|
auto outer_outputs = outer->outputs();
|
|
for (size_t i = 0; i < inner_outputs.size(); ++i)
|
|
inner_to_outer[inner_outputs[i]] = outer_outputs[i];
|
|
}
|
|
|
|
// Replace uses of producer_group outputs and destroy the producer
|
|
auto subgraph_outputs = producer_subgraph->outputs();
|
|
for (size_t i = 0; i < subgraph_outputs.size(); ++i) {
|
|
auto outer_output = inner_to_outer.at(subgraph_outputs[i]);
|
|
producer_group->outputs()[i]->replaceAllUsesWith(outer_output);
|
|
}
|
|
producer_group->destroy();
|
|
producer_group =
|
|
nullptr; // Just to get a clear error in case someone uses it
|
|
|
|
// Inline the temporary nodes into the first group
|
|
auto consumer_subgraph = &getSubgraph(consumer_group);
|
|
for (auto it = temporary_nodes.rbegin(); it != temporary_nodes.rend();
|
|
++it) {
|
|
Node* node = *it;
|
|
Node* merged = mergeNodeIntoGroup(consumer_group, node);
|
|
// If any of the outputs are still used then we need to add them
|
|
auto outputs = node->outputs();
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
auto output = outputs[i];
|
|
if (output->uses().size() == 0)
|
|
continue;
|
|
consumer_subgraph->registerOutput(merged->outputs()[i]);
|
|
auto new_output = consumer_group->addOutput();
|
|
output->replaceAllUsesWith(new_output);
|
|
new_output->setType(output->type());
|
|
}
|
|
node->destroy();
|
|
}
|
|
}
|
|
|
|
// insert a producer node into a consuming fusion group.
|
|
// DOES NOT WORK if n is a consumer of an output of the fusion group
|
|
// returns the node _inside_ the group that represents the node
|
|
Node* mergeNodeIntoGroup(Node* group, Node* n) {
|
|
AT_ASSERT(n->kind() != kind_);
|
|
auto& subgraph = getSubgraph(group);
|
|
// map from nodes in the surrounding graph to parameters in the fusion
|
|
// group's subgraph that correspond to them
|
|
std::unordered_map<Value*, Value*> inputs_map;
|
|
size_t i = 0;
|
|
size_t tensor_insert_idx = 0;
|
|
AT_ASSERT(group->inputs().size() == subgraph.inputs().size());
|
|
for (auto input : group->inputs()) {
|
|
inputs_map[input] = subgraph.inputs()[i++];
|
|
if (input->type()->isSubtypeOf(TensorType::get()))
|
|
tensor_insert_idx = i;
|
|
}
|
|
// add n's inputs to the fusion group's input list if we don't already have
|
|
// them
|
|
// we insert tensors first because the fuser assumes that to be the case
|
|
// (as a legacy from tensors only)
|
|
WithInsertPoint guard(*subgraph.nodes().begin());
|
|
for (auto input : n->inputs()) {
|
|
if (inputs_map.count(input) == 0) {
|
|
// TODO: we are following the convention for no good reason;
|
|
// we don't need tensor to come before any other inputs.
|
|
if (input->type()->isSubtypeOf(TensorType::get())) {
|
|
auto in_group = subgraph.insertInput(tensor_insert_idx);
|
|
in_group->setType(input->type());
|
|
inputs_map[input] = in_group;
|
|
group->insertInput(tensor_insert_idx, input);
|
|
tensor_insert_idx++;
|
|
} else if (
|
|
// TODO: extend the supporting inputs here.
|
|
(input->type()->isSubtypeOf(FloatType::get()) &&
|
|
input->node()->kind() != prim::Constant) ||
|
|
(n->kind() == aten::_grad_sum_to_size &&
|
|
input->type()->isSubtypeOf(ListType::ofInts()))) {
|
|
auto in_group = subgraph.addInput();
|
|
in_group->setType(input->type());
|
|
inputs_map[input] = in_group;
|
|
group->addInput(input);
|
|
} else if (input->node()->kind() == prim::Constant) {
|
|
// inline the constants directly in the body of the fused group.
|
|
Node* in_const =
|
|
subgraph.createClone(input->node(), [](Value*) -> Value* {
|
|
throw std::runtime_error("unexpected input");
|
|
});
|
|
subgraph.insertNode(in_const);
|
|
inputs_map[input] = in_const->output();
|
|
} else {
|
|
// TODO: we need to figure out what are supported input scalar
|
|
auto in_group = subgraph.addInput();
|
|
in_group->setType(input->type());
|
|
inputs_map[input] = in_group;
|
|
group->addInput(input);
|
|
}
|
|
}
|
|
}
|
|
// copy n into the graph, remapping its inputs to internal nodes
|
|
Node* in_graph = subgraph.createClone(
|
|
n, [&](Value* k) -> Value* { return inputs_map[k]; });
|
|
// if n's outputs are already inputs to the fusion group,
|
|
// we need to remove them because n is now inside the fusion group.
|
|
//
|
|
// i.e.,
|
|
// x = f(w); group(x, y, z) becomes group(w, y, z).
|
|
// x, y, z = f(w); group(x, y, z) becomes group(w).
|
|
//
|
|
// remapping nodes that used the input to the newly-merged node
|
|
// n is not an input when the fusion group is empty
|
|
auto inputs = group->inputs();
|
|
for (size_t i = 0; i < n->outputs().size(); ++i) {
|
|
auto it = std::find(inputs.begin(), inputs.end(), n->outputs()[i]);
|
|
if (it != inputs.end()) {
|
|
size_t p = it - inputs.begin();
|
|
group->removeInput(p);
|
|
subgraph.inputs()[p]->replaceAllUsesWith(in_graph->outputs()[i]);
|
|
subgraph.eraseInput(p);
|
|
}
|
|
}
|
|
return subgraph.insertNode(in_graph);
|
|
}
|
|
|
|
// turn consumer node n into a fusion group with just n inside
|
|
// to prepare for fusion and replace uses of n with the new group
|
|
Node* createSingletonFusionGroup(Node* n) {
|
|
auto group = block_->owningGraph()->createWithSubgraph(kind_);
|
|
// propogate position information for the new node so we can always
|
|
// have a valid mapping
|
|
group->insertBefore(n);
|
|
Node* mergedNode = mergeNodeIntoGroup(group, n);
|
|
getSubgraph(group).registerOutput(mergedNode->output());
|
|
auto sel = group->addOutput();
|
|
sel->copyMetadata(n->output());
|
|
n->replaceAllUsesWith(group);
|
|
n->destroy();
|
|
return group;
|
|
}
|
|
|
|
at::optional<Node*> tryFuse(Node* consumer, Value* producer) {
|
|
// this handles cases where producer can be moved _into_ the fusion group of
|
|
// consumer.
|
|
// TODO: extend to fusion of consumer into _producer's_ fusion blob
|
|
// if the consumer allInputsAreThisProducer(consumer,producer)
|
|
// we can move the consumer up into the producer.
|
|
// but this requires better handling of merging fusion groups so it is not
|
|
// done now
|
|
bool shouldFuse =
|
|
fuser::cuda::isFusableCudaFusionGroup(consumer, producer->node()) &&
|
|
// Rearrange nodes such that all uses of producer are after the
|
|
// consumer. Fusion will rewrite those later uses to use the version of
|
|
// producer generated by the fused blob. In this case, producer becomes
|
|
// an output of the fusion group.
|
|
aliasDb_->moveBeforeTopologicallyValid(producer->node(), consumer);
|
|
|
|
if (!shouldFuse) {
|
|
return at::nullopt;
|
|
}
|
|
|
|
if ((consumer->inputs().size() + consumer->outputs().size() +
|
|
producer->node()->inputs().size() +
|
|
producer->node()->outputs().size()) > subgraph_arg_limit_) {
|
|
return at::nullopt;
|
|
}
|
|
|
|
auto group = consumer;
|
|
if (consumer->kind() != kind_) {
|
|
group = createSingletonFusionGroup(consumer);
|
|
}
|
|
|
|
if (producer->node()->kind() == kind_) {
|
|
mergeFusionGroups(group, producer->node());
|
|
return group;
|
|
}
|
|
AT_ASSERT(producer->node()->outputs().size() == 1);
|
|
Node* merged = mergeNodeIntoGroup(group, producer->node());
|
|
// remaining uses of this producer can occur because we allow
|
|
// fusion in cases where uses remain after the consumer
|
|
// if these exist, re-route them to the version of producer
|
|
// created in FusionGroup
|
|
if (producer->uses().size() != 0) {
|
|
getSubgraph(group).registerOutput(merged->output());
|
|
Value* new_producer = group->addOutput();
|
|
new_producer->copyMetadata(producer);
|
|
producer->replaceAllUsesWith(new_producer);
|
|
}
|
|
producer->node()->destroy();
|
|
return group;
|
|
}
|
|
|
|
c10::optional<Node*> findFusedChunk(Node* group, Value* input) {
|
|
AT_ASSERT(group->kind() == kind_);
|
|
auto it = std::find(group->inputs().begin(), group->inputs().end(), input);
|
|
if (it == group->inputs().end()) {
|
|
return c10::nullopt;
|
|
}
|
|
size_t input_index = it - group->inputs().begin();
|
|
auto& subgraph = getSubgraph(group);
|
|
auto* subgraph_input = subgraph.inputs().at(input_index);
|
|
// If subgraph_input is an input to prim::ConstantChunk, it will have 1 use
|
|
auto* node = subgraph_input->uses().at(0).user;
|
|
if (node->kind() == prim::ConstantChunk) {
|
|
AT_ASSERT(subgraph_input->uses().size() == 1);
|
|
return node;
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
|
|
void fuseChunkByReusingExistingFusedChunk(
|
|
Node* group,
|
|
Node* chunk,
|
|
Node* existingFusedChunk) {
|
|
if (chunk->outputs().size() != existingFusedChunk->outputs().size()) {
|
|
return;
|
|
}
|
|
auto& subgraph = getSubgraph(group);
|
|
for (size_t i = 0; i < chunk->outputs().size(); ++i) {
|
|
// Find the input to the FusionGroup (group)
|
|
auto* replacement_val = existingFusedChunk->outputs().at(i);
|
|
auto* val = chunk->outputs().at(i);
|
|
auto it = std::find(group->inputs().begin(), group->inputs().end(), val);
|
|
auto input_index = it - group->inputs().begin();
|
|
|
|
// Rewrite the graph to use replacement_val
|
|
auto group_input = subgraph.inputs().at(input_index);
|
|
group_input->replaceAllUsesWith(replacement_val);
|
|
|
|
// Remove the input, it's no longer needed
|
|
group->removeInput(input_index);
|
|
subgraph.eraseInput(input_index);
|
|
}
|
|
chunk->destroy();
|
|
}
|
|
|
|
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
|
|
value_list result;
|
|
for (auto i : inputs) {
|
|
if (i->node()->owningBlock() == block_) {
|
|
result.push_back(i);
|
|
}
|
|
}
|
|
// Sort in reverse topological order
|
|
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
|
|
return a->node()->isAfter(b->node());
|
|
});
|
|
return result;
|
|
}
|
|
|
|
at::ArrayRef<Value*> broadcast_tensors(value_list inputs) {
|
|
AT_ASSERT(inputs.size() > 0);
|
|
auto* g = inputs[0]->owningGraph();
|
|
auto* input_list =
|
|
g->insertNode(g->createList(TensorType::get(), inputs))->output();
|
|
auto* output_list = g->insert(aten::broadcast_tensors, {input_list});
|
|
auto* unpack_node = g->insertNode(
|
|
g->create(prim::ListUnpack, {output_list}, inputs.size()));
|
|
return unpack_node->outputs();
|
|
}
|
|
|
|
void insertExplicitBroadcast(Node* node) {
|
|
WithInsertPoint insert_guard{node};
|
|
auto tensors = tensorInputs(node);
|
|
auto new_tensors = broadcast_tensors(tensors);
|
|
|
|
// Replace tensors inputs with broadcasted values
|
|
auto new_tensors_it = new_tensors.begin();
|
|
for (size_t i = 0; i < node->inputs().size(); ++i) {
|
|
if (node->inputs()[i]->type()->isSubtypeOf(TensorType::get())) {
|
|
AT_ASSERT(new_tensors_it != new_tensors.end());
|
|
node->replaceInput(i, *(new_tensors_it++));
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* promoteChunkToBroadcastingChunk(Node* chunk) {
|
|
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
|
|
|
|
size_t nchunks = chunk->i(attr::chunks);
|
|
Node* bchunk =
|
|
chunk->owningGraph()->create(prim::BroadcastingChunk, nchunks);
|
|
bchunk->addInput(chunk->input());
|
|
for (size_t i = 0; i < nchunks; ++i) {
|
|
auto* old_output = chunk->outputs().at(i);
|
|
auto* new_output = bchunk->outputs().at(i);
|
|
new_output->copyMetadata(old_output);
|
|
old_output->replaceAllUsesWith(new_output);
|
|
}
|
|
bchunk->copyAttributes(*chunk);
|
|
bchunk->insertAfter(chunk);
|
|
chunk->destroy();
|
|
return bchunk;
|
|
}
|
|
|
|
// in places where op can be fused into a consumer but chunk is in the way
|
|
// distribute chunk to op's operands:
|
|
// replace a,b = chunk(op(x,y,z)) with:
|
|
// x', y', z' = broadcast_tensors([x, y, z])
|
|
// x0,x1 = chunk(x') (x0 has a's type, x1 has b's type)
|
|
// y0,y1 = chunk(y') (y0 has a's type, y1 has b's type)
|
|
// z0,z1 = chunk(z') (z0 has a's type, z1 has b's type)
|
|
// a = op(x0,y0,z0) (a,b have their same size but are now contiguous)
|
|
// b = op(x1,y1,x1)
|
|
//
|
|
// The graph fuser uses an intermediate prim::BroadcastingChunk node to
|
|
// represent this behavior concisely. BroadcastingChunk(x, y, z) broadcasts
|
|
// all of its inputs and then chunks each input, in order, the same way.
|
|
// The above graph is equivalent to:
|
|
// x0, x1, y0, y1, z0, z1 = BroadcastingChunk(x, y, z)
|
|
// a = op(x0,y0,z0)
|
|
// b = op(x1,y1,x1)
|
|
//
|
|
// NB: The explicit broadcast is important for correctness.
|
|
// Let's say we have:
|
|
// %z = aten::mul(%x, %y)
|
|
// %z.1, %z.2 = aten::chunk(%z, ...)
|
|
// ... = prim::CudaFusionGroup(%z.1, %z.2, ...)
|
|
// It's possible that %x and %y do not have the same size as %z and
|
|
// need to be expanded first so that they can be chunked like %z
|
|
//
|
|
// NB: Chunk motion only occurs with fusable consumers, which implies
|
|
// that there is always some other operation, e.g., a+b, that happens
|
|
// after the chunk, and will be put into the fusion group. This is
|
|
// important, because distributing the chunk changes the contiguity
|
|
// of a and b, and so the results would be invalid, except that we know
|
|
// that simple_mappable operations will restore contiguity before
|
|
// we exit the fusion group.
|
|
//
|
|
// NB: The intermediate BroadcastingChunk is important for moving chunks past
|
|
// more than one operation: the graph fuser is not able to easily move
|
|
// operations around broadcast_tensors + chunk nodes. Let f, g, h be fusable
|
|
// ops
|
|
// x = f(v, w)
|
|
// z = g(x, y)
|
|
// a, b = chunk(z)
|
|
// c = h(a, b)
|
|
// becomes (with the broadcast_tensors + chunk approach):
|
|
// x = f(v, w)
|
|
// x', y' = broadcast_tensors([x, y])
|
|
// ax, bx = chunk(x')
|
|
// ay, by = chunk(y')
|
|
// a = g(ax, ay)
|
|
// b = g(bx, by)
|
|
// c = h(a, b)
|
|
// The broadcast_tensors node makes it harder to move f into the resulting
|
|
// FusionGroup of g, g, and h. Keeping the broadcasting and chunk behavior
|
|
// together results in:
|
|
// x = f(v, w)
|
|
// ax, bx, ay, by = BroadcastingChunk(x, y)
|
|
// a = g(ax, ay)
|
|
// b = g(bx, by)
|
|
// c = h(a, b)
|
|
// making it easier to move f after the BroadcastingChunk:
|
|
// ay, by, av, bv, aw, bw = BroadcastingChunk(y, v, w)
|
|
// ax = f(av, aw)
|
|
// by = f(bv, bw)
|
|
// a = g(ax, ay)
|
|
// b = g(bx, by)
|
|
// c = h(a, b)
|
|
|
|
bool tryToMoveChunk(Node* consumer, Value* producer) {
|
|
// is the output from a chunk/bchunk node?
|
|
auto* chunk = producer->node();
|
|
if (chunk->kind() != prim::ConstantChunk &&
|
|
chunk->kind() != prim::BroadcastingChunk)
|
|
return false;
|
|
|
|
// try to find a producer to move after the chunk/bchunk. The producer must
|
|
// be fusable into the consumer.
|
|
auto it = std::find_if(
|
|
chunk->inputs().begin(),
|
|
chunk->inputs().end(),
|
|
[&](Value* producer_for_chunk) {
|
|
return fuser::cuda::isFusableCudaFusionGroup(
|
|
consumer, producer_for_chunk->node()) &&
|
|
allUsersAreThisConsumerOrCalcSizes(chunk, producer_for_chunk);
|
|
});
|
|
if (it == chunk->inputs().end()) {
|
|
return false;
|
|
}
|
|
Value* producer_for_chunk = *it;
|
|
size_t producer_index = it - chunk->inputs().begin();
|
|
|
|
// all uses of the chunk must be in in this consumer
|
|
for (auto s : chunk->outputs()) {
|
|
for (auto u : s->uses()) {
|
|
if (u.user != consumer)
|
|
return false;
|
|
}
|
|
}
|
|
// multiple return operators
|
|
Node* producer_for_chunk_node = producer_for_chunk->node();
|
|
AT_ASSERT(producer_for_chunk_node->outputs().size() == 1);
|
|
|
|
// Convert chunk to bchunk, if it isn't one already. The bchunk represents a
|
|
// broadcast and one or more chunk operations.
|
|
auto* bchunk = chunk;
|
|
if (chunk->kind() == prim::ConstantChunk) {
|
|
bchunk = promoteChunkToBroadcastingChunk(chunk);
|
|
}
|
|
size_t nchunks = bchunk->i(attr::chunks);
|
|
WithInsertPoint guard(bchunk->next());
|
|
|
|
std::vector<Value*> producer_chunk_outputs;
|
|
for (const auto i : c10::irange(nchunks)) {
|
|
producer_chunk_outputs.push_back(
|
|
bchunk->output(nchunks * producer_index + i));
|
|
}
|
|
|
|
// Add each of op's operands to the bchunk node.
|
|
// chunked_inputs[input_nr][chunk_output_idx]
|
|
// = Node* for chunk_output_idx'th output of the chunk(inputs[input_nr])
|
|
std::vector<std::vector<Value*>> chunked_inputs;
|
|
|
|
for (auto input : producer_for_chunk_node->inputs()) {
|
|
// XXX: we only work with pointwise ops in here, so we know it is valid to
|
|
// push the concat only through tensor arguments (and all other args can
|
|
// be safely ignored).
|
|
if (!input->type()->isSubtypeOf(TensorType::get()))
|
|
continue;
|
|
|
|
// if 'input' is already an input to the bchunk, reuse it.
|
|
auto bchunk_inputs = bchunk->inputs();
|
|
auto it = std::find(bchunk_inputs.begin(), bchunk_inputs.end(), input);
|
|
if (it != bchunk_inputs.end()) {
|
|
chunked_inputs.emplace_back();
|
|
auto input_index = std::distance(bchunk_inputs.begin(), it);
|
|
for (size_t chunk = 0; chunk < nchunks; ++chunk) {
|
|
chunked_inputs.back().push_back(
|
|
bchunk->outputs().at(nchunks * input_index + chunk));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// NB: I decided not to use cloneFrom here, because if we make cloneFrom
|
|
// copy selects one day, it is definitely not what you want here (selects
|
|
// have different types).
|
|
// TODO: Perhaps we should use cloneFrom now, as it seems unlikely
|
|
// to copy select nodes now that we have refactored to have a Value
|
|
// distinct from Node.
|
|
bchunk->addInput(input);
|
|
chunked_inputs.emplace_back(); // alas, to not be C++17
|
|
for (auto chunk_sel : producer_chunk_outputs) {
|
|
Value* input_chunk_sel = bchunk->addOutput();
|
|
input_chunk_sel->setType(chunk_sel->type());
|
|
chunked_inputs.back().push_back(input_chunk_sel);
|
|
}
|
|
}
|
|
|
|
// apply the op to each chunk of the chunked operands,
|
|
// and then rewrite the graph to use them!
|
|
for (auto chunk_sel : producer_chunk_outputs) {
|
|
auto original_inputs = producer_for_chunk_node->inputs();
|
|
Node* chunked_op =
|
|
block_->owningGraph()->create(producer_for_chunk_node->kind());
|
|
chunked_op->copyAttributes(*producer_for_chunk_node);
|
|
chunked_op->output()->setType(chunk_sel->type());
|
|
auto chunked_inputs_it = chunked_inputs.begin();
|
|
for (Value* original_input : original_inputs) {
|
|
if (original_input->type()->isSubtypeOf(TensorType::get())) {
|
|
AT_ASSERT(chunked_inputs_it != chunked_inputs.end());
|
|
chunked_op->addInput(
|
|
// NOLINTNEXTLINE(clang-analyzer-core.DivideZero)
|
|
chunked_inputs_it->at(chunk_sel->offset() % nchunks));
|
|
++chunked_inputs_it;
|
|
} else {
|
|
chunked_op->addInput(original_input);
|
|
}
|
|
}
|
|
bchunk->owningGraph()->insertNode(chunked_op);
|
|
chunk_sel->replaceAllUsesWith(chunked_op->output());
|
|
}
|
|
|
|
bchunk->removeInput(producer_index);
|
|
for (const auto i : c10::irange(nchunks)) {
|
|
bchunk->eraseOutput(nchunks * producer_index);
|
|
}
|
|
|
|
// The output of producer_for_chunk_node could have been used in some
|
|
// aten::size operators, so we need to clean those up as well (we simply
|
|
// broadcast all its tensor inputs).
|
|
// We need to insert these early in the graph, i.e. immediately after
|
|
// the producer_for_chunk_node as we will have the _size_if_not_same
|
|
// that may be before the bchunk.
|
|
WithInsertPoint guard2(producer_for_chunk_node);
|
|
auto size_calc_uses = producer_for_chunk_node->output()->uses();
|
|
if (!size_calc_uses.empty()) {
|
|
auto tensor_inputs = filter(
|
|
producer_for_chunk_node->inputs(),
|
|
[](Value* v) { return v->type()->isSubtypeOf(TensorType::get()); });
|
|
auto tensor_sizes = fmap(tensor_inputs, [](Value* v) {
|
|
return v->owningGraph()->insert(aten::size, {v});
|
|
});
|
|
AT_ASSERT(!tensor_sizes.empty());
|
|
Value* output_size = tensor_sizes.size() == 1
|
|
? tensor_sizes[0]
|
|
: broadcastSizes(tensor_sizes);
|
|
for (Use u : size_calc_uses) {
|
|
u.user->output()->replaceAllUsesWith(output_size);
|
|
u.user->destroy();
|
|
}
|
|
}
|
|
producer_for_chunk_node->destroy();
|
|
return true;
|
|
}
|
|
|
|
// returns where to continue scanning, and whether any fusion was made
|
|
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
|
|
if (fuser::cuda::isFusableCudaFusionGroup(consumer)) {
|
|
// handle inputs in reverse topological order as well...
|
|
// otherwise in f(a,a+b) it will appear a is used twice if we consider
|
|
// the f-a fusion before the f-(a+b) fusion first.
|
|
auto inputs = sortReverseTopological(consumer->inputs());
|
|
for (auto producer : inputs) {
|
|
if (tryToMoveChunk(consumer, producer)) {
|
|
// the chunk before this consumer was re-arranged to allow fusion,
|
|
// we scan this consumer again to perform the fusion
|
|
return std::make_pair(consumer->reverseIterator(), true);
|
|
}
|
|
auto fusion_group = tryFuse(consumer, producer);
|
|
if (fusion_group) {
|
|
// after fusion, consumer moves into a FusionGroup, so inputs is no
|
|
// longer valid so we rescan the new FusionGroup for more fusions...
|
|
return std::make_pair(fusion_group.value()->reverseIterator(), true);
|
|
}
|
|
}
|
|
}
|
|
return std::make_pair(++consumer->reverseIterator(), false);
|
|
}
|
|
|
|
void replaceIntermediateBroadcastingChunks() {
|
|
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
|
|
auto* node = *it;
|
|
++it; // We might delete node, so increment the iterator now.
|
|
if (node->kind() != prim::BroadcastingChunk) {
|
|
continue;
|
|
}
|
|
auto* bchunk = node;
|
|
insertExplicitBroadcast(bchunk);
|
|
|
|
auto* graph = block_->owningGraph();
|
|
size_t nchunks = bchunk->i(attr::chunks);
|
|
WithInsertPoint guard(bchunk->next());
|
|
|
|
// Split the bchunk into bchunks.inputs().size() number of chunk nodes.
|
|
for (size_t input_offset = 0; input_offset < bchunk->inputs().size();
|
|
input_offset++) {
|
|
auto* input = bchunk->inputs().at(input_offset);
|
|
|
|
Node* new_chunk =
|
|
graph->insertNode(graph->create(prim::ConstantChunk, input, 0));
|
|
new_chunk->copyAttributes(*bchunk);
|
|
for (size_t output_offset = 0; output_offset < nchunks;
|
|
output_offset++) {
|
|
auto new_output = new_chunk->addOutput();
|
|
auto old_output =
|
|
bchunk->outputs().at(input_offset * nchunks + output_offset);
|
|
new_output->copyMetadata(old_output);
|
|
old_output->replaceAllUsesWith(new_output);
|
|
}
|
|
}
|
|
bchunk->destroy();
|
|
}
|
|
}
|
|
|
|
bool usedOnlyInSize(Value* v) {
|
|
const auto& uses = v->uses();
|
|
return std::all_of(uses.begin(), uses.end(), [](const Use& u) {
|
|
return u.user->matches("aten::size(Tensor self) -> int[]");
|
|
});
|
|
}
|
|
|
|
// Builds up expressions that compute shapes of all intermediates (and
|
|
// outputs) of the fusion group, based on the sizes of inputs. You should run
|
|
// DCE to remove those that you end up not using.
|
|
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
|
|
WithInsertPoint insert_guard{fusion_group->next()};
|
|
std::unordered_map<Value*, Value*> shape_of;
|
|
|
|
Graph* graph = fusion_group->owningGraph();
|
|
auto subgraph = fusion_group->g(attr::Subgraph);
|
|
|
|
auto inputs = fusion_group->inputs();
|
|
auto sinputs = subgraph->inputs();
|
|
AT_ASSERT(inputs.size() == sinputs.size());
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
if (inputs[i]->type()->isSubtypeOf(TensorType::get())) {
|
|
shape_of[sinputs[i]] = graph->insert(aten::size, {inputs[i]});
|
|
}
|
|
}
|
|
|
|
// When we have a guarantee that an output won't be removed, because it's
|
|
// used in expressions that don't involve size checks, we can use its size
|
|
// instead of computing a long chain of broadcasts, starting from the
|
|
// beginning of the kernel.
|
|
auto outputs = fusion_group->outputs();
|
|
auto soutputs = subgraph->outputs();
|
|
AT_ASSERT(outputs.size() == soutputs.size());
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
if (usedOnlyInSize(outputs[i]))
|
|
continue;
|
|
shape_of[soutputs[i]] = graph->insert(aten::size, {outputs[i]});
|
|
}
|
|
|
|
for (Node* n : subgraph->nodes()) {
|
|
// XXX: Use of shape_of.emplace is crucial to the output shape
|
|
// optimization!
|
|
if (n->kind() == prim::FusedConcat) {
|
|
// This is a bit more involved, because we have to account for the case
|
|
// when inputs have different shapes, but fortunately those tensors are
|
|
// always outputs, and so we can simply avoid replacing their queries,
|
|
// because it won't help us.
|
|
continue;
|
|
}
|
|
if (n->kind() == prim::Constant) {
|
|
continue;
|
|
}
|
|
if (n->kind() == prim::ConstantChunk) {
|
|
Node* sizes_node = graph->insertNode(
|
|
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
|
|
sizes_node->i_(attr::dim, n->i(attr::dim));
|
|
sizes_node->i_(attr::chunks, n->i(attr::chunks));
|
|
Value* regular_size = sizes_node->outputs().at(0);
|
|
Value* last_size = sizes_node->outputs().at(1);
|
|
regular_size->setType(ListType::ofInts());
|
|
last_size->setType(ListType::ofInts());
|
|
auto outputs = n->outputs();
|
|
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
|
|
shape_of.emplace(o, regular_size);
|
|
}
|
|
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
|
|
continue;
|
|
}
|
|
// extended shape expression support to reduction operations
|
|
// TODO: `aten::sum` is too flexible, we should restrict for a better
|
|
// match
|
|
if (n->kind() == aten::sum) {
|
|
// TODO: expand support to wire non-constant inputs, this is currently
|
|
// blocked by profiling executor not capable of profiling scalar inputs.
|
|
TORCH_INTERNAL_ASSERT(
|
|
n->input(1)->node()->kind() == prim::Constant &&
|
|
n->input(2)->node()->kind() == prim::Constant,
|
|
"only supports reduction axes and keepdim being constant");
|
|
|
|
// hmmm, do I need to setInsertPoint...
|
|
Node* in1_const =
|
|
graph->createClone(n->input(1)->node(), [](Value*) -> Value* {
|
|
throw std::runtime_error("unexpected input");
|
|
});
|
|
graph->insertNode(in1_const);
|
|
Node* in2_const =
|
|
graph->createClone(n->input(2)->node(), [](Value*) -> Value* {
|
|
throw std::runtime_error("unexpected input");
|
|
});
|
|
graph->insertNode(in2_const);
|
|
|
|
std::vector<Value*> inputs = {
|
|
shape_of.at(n->input(0)), in1_const->output(), in2_const->output()};
|
|
Node* size_node =
|
|
graph->insertNode(graph->create(prim::ReductionSizes, inputs, 1));
|
|
Value* size = size_node->output(0);
|
|
size->setType(ListType::ofInts());
|
|
shape_of.emplace(n->output(), size);
|
|
continue;
|
|
}
|
|
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
|
|
return v->type()->isSubtypeOf(TensorType::get());
|
|
});
|
|
auto shapes =
|
|
fmap(tensor_inputs, [&](Value* v) { return shape_of.at(v); });
|
|
AT_ASSERT(!shapes.empty());
|
|
shape_of.emplace(
|
|
n->output(), shapes.size() == 1 ? shapes[0] : broadcastSizes(shapes));
|
|
}
|
|
return shape_of;
|
|
}
|
|
|
|
void removeOutputsUsedOnlyInSize(Node* fusion_group) {
|
|
if (fusion_group->kind() != prim::CudaFusionGroup)
|
|
return;
|
|
auto subgraph = fusion_group->g(attr::Subgraph);
|
|
|
|
// TODO: failure in buildShapeExpressions should not break fusion execution,
|
|
// we can add a try/catch here to bailout from removeOutputsUsedOnlyInSize.
|
|
auto shape_of = buildShapeExpressions(fusion_group);
|
|
auto outputs = fusion_group->outputs().vec();
|
|
auto soutputs = subgraph->outputs().vec();
|
|
// XXX: Iterating in this order is not only good for performance reasons!
|
|
// It is also crucial for correctness (i has to reflect the current true
|
|
// index of outputs[i])!
|
|
for (int64_t i = static_cast<int64_t>(outputs.size()) - 1; i >= 0; --i) {
|
|
auto output = outputs[i];
|
|
auto soutput = soutputs[i];
|
|
if (usedOnlyInSize(output) && shape_of.count(soutput) > 0) {
|
|
auto uses = output->uses();
|
|
for (Use u : uses) {
|
|
AT_ASSERT(u.user->matches("aten::size(Tensor self) -> int[]"));
|
|
u.user->output()->replaceAllUsesWith(shape_of.at(soutput));
|
|
u.user->destroy();
|
|
}
|
|
fusion_group->eraseOutput(i);
|
|
subgraph->eraseOutput(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void refreshAliasDb() {
|
|
aliasDb_ = torch::make_unique<AliasDb>(graph_);
|
|
}
|
|
|
|
void optimizeFusedGraphs() {
|
|
for (Node* node : block_->nodes()) {
|
|
if (node->kind() != kind_) {
|
|
continue;
|
|
}
|
|
auto subgraph = node->g(attr::Subgraph);
|
|
EliminateDeadCode(subgraph);
|
|
EliminateCommonSubexpression(subgraph);
|
|
ConstantPooling(subgraph);
|
|
}
|
|
}
|
|
|
|
void run() {
|
|
// Run the pass until no changes are made.
|
|
// This is necessary, because the algorithm can miss out on certain fusion
|
|
// opportunities if ran only once. Consider this graph:
|
|
//
|
|
// %1 = f(...)
|
|
// %2 = g(%1)
|
|
// %3 = h(%1)
|
|
// %4 = l(%3)
|
|
// return (%4, %2)
|
|
//
|
|
// where f, g, h, l are simple map ops.
|
|
// The first iteration will fuse %4 and %3, and see that %1 is an input, but
|
|
// can't be fused, because it has a different use before the fusion group
|
|
// in our topological ordering. Then, %2 will be considered, and fused with
|
|
// %1. If we do another iteration, the algorithm will consider the fusion of
|
|
// these two groups and fix the situation.
|
|
bool any_changed = true;
|
|
while (any_changed) {
|
|
any_changed = false;
|
|
refreshAliasDb();
|
|
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
bool changed;
|
|
std::tie(it, changed) = scanNode(*it);
|
|
any_changed |= changed;
|
|
}
|
|
}
|
|
refreshAliasDb();
|
|
|
|
// fuseConcats();
|
|
|
|
optimizeFusedGraphs();
|
|
|
|
// The graph fuser can add intermediate prim::BroadcastingChunk nodes.
|
|
// Replace them with broadcasts + chunks.
|
|
replaceIntermediateBroadcastingChunks();
|
|
|
|
// Fuse starting chunks into the group.
|
|
// for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
|
|
// it = scanNodeForChunks(*it);
|
|
//}
|
|
|
|
// Remove outputs that have been added only because we need their size
|
|
for (Node* n : block_->nodes()) {
|
|
removeOutputsUsedOnlyInSize(n);
|
|
}
|
|
|
|
for (Node* node : block_->nodes()) {
|
|
for (Block* sub_block : node->blocks()) {
|
|
CudaGraphFuser(sub_block, graph_).run();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
void compileFusionRecursive(Block* block) {
|
|
FUSER_PERF_SCOPE("compileFusionRecursive");
|
|
|
|
for (auto node : block->nodes()) {
|
|
if (node->kind() == prim::CudaFusionGroup) {
|
|
fuser::cuda::compileFusionGroup(node);
|
|
}
|
|
for (auto sub_block : node->blocks()) {
|
|
compileFusionRecursive(sub_block);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PeepholeOptimizeShapeExpressions(Block* block) {
|
|
FUSER_PERF_SCOPE("PeepholeOptimizeShapeExpressions");
|
|
|
|
auto nodes = block->nodes();
|
|
for (auto it = nodes.begin(); it != nodes.end(); ++it) {
|
|
Node* node = *it;
|
|
for (Block* subblock : node->blocks()) {
|
|
PeepholeOptimizeShapeExpressions(subblock);
|
|
}
|
|
if (node->kind() == prim::BroadcastSizes) {
|
|
// Remove no-op broadcasts.
|
|
if (node->inputs().size() == 1) {
|
|
node->output()->replaceAllUsesWith(node->input());
|
|
it.destroyCurrent();
|
|
continue;
|
|
}
|
|
// Deduplicate inputs, but use their unique() values to ensure
|
|
// this process only depends on the graph.
|
|
std::map<size_t, Value*> unique_to_value;
|
|
for (Value* input : node->inputs()) {
|
|
unique_to_value.emplace(input->unique(), input);
|
|
}
|
|
if (unique_to_value.size() != node->inputs().size()) {
|
|
std::vector<Value*> inputs;
|
|
inputs.reserve(unique_to_value.size());
|
|
for (auto& entry : unique_to_value) {
|
|
inputs.push_back(entry.second);
|
|
}
|
|
if (inputs.size() == 1) {
|
|
node->output()->replaceAllUsesWith(inputs[0]);
|
|
} else {
|
|
WithInsertPoint insert_guard{node};
|
|
node->output()->replaceAllUsesWith(broadcastSizes(inputs));
|
|
}
|
|
it.destroyCurrent();
|
|
--it; // Revisit the node with deduplicated inputs
|
|
continue;
|
|
}
|
|
// Remove compose simple chains of broadcasts into a single node.
|
|
const auto& uses = node->output()->uses();
|
|
if (uses.size() == 1 && uses[0].user->kind() == prim::BroadcastSizes) {
|
|
Node* user = uses[0].user;
|
|
user->removeInput(uses[0].offset);
|
|
// NB: we don't care about deduplication in here, as we will visit user
|
|
// later.
|
|
for (Value* i : node->inputs()) {
|
|
user->addInput(i);
|
|
}
|
|
it.destroyCurrent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//! [ Note -- CudaFusionGuard implementation ]
|
|
//!
|
|
//! shamelessly copying code from NNC (tensorexpr_fuser) with very little
|
|
//! modification, original code at:
|
|
//! `../../passes/tensorexpr_fuser.cpp:guardFusionGroup`
|
|
//!
|
|
//! Add prim::CudaFusionGuard node to ensure that accepted profiling information
|
|
//! is not violated at runtime.
|
|
//!
|
|
//! We replace a single
|
|
//!
|
|
//! outputs = prim::CudaFusionGroup[cache_id](inputs)
|
|
//!
|
|
//! with the following pattern:
|
|
//!
|
|
//! %1 : bool = prim::CudaFusionGuard[types=[...]](inputs)
|
|
//! outputs = prim::If(%1)
|
|
//! block0():
|
|
//! outputs = prim::CudaFusionGroup[cache_id](inputs)
|
|
//! -> (outputs)
|
|
//! block1():
|
|
//! %2 : Function = prim::Constant[name="fallback_function", fallback=1]()
|
|
//! otuputs = prim::CallFunction(%2, inputs)
|
|
//! -> (outputs)
|
|
//!
|
|
//! `prim::CudaFusionGuard` stores all profiled data type in attribute
|
|
//! `attr::types`.
|
|
//! At runtime, we check input tensors against our profiled data type and return
|
|
//! an output holds the result of the check (bool).
|
|
//! See [ Note -- type guard logic in CudaFusionGuard ]
|
|
//!
|
|
//! This ensures that `prim::CudaFusionGroup` only execute compatible inputs.
|
|
//! In case of check failure, execution goes through false block, which
|
|
//! recursively goes along another profiling / optimization iteration. (could be
|
|
//! tuned by `bailout_depth`)
|
|
//!
|
|
//! TODO: we also need to assert/check reduction axes and replace it with
|
|
//! constants in `CudaFusionGroup`
|
|
void guardFusionGroup(Node* fusion) {
|
|
// Fixup types of the subgraph inputs
|
|
std::vector<TypePtr> guard_types;
|
|
std::vector<Value*> inputs_to_check;
|
|
for (Value* input : fusion->inputs()) {
|
|
// We only check inputs of the fusion group and expect NNC to infer
|
|
// intermediates and outputs shapes
|
|
if (!input->type()->cast<TensorType>()) {
|
|
continue;
|
|
}
|
|
|
|
// note: modified from original implementation, we are guarding fusion
|
|
// outputs
|
|
if (input->node()->kind() == prim::Constant) {
|
|
continue;
|
|
}
|
|
inputs_to_check.push_back(input);
|
|
guard_types.push_back(input->type());
|
|
}
|
|
if (!inputs_to_check.size()) {
|
|
return;
|
|
}
|
|
|
|
Node* typecheck_node = fusion->owningGraph()
|
|
->create(prim::CudaFusionGuard, inputs_to_check, 1)
|
|
->insertBefore(fusion);
|
|
// fix output to BoolType
|
|
typecheck_node->output()->setType(BoolType::get());
|
|
Value* typecheck_result = typecheck_node->output();
|
|
typecheck_node->tys_(attr::types, guard_types);
|
|
|
|
std::unordered_map<Value*, Value*> typechecked_inputs;
|
|
|
|
// Insert if block
|
|
auto versioning_if =
|
|
fusion->owningGraph()
|
|
->create(prim::If, {typecheck_result}, fusion->outputs().size())
|
|
->insertAfter(typecheck_node);
|
|
for (size_t idx = 0; idx < fusion->outputs().size(); ++idx) {
|
|
versioning_if->output(idx)->setType(fusion->output(idx)->type());
|
|
fusion->output(idx)->replaceAllUsesWith(versioning_if->output(idx));
|
|
}
|
|
auto true_block = versioning_if->addBlock();
|
|
auto false_block = versioning_if->addBlock();
|
|
|
|
// Fill in the false block. It should contain the unoptimized
|
|
// copy of the fused subgraph.
|
|
auto& subgraph = *fusion->g(attr::Subgraph);
|
|
WithInsertPoint guard(false_block->return_node());
|
|
const auto subgraph_outputs =
|
|
insertGraph(*fusion->owningGraph(), subgraph, fusion->inputs());
|
|
for (Value* output : subgraph_outputs) {
|
|
false_block->registerOutput(output);
|
|
}
|
|
|
|
// types get copied to the fallback graph, so remove specializations before
|
|
// replacing
|
|
// TODO: this is not exposed here, I need to remove that before inserting the
|
|
// graph
|
|
// removeTensorTypeSpecializations(false_block);
|
|
replaceBlockWithFallbackGraph(false_block, fusion->inputs());
|
|
|
|
// Fill in the true block. It has all inputs type-checked and its
|
|
// body should be the fusion group node.
|
|
fusion->moveBefore(true_block->return_node());
|
|
for (Value* output : fusion->outputs()) {
|
|
true_block->registerOutput(output);
|
|
}
|
|
}
|
|
|
|
void guardFusionGroups(Block* block) {
|
|
std::vector<Node*> fusions;
|
|
for (Node* n : block->nodes()) {
|
|
for (Block* b : n->blocks()) {
|
|
guardFusionGroups(b);
|
|
}
|
|
if (n->kind() == prim::CudaFusionGroup) {
|
|
fusions.push_back(n);
|
|
}
|
|
}
|
|
for (Node* fusion : fusions) {
|
|
guardFusionGroup(fusion);
|
|
}
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
void CudaFuseGraph(std::shared_ptr<Graph>& graph) {
|
|
FUSER_PERF_SCOPE("CudaFuseGraph");
|
|
// TODO: we need to properly restore shape information after fusion.
|
|
// shamelessly use tool from NNC.
|
|
RemoveProfileNodesAndSpecializeTypes(graph);
|
|
|
|
CudaGraphFuser(graph->block(), graph).run();
|
|
guardFusionGroups(graph->block());
|
|
// After FuseGraph some common subexpressions may come back
|
|
EliminateCommonSubexpression(graph);
|
|
// We might have emitted a fair amount of useless shape propagating code, so
|
|
// remove it
|
|
EliminateDeadCode(graph);
|
|
// Improve the quality of shape propagation code that was left
|
|
PeepholeOptimizeShapeExpressions(graph->block());
|
|
|
|
// TODO: we need to properly restore shape information after fusion.
|
|
// shamelessly use tool from NNC.
|
|
RemoveTensorTypeSpecializations(graph);
|
|
|
|
// Compile CudaFusionGroup
|
|
compileFusionRecursive(graph->block());
|
|
}
|
|
|
|
} // namespace cuda
|
|
} // namespace fuser
|
|
} // namespace jit
|
|
} // namespace torch
|