mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-05 00:14:54 +08:00
This reverts commit 7203a73986943c50b8d2f0fdc9d09821705a1602. Reverted https://github.com/pytorch/pytorch/pull/76562 on behalf of https://github.com/janeyx99
128 lines
4.6 KiB
Python
128 lines
4.6 KiB
Python
import torch
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from typing import Iterator, List
|
|
import logging
|
|
import contextlib
|
|
import itertools
|
|
|
|
# TODO: move this into library proper
|
|
@contextlib.contextmanager
|
|
def no_dispatch() -> Iterator[None]:
|
|
guard = torch._C._DisableTorchDispatch() # type: ignore[attr-defined]
|
|
try:
|
|
yield
|
|
finally:
|
|
del guard
|
|
|
|
|
|
# How the chain of calls works for LoggingTensor:
|
|
# 1. Call torch.sin
|
|
# 2. Attempt __torch_function__. In LoggingTensor torch function is disabled so we bypass it entirely
|
|
# 3. Enter dispatcher, wind your way through Autograd
|
|
# 4. Hit Python dispatch key, call __torch_dispatch__
|
|
|
|
# This Tensor can work with autograd in two ways:
|
|
# - The wrapped Tensor does not require gradients. In that case, the LoggingTensor
|
|
# can require gradients if the user asks for it as a constructor kwarg.
|
|
# - The wrapped Tensor can require gradients. In that case autograd will be tracked
|
|
# for the wrapped Tensor and the LoggingTensor itself cannot require gradients.
|
|
# WARNING: We allow these two possibilities for testing purposes. You should NEVER use both in a single
|
|
# test or you might get surprising behavior.
|
|
|
|
# TODO: TensorBase should work
|
|
class LoggingTensor(torch.Tensor):
|
|
elem: torch.Tensor
|
|
|
|
__slots__ = ['elem']
|
|
|
|
context = contextlib.nullcontext
|
|
|
|
__torch_function__ = torch._C._disabled_torch_function_impl
|
|
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
# The wrapping tensor (LoggingTensor) shouldn't hold any
|
|
# memory for the class in question, but it should still
|
|
# advertise the same device as before
|
|
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
|
cls, elem.size(),
|
|
strides=elem.stride(), storage_offset=elem.storage_offset(),
|
|
# TODO: clone storage aliasing
|
|
dtype=elem.dtype, layout=elem.layout,
|
|
device=elem.device, requires_grad=kwargs.get("requires_grad", False)
|
|
)
|
|
# ...the real tensor is held as an element on the tensor.
|
|
r.elem = elem.detach() if r.requires_grad else elem
|
|
return r
|
|
|
|
def __repr__(self):
|
|
return super().__repr__(tensor_contents=f"{self.elem}")
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
return e.elem if isinstance(e, cls) else e
|
|
|
|
def wrap(e):
|
|
return cls(e) if isinstance(e, torch.Tensor) else e
|
|
|
|
with cls.context():
|
|
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
|
|
logging.getLogger("LoggingTensor").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
|
|
return rs
|
|
|
|
class LoggingTensorMode(LoggingTensor):
|
|
# no_dispatch is only needed if you use enable_python_mode.
|
|
# It prevents infinite recursion.
|
|
context = no_dispatch
|
|
|
|
class LoggingTensorReentrant(LoggingTensor):
|
|
context = torch.overrides.enable_reentrant_dispatch
|
|
|
|
# https://stackoverflow.com/questions/36408496/python-logging-handler-to-append-to-list
|
|
class LoggingTensorHandler(logging.Handler):
|
|
log_list: List[str]
|
|
next_shortid: int
|
|
|
|
def __init__(self, log_list: List[str]) -> None:
|
|
logging.Handler.__init__(self)
|
|
self.log_list = log_list
|
|
self.next_shortid = 0
|
|
|
|
# WARNING: not deterministic over multiple threads, this matters for
|
|
# autograd
|
|
def _shortid(self, o: object) -> int:
|
|
if not hasattr(o, '_shortid'):
|
|
o._shortid = self.next_shortid # type: ignore[attr-defined]
|
|
self.next_shortid += 1
|
|
return o._shortid # type: ignore[attr-defined]
|
|
|
|
def _fmt(self, a: object) -> str:
|
|
return f'${self._shortid(a)}' if isinstance(a, LoggingTensor) else repr(a)
|
|
|
|
def emit(self, record):
|
|
fmt_args = ", ".join(itertools.chain(
|
|
(self._fmt(a) for a in record.args[0]),
|
|
(f"{k}={self._fmt(v)}" for k, v in record.args[1].items())
|
|
))
|
|
fmt_rets = ", ".join(self._fmt(a) for a in record.args[2]) \
|
|
if isinstance(record.args[2], (list, tuple)) else self._fmt(record.args[2])
|
|
self.log_list.append(f'{fmt_rets} = {record.msg}({fmt_args})')
|
|
|
|
def log_input(name: str, var: object):
|
|
logging.getLogger("LoggingTensor").info("input", (name,), {}, (var,))
|
|
|
|
@contextlib.contextmanager
|
|
def capture_logs() -> Iterator[List[str]]:
|
|
logger = logging.getLogger("LoggingTensor")
|
|
log_list: List[str] = []
|
|
handler = LoggingTensorHandler(log_list)
|
|
logger.addHandler(handler)
|
|
logger.setLevel(logging.INFO)
|
|
logger.propagate = False
|
|
try:
|
|
yield log_list
|
|
finally:
|
|
logger.removeHandler(handler)
|