mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 06:34:55 +08:00
Summary: In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions. Note that since we're just talking about typedefs, this change does not break any existing code. Once this lands I will update stuff in `pytorch/tutorials` too. zdevito ezyang gchanan Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523 Differential Revision: D12942787 Pulled By: goldsborough fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
329 lines
9.4 KiB
C++
329 lines
9.4 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/nn/module.h>
|
|
#include <torch/nn/modules/batchnorm.h>
|
|
#include <torch/nn/modules/conv.h>
|
|
#include <torch/nn/modules/dropout.h>
|
|
#include <torch/nn/modules/embedding.h>
|
|
#include <torch/nn/modules/functional.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/types.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::test;
|
|
|
|
class TestModel : public torch::nn::Module {
|
|
public:
|
|
TestModel()
|
|
: l1(register_module("l1", Linear(10, 3))),
|
|
l2(register_module("l2", Linear(3, 5))),
|
|
l3(register_module("l3", Linear(5, 100))) {}
|
|
|
|
Linear l1, l2, l3;
|
|
};
|
|
|
|
class NestedModel : public torch::nn::Module {
|
|
public:
|
|
NestedModel()
|
|
: param_(register_parameter("param", torch::empty({3, 2, 21}))),
|
|
l1(register_module("l1", Linear(5, 20))),
|
|
t(register_module("test", std::make_shared<TestModel>())) {}
|
|
|
|
torch::Tensor param_;
|
|
Linear l1;
|
|
std::shared_ptr<TestModel> t;
|
|
};
|
|
|
|
struct ModulesTest : torch::test::SeedingFixture {};
|
|
|
|
TEST_F(ModulesTest, Conv1d) {
|
|
Conv1d model(Conv1dOptions(3, 2, 3).stride(2));
|
|
auto x = torch::randn({2, 3, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 3);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
for (auto i = 0; i < 3; i++) {
|
|
ASSERT_EQ(y.size(i), 2);
|
|
}
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 3 * 2 * 3);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Conv2dEven) {
|
|
Conv2d model(Conv2dOptions(3, 2, 3).stride(2));
|
|
auto x = torch::randn({2, 3, 5, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 4);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
for (auto i = 0; i < 4; i++) {
|
|
ASSERT_EQ(y.size(i), 2);
|
|
}
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 3 * 2 * 3 * 3);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Conv2dUneven) {
|
|
Conv2d model(Conv2dOptions(3, 2, {3, 2}).stride({2, 2}));
|
|
auto x = torch::randn({2, 3, 5, 4}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 4);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
for (auto i = 0; i < 4; i++) {
|
|
ASSERT_EQ(y.size(i), 2);
|
|
}
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 3 * 2 * 3 * 2);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Conv3d) {
|
|
Conv3d model(Conv3dOptions(3, 2, 3).stride(2));
|
|
auto x = torch::randn({2, 3, 5, 5, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 5);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
for (auto i = 0; i < 5; i++) {
|
|
ASSERT_EQ(y.size(i), 2);
|
|
}
|
|
|
|
ASSERT_TRUE(
|
|
model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3 * 3);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Linear) {
|
|
Linear model(5, 2);
|
|
auto x = torch::randn({10, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 2);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
ASSERT_EQ(y.size(0), 10);
|
|
ASSERT_EQ(y.size(1), 2);
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 2 * 5);
|
|
}
|
|
|
|
TEST_F(ModulesTest, SimpleContainer) {
|
|
auto model = std::make_shared<SimpleContainer>();
|
|
auto l1 = model->add(Linear(10, 3), "l1");
|
|
auto l2 = model->add(Linear(3, 5), "l2");
|
|
auto l3 = model->add(Linear(5, 100), "l3");
|
|
|
|
auto x = torch::randn({1000, 10}, torch::requires_grad());
|
|
x = l1->forward(x).clamp_min(0);
|
|
x = l2->forward(x).clamp_min(0);
|
|
x = l3->forward(x).clamp_min(0);
|
|
|
|
x.backward();
|
|
ASSERT_EQ(x.ndimension(), 2);
|
|
ASSERT_EQ(x.size(0), 1000);
|
|
ASSERT_EQ(x.size(1), 100);
|
|
ASSERT_EQ(x.min().item<float>(), 0);
|
|
}
|
|
|
|
TEST_F(ModulesTest, EmbeddingBasic) {
|
|
const int64_t dict_size = 10;
|
|
Embedding model(dict_size, 2);
|
|
ASSERT_TRUE(model->parameters().contains("weight"));
|
|
ASSERT_EQ(model->weight.ndimension(), 2);
|
|
ASSERT_EQ(model->weight.size(0), dict_size);
|
|
ASSERT_EQ(model->weight.size(1), 2);
|
|
|
|
// Cannot get gradients to change indices (input) - only for embedding
|
|
// params
|
|
auto x = torch::full({10}, dict_size - 1, torch::kInt64);
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 2);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
ASSERT_EQ(y.size(0), 10);
|
|
ASSERT_EQ(y.size(1), 2);
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 2 * dict_size);
|
|
}
|
|
|
|
TEST_F(ModulesTest, EmbeddingList) {
|
|
Embedding model(6, 4);
|
|
auto x = torch::full({2, 3}, 5, torch::kInt64);
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 3);
|
|
ASSERT_EQ(y.size(0), 2);
|
|
ASSERT_EQ(y.size(1), 3);
|
|
ASSERT_EQ(y.size(2), 4);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Dropout) {
|
|
Dropout dropout(0.5);
|
|
torch::Tensor x = torch::ones(100, torch::requires_grad());
|
|
torch::Tensor y = dropout->forward(x);
|
|
|
|
y.backward();
|
|
ASSERT_EQ(y.ndimension(), 1);
|
|
ASSERT_EQ(y.size(0), 100);
|
|
ASSERT_LT(y.sum().item<float>(), 130); // Probably
|
|
ASSERT_GT(y.sum().item<float>(), 70); // Probably
|
|
|
|
dropout->eval();
|
|
y = dropout->forward(x);
|
|
ASSERT_EQ(y.sum().item<float>(), 100);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Parameters) {
|
|
auto model = std::make_shared<NestedModel>();
|
|
auto parameters = model->parameters();
|
|
ASSERT_EQ(parameters["param"].size(0), 3);
|
|
ASSERT_EQ(parameters["param"].size(1), 2);
|
|
ASSERT_EQ(parameters["param"].size(2), 21);
|
|
ASSERT_EQ(parameters["l1.bias"].size(0), 20);
|
|
ASSERT_EQ(parameters["l1.weight"].size(0), 20);
|
|
ASSERT_EQ(parameters["l1.weight"].size(1), 5);
|
|
ASSERT_EQ(parameters["test.l1.bias"].size(0), 3);
|
|
ASSERT_EQ(parameters["test.l1.weight"].size(0), 3);
|
|
ASSERT_EQ(parameters["test.l1.weight"].size(1), 10);
|
|
ASSERT_EQ(parameters["test.l2.bias"].size(0), 5);
|
|
ASSERT_EQ(parameters["test.l2.weight"].size(0), 5);
|
|
ASSERT_EQ(parameters["test.l2.weight"].size(1), 3);
|
|
ASSERT_EQ(parameters["test.l3.bias"].size(0), 100);
|
|
ASSERT_EQ(parameters["test.l3.weight"].size(0), 100);
|
|
ASSERT_EQ(parameters["test.l3.weight"].size(1), 5);
|
|
}
|
|
|
|
TEST_F(ModulesTest, FunctionalCallsSuppliedFunction) {
|
|
bool was_called = false;
|
|
auto functional = Functional([&was_called](torch::Tensor input) {
|
|
was_called = true;
|
|
return input;
|
|
});
|
|
auto output = functional->forward(torch::ones(5, torch::requires_grad()));
|
|
ASSERT_TRUE(was_called);
|
|
ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad())));
|
|
|
|
was_called = false;
|
|
// Use the call operator overload here.
|
|
output = functional(torch::ones(5, torch::requires_grad()));
|
|
ASSERT_TRUE(was_called);
|
|
ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad())));
|
|
}
|
|
|
|
TEST_F(ModulesTest, FunctionalWithTorchFunction) {
|
|
auto functional = Functional(torch::relu);
|
|
ASSERT_EQ(functional(torch::ones({})).item<float>(), 1);
|
|
ASSERT_EQ(functional(torch::ones({})).item<float>(), 1);
|
|
ASSERT_EQ(functional(torch::ones({}) * -1).item<float>(), 0);
|
|
}
|
|
|
|
TEST_F(ModulesTest, FunctionalArgumentBinding) {
|
|
auto functional =
|
|
Functional(torch::elu, /*alpha=*/1, /*scale=*/0, /*input_scale=*/1);
|
|
ASSERT_EQ(functional(torch::ones({})).item<float>(), 0);
|
|
}
|
|
|
|
TEST_F(ModulesTest, BatchNormStateful) {
|
|
BatchNorm bn(5);
|
|
|
|
// Is stateful by default.
|
|
ASSERT_TRUE(bn->options.stateful());
|
|
|
|
ASSERT_TRUE(bn->running_mean.defined());
|
|
ASSERT_EQ(bn->running_mean.dim(), 1);
|
|
ASSERT_EQ(bn->running_mean.size(0), 5);
|
|
|
|
ASSERT_TRUE(bn->running_variance.defined());
|
|
ASSERT_EQ(bn->running_variance.dim(), 1);
|
|
ASSERT_EQ(bn->running_variance.size(0), 5);
|
|
|
|
// Is affine by default.
|
|
ASSERT_TRUE(bn->options.affine());
|
|
|
|
ASSERT_TRUE(bn->weight.defined());
|
|
ASSERT_EQ(bn->weight.dim(), 1);
|
|
ASSERT_EQ(bn->weight.size(0), 5);
|
|
|
|
ASSERT_TRUE(bn->bias.defined());
|
|
ASSERT_EQ(bn->bias.dim(), 1);
|
|
ASSERT_EQ(bn->bias.size(0), 5);
|
|
}
|
|
TEST_F(ModulesTest, BatchNormStateless) {
|
|
BatchNorm bn(BatchNormOptions(5).stateful(false).affine(false));
|
|
|
|
ASSERT_FALSE(bn->running_mean.defined());
|
|
ASSERT_FALSE(bn->running_variance.defined());
|
|
ASSERT_FALSE(bn->weight.defined());
|
|
ASSERT_FALSE(bn->bias.defined());
|
|
|
|
ASSERT_THROWS_WITH(
|
|
bn->forward(torch::ones({2, 5})),
|
|
"Calling BatchNorm::forward is only permitted "
|
|
"when the 'stateful' option is true (was false). "
|
|
"Use BatchNorm::pure_forward instead.");
|
|
}
|
|
|
|
TEST_F(ModulesTest, BatchNormPureForward) {
|
|
BatchNorm bn(BatchNormOptions(5).affine(false));
|
|
bn->eval();
|
|
|
|
// Want to make sure we use the supplied values in `pure_forward` even if
|
|
// we are stateful.
|
|
auto input = torch::randn({2, 5});
|
|
auto mean = torch::randn(5);
|
|
auto variance = torch::rand(5);
|
|
auto output = bn->pure_forward(input, mean, variance);
|
|
auto expected = (input - mean) / torch::sqrt(variance + bn->options.eps());
|
|
ASSERT_TRUE(output.allclose(expected));
|
|
}
|
|
|
|
TEST_F(ModulesTest, Linear_CUDA) {
|
|
Linear model(5, 2);
|
|
model->to(torch::kCUDA);
|
|
auto x =
|
|
torch::randn({10, 5}, torch::device(torch::kCUDA).requires_grad(true));
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 2);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
ASSERT_EQ(y.size(0), 10);
|
|
ASSERT_EQ(y.size(1), 2);
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 2 * 5);
|
|
}
|
|
|
|
TEST_F(ModulesTest, Linear2_CUDA) {
|
|
Linear model(5, 2);
|
|
model->to(torch::kCUDA);
|
|
model->to(torch::kCPU);
|
|
auto x = torch::randn({10, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_EQ(y.ndimension(), 2);
|
|
ASSERT_EQ(s.ndimension(), 0);
|
|
ASSERT_EQ(y.size(0), 10);
|
|
ASSERT_EQ(y.size(1), 2);
|
|
|
|
ASSERT_EQ(model->parameters()["weight"].grad().numel(), 2 * 5);
|
|
}
|