mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 14:15:01 +08:00
Summary: In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions. Note that since we're just talking about typedefs, this change does not break any existing code. Once this lands I will update stuff in `pytorch/tutorials` too. zdevito ezyang gchanan Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523 Differential Revision: D12942787 Pulled By: goldsborough fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
160 lines
4.8 KiB
C++
160 lines
4.8 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/types.h>
|
|
|
|
#include <ATen/Context.h>
|
|
#include <ATen/Functions.h>
|
|
#include <ATen/OptionsGuard.h>
|
|
#include <ATen/core/TensorOptions.h>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
|
|
// A macro so we don't lose location information when an assertion fails.
|
|
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
|
|
ASSERT_TRUE( \
|
|
options.device().index() == Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(options.dtype(), (type_)); \
|
|
ASSERT_TRUE(options.layout() == (layout_))
|
|
|
|
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \
|
|
ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(tensor.type().scalarType(), (type_)); \
|
|
ASSERT_TRUE(tensor.type().layout() == (layout_))
|
|
|
|
TEST(TensorOptionsTest, DefaultsToTheRightValues) {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ReturnsTheCorrectType) {
|
|
auto options = TensorOptions().device(kCPU).dtype(kInt).layout(kSparse);
|
|
ASSERT_TRUE(
|
|
at::getType(options) == getNonVariableType(Backend::SparseCPU, kInt));
|
|
}
|
|
|
|
TEST(TensorOptionsTest, UtilityFunctionsReturnTheRightTensorOptions) {
|
|
auto options = dtype(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = layout(kSparse);
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = device({kCUDA, 1});
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = device_index(1);
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = dtype(kByte).layout(kSparse).device(kCUDA, 2).device_index(3);
|
|
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromCPUTypes) {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
|
|
options = TensorOptions({kCPU, 0});
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions("cpu:0");
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = TensorOptions(getNonVariableType(Backend::SparseCPU, kFloat));
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = TensorOptions(getNonVariableType(Backend::SparseCPU, kByte));
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromCPUTensors) {
|
|
auto options = empty(5, kDouble).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
|
|
|
|
options = empty(5, getNonVariableType(Backend::SparseCPU, kByte)).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST(TensorOptionsTest, ConstructsWellFromVariables) {
|
|
auto options = torch::empty(5).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_FALSE(options.requires_grad());
|
|
|
|
options = torch::empty(5, at::requires_grad()).options();
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_FALSE(options.requires_grad());
|
|
}
|
|
|
|
TEST(TensorOptionsTest, OptionsGuard) {
|
|
Tensor tensor;
|
|
{
|
|
OptionsGuard guard(TensorOptions{});
|
|
tensor = at::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
|
|
{
|
|
OptionsGuard guard(TensorOptions().dtype(kInt));
|
|
tensor = at::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
{
|
|
OptionsGuard guard(TensorOptions().dtype(kInt).layout(kSparse));
|
|
tensor = at::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kInt, kSparse);
|
|
|
|
{
|
|
OptionsGuard guard(requires_grad(true));
|
|
tensor = torch::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
ASSERT_TRUE(tensor.requires_grad());
|
|
}
|
|
|
|
TEST(DeviceTest, ParsesCorrectlyFromString) {
|
|
Device device("cpu:0");
|
|
ASSERT_EQ(device, Device(DeviceType::CPU, 0));
|
|
|
|
device = Device("cpu");
|
|
ASSERT_EQ(device, Device(DeviceType::CPU));
|
|
|
|
device = Device("cuda:123");
|
|
ASSERT_EQ(device, Device(DeviceType::CUDA, 123));
|
|
|
|
device = Device("cuda");
|
|
ASSERT_EQ(device, Device(DeviceType::CUDA));
|
|
|
|
device = Device("mkldnn");
|
|
ASSERT_EQ(device, Device(DeviceType::MKLDNN));
|
|
|
|
device = Device("opengl");
|
|
ASSERT_EQ(device, Device(DeviceType::OPENGL));
|
|
|
|
device = Device("opencl");
|
|
ASSERT_EQ(device, Device(DeviceType::OPENCL));
|
|
|
|
device = Device("ideep");
|
|
ASSERT_EQ(device, Device(DeviceType::IDEEP));
|
|
|
|
device = Device("hip");
|
|
ASSERT_EQ(device, Device(DeviceType::HIP));
|
|
|
|
device = Device("hip:321");
|
|
ASSERT_EQ(device, Device(DeviceType::HIP, 321));
|
|
|
|
std::vector<std::string> badnesses = {
|
|
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
|
|
for (const auto& badness : badnesses) {
|
|
ASSERT_ANY_THROW({ Device d(badness); });
|
|
}
|
|
}
|