Files
pytorch/test/cpp/jit/test_backend.cpp
Kimish Patel 38c185189c [Pytorch Edge] Enable kineto profiler on mobile via EdgeKinetoProfiler (#62419)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62419

This diff adds support for cpu only kineto profiler on mobile. Thus
enabling chrome trace generation on mobile. This bring cpp API for
mobile profiling on part with Torchscript.
This is done via:
1. Utilizating debug handle annotations in KinetoEvent.
2. Adding post processing capability, via callbacks, to
KinetoThreadLocalState
3. Creating new RAII stype profiler, KinetoEdgeCPUProfiler, which can be
used in surrounding scope of model execution. This will write chrome
trace to the location specified in profiler constructor.

Test Plan:
MobileProfiler.ModuleHierarchy

Imported from OSS

Reviewed By: raziel

Differential Revision: D29993660

fbshipit-source-id: 0b44f52f9e9c5f5aff81ebbd9273c254c3c03299
2021-08-13 21:40:19 -07:00

728 lines
24 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/torch.h>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(BackendTest, ToBackend) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs).toTuple()->elements();
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"test_backend", m, compile_spec, any_dict_ty);
// lowered module code:
/*
class test_backendLoweredModule(Module):
__parameters__ = []
__buffers__ = []
__processed_module : Any
__method_compile_spec : Dict[str, Any]
__backend : __torch__.torch.classes.__backends__.test_backend
__handles : Dict[str, Any]
def __create_backend(self: torch.jit.test_backendLoweredModule) -> None:
_0 =
__torch__.torch.classes.__backends__.test_backend.__new__(__torch__.torch.classes.__backends__.test_backend)
_1 = (_0).__init__()
self.__backend = _0
return None
def __getstate__(self: torch.jit.test_backendLoweredModule) ->
Tuple[Dict[str, Any], Any]: _2 = (self.__method_compile_spec,
self.__processed_module) return _2 def __setstate__(self:
torch.jit.test_backendLoweredModule, state: Tuple[Dict[str, Any], Any]) ->
None: self.__method_compile_spec = (state)[0] self.__processed_module =
(state)[1] _3 = (self).__create_backend() _4 =
(self.__backend).compile(self.__processed_module,
self.__method_compile_spec, ) self.__handles = _4 return None def
forward(self: torch.jit.test_backendLoweredModule, x: Tensor, h: Tensor) ->
Tuple[Tensor, Tensor]: _5 = uninitialized(Tensor) typed_inputs =
annotate(List[Any], [x, h]) _6 =
(self.__backend).execute((self.__handles)["forward"], typed_inputs, ) _7,
_8, = _6 _9 = isinstance(_7, Tensor) if _9: _10 = unchecked_cast(Tensor, _7)
else:
ops.prim.RaiseException("AssertionError: ")
_10 = _5
_11 = isinstance(_8, Tensor)
if _11:
_12 = unchecked_cast(Tensor, _8)
else:
ops.prim.RaiseException("AssertionError: ")
_12 = _5
return (_10, _12)
*/
auto res = lm.forward(inputs).toTuple()->elements();
AT_ASSERT(res[0].toTensor().equal(ref[0].toTensor()));
AT_ASSERT(res[1].toTensor().equal(ref[1].toTensor()));
}
TEST(BackendTest, ToBackendNotAvailable) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs).toTuple()->elements();
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// Produce lowered module (backend not available).
// Exception is not thrown at this point.
auto lm = torch::jit::detail::codegen_backend_module(
"test_backend_unavailable", m, compile_spec, any_dict_ty);
// Validate exception is thrown when trying to execute and
// the backend is not available.
ASSERT_THROWS_WITH_MESSAGE(
lm.forward(inputs).toTuple()->elements(), "Backend is not available.");
}
TEST(BackendTest, TestCompiler) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs);
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
auto res = lm.forward(inputs);
AT_ASSERT(res.toTensor().equal(ref.toTensor()));
std::stringstream ss;
lm._save_for_mobile(ss);
auto mlm = _load_for_mobile(ss);
auto mres = mlm.forward(inputs);
AT_ASSERT(mres.toTensor().equal(ref.toTensor()));
}
TEST(BackendTest, TestComposite) {
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
Module m_add("m_add");
m_add.define(R"(
def forward(self, x, y):
return x + y
)");
auto lm_add = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m_add, compile_spec, any_dict_ty);
Module m_sub("m_sub");
m_sub.define(R"(
def forward(self, x, y):
return x - y
)");
auto lm_sub = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m_sub, compile_spec, any_dict_ty);
Module c("C");
c.register_module("Add", lm_add);
c.register_module("Sub", lm_sub);
c.define(R"(
def forward(self, x, y):
return self.Add.forward(x, y) * self.Sub.forward(x, y)
)");
std::vector<IValue> inputs;
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
}
Module getCompositeModuleWithSameNameSubModules() {
// Two submodules with same module name but different forward and other
// functions should be serialized and loaded correctly.
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
Module sub1("m_add");
sub1.define(R"(
def forward(self, x, y):
return x + y
)");
auto lowered_sub1 = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", sub1, compile_spec, any_dict_ty);
Module sub2("m_add");
sub2.define(R"(
def forward(self, x, y):
return x - y
)");
auto lowered_sub2 = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", sub2, compile_spec, any_dict_ty);
Module c("C");
c.register_module("Add", lowered_sub1);
c.register_module("Sub", lowered_sub2);
c.define(R"(
def forward(self, a, b, s:int):
c = self.Add.forward(a, b)
d = self.Sub.forward(a, b)
y = s * (c * d)
return y
)");
return c;
}
TEST(BackendTest, TestCompositeWithSetStates) {
Module c = getCompositeModuleWithSameNameSubModules();
std::vector<IValue> inputs;
inputs.emplace_back(torch::ones({}));
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(3);
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
}
TEST(BackendTest, TestConsistencyOfCompositeWithSetStates) {
Module c = getCompositeModuleWithSameNameSubModules();
std::vector<IValue> inputs;
inputs.emplace_back(torch::ones({}));
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(3);
std::stringstream ss, ss_resave;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
// check if the methods names are always the same
// by reloading the script module and saving it back as mobile
// The below checks ensure that the names of Methods
// and numerical outputs of mobile and reloaded mobile
// modules are same.
auto script_module_load = torch::jit::load(ss);
script_module_load._save_for_mobile(ss_resave);
auto mc_reload = _load_for_mobile(ss_resave);
auto res_mobile_reload = mc_reload.forward(inputs);
AT_ASSERT(res_mobile_reload.toTensor().equal(res_mobile.toTensor()));
auto mc_methods = mc.get_methods();
auto mc_reload_methods = mc_reload.get_methods();
std::vector<std::string> mc_method_qns, mc_reload_method_qns;
auto get_qual_name = [](mobile::Method method) -> std::string {
return method.function().qualname().qualifiedName();
};
std::transform(
mc_methods.begin(),
mc_methods.end(),
std::back_inserter(mc_method_qns),
get_qual_name);
std::transform(
mc_reload_methods.begin(),
mc_reload_methods.end(),
std::back_inserter(mc_reload_method_qns),
get_qual_name);
AT_ASSERT(std::equal(
mc_method_qns.begin(),
mc_method_qns.end(),
mc_reload_method_qns.begin()));
}
TEST(BackendTest, TestCompilerNotSupport) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x * h
)");
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
ASSERT_THROWS_WITH_MESSAGE(
torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty),
"The node of aten::mul is not supported in this compiler. Source code:");
}
TEST(BackendTestDebugInfo, TestCompiler) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(m)::<unknown>.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 5, in <unknown>
typed_inputs: List[Any] = [x, h, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, h):
return x + h
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithModuleHierarchy) {
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 5, in <unknown>
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(
BackendTestDebugInfo,
TestExceptionStackForCompilerWithTwoLevelModuleHierarchy) {
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.register_module("A0", a);
b.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + 2
)");
Module c("C");
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.B0.forward(x, y) + 3
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
/*
* Error stack throw will look like this:
* Module hierarchy:top(backend_with_compiler_demoLoweredModule).B0(B).A0(A)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.B0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + 2
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*/
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.B0(B)::forward.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 5, in <unknown>
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.B0.forward(x, y) + 3
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return self.A0.forward(x, y) + 2
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithLoweredSubModule) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
IValue submodule = c.attr("A0");
Module current_sm = submodule.toModule();
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
c.setattr("A0", lowered_submodule._ivalue());
std::unordered_map<TypePtr, TypePtr> type_remap;
type_remap[a.type()] = lowered_submodule.type();
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
for (auto& fn : c.type()->methods()) {
auto method = c.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto c_loaded = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
}
TEST(
BackendTestDebugInfo,
TestExceptionStackForCompilerWithSelectiveLoweredSubModule) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
Module aa("AA");
aa.define(R"(
def forward(self, x, y):
return x + y
)");
Module a("A");
a.register_module("AA0", aa);
a.define(R"(
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
IValue submodule = c.attr("A0");
Module current_sm = submodule.toModule();
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
c.setattr("A0", lowered_submodule._ivalue());
std::unordered_map<TypePtr, TypePtr> type_remap;
type_remap[a.type()] = lowered_submodule.type();
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
for (auto& fn : c.type()->methods()) {
auto method = c.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto c_loaded = _load_for_mobile(ss);
/*
* Erro stack trace will look like this:
* Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + self.B0.forward(x)
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.AA0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*
* */
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.AA0(AA)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
}
} // namespace jit
} // namespace torch