mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 21:49:24 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34496 Differential Revision: D20347469 Test Plan: Imported from OSS Pulled By: mrshenli fbshipit-source-id: b832a3a9e2ef61f149175f737b26f65d63bf797b
148 lines
5.4 KiB
C++
148 lines
5.4 KiB
C++
#include <torch/csrc/distributed/rpc/python_rpc_handler.h>
|
|
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
|
#include <torch/csrc/jit/python/pybind_utils.h>
|
|
#include <torch/csrc/utils/python_compat.h>
|
|
|
|
namespace torch {
|
|
namespace distributed {
|
|
namespace rpc {
|
|
|
|
namespace {
|
|
|
|
// A macro that grabs the GIL, profiling the acquisition time. The average GIL
|
|
// acquisition time will be recorded in RpcAgent's getMetrics().
|
|
#define PROFILE_GIL_SCOPED_ACQUIRE \
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> startTime; \
|
|
auto shouldProfileGIL = \
|
|
RpcAgent::getCurrentRpcAgent()->isGILProfilingEnabled(); \
|
|
if (shouldProfileGIL) { \
|
|
startTime = std::chrono::high_resolution_clock::now(); \
|
|
} \
|
|
pybind11::gil_scoped_acquire ag; \
|
|
if (shouldProfileGIL) { \
|
|
auto dur = std::chrono::duration_cast<std::chrono::microseconds>( \
|
|
std::chrono::high_resolution_clock::now() - startTime); \
|
|
RpcAgent::getCurrentRpcAgent()->addGilWaitTime(dur); \
|
|
}
|
|
|
|
// PythonTypeResolver that inherits from Script::Resolver to
|
|
// support resolving types together with ScriptTypeParser.
|
|
struct PythonTypeResolver : public jit::Resolver {
|
|
std::shared_ptr<jit::SugaredValue> resolveValue(
|
|
const std::string& /* unused */,
|
|
torch::jit::Function& /* unused */,
|
|
const jit::SourceRange& /* unused */) override {
|
|
TORCH_INTERNAL_ASSERT(
|
|
false, "RPC Type resolver does not need to resolve value");
|
|
}
|
|
|
|
TypePtr resolveType(
|
|
const std::string& name,
|
|
const jit::SourceRange& /* unused */) override {
|
|
if (name == "PyObject") {
|
|
return PyObjectType::get();
|
|
}
|
|
return PythonRpcHandler::getInstance().jitCompilationUnit()->get_type(name);
|
|
}
|
|
};
|
|
|
|
py::object getFunction(const py::object& module, const char* name) {
|
|
py::object fn = module.attr(name);
|
|
TORCH_CHECK(
|
|
py::isinstance<py::function>(fn),
|
|
"attribute ",
|
|
name,
|
|
" is not a function");
|
|
return fn;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
PythonRpcHandler::PythonRpcHandler() {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
py::object module = py::module::import("torch.distributed.rpc.internal");
|
|
pyRunFunction_ = getFunction(module, "_run_function");
|
|
pySerialize_ = getFunction(module, "serialize");
|
|
pyDeserialize_ = getFunction(module, "deserialize");
|
|
pyHandleException_ = getFunction(module, "_handle_exception");
|
|
pyGetQualifiedName_ = py::module::import("torch.jit").attr("_qualified_name");
|
|
jitCompilationUnit_ = torch::jit::get_python_cu();
|
|
typeParser_ = std::make_shared<jit::ScriptTypeParser>(
|
|
std::make_shared<PythonTypeResolver>());
|
|
}
|
|
|
|
void PythonRpcHandler::cleanup() {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
pyRunFunction_ = py::none();
|
|
pySerialize_ = py::none();
|
|
pyDeserialize_ = py::none();
|
|
pyHandleException_ = py::none();
|
|
pyGetQualifiedName_ = py::none();
|
|
jitCompilationUnit_ = nullptr;
|
|
typeParser_ = nullptr;
|
|
}
|
|
|
|
PythonRpcHandler& PythonRpcHandler::getInstance() {
|
|
// A thread could hold GIL when calling PythonRpcHandler::getInstance(),
|
|
// meantime another thread could have been doing static data
|
|
// initialization by calling `new PythonRpcHandler()`, inside of which GIL is
|
|
// also required. Static data initialization is thread-safe, so the thread
|
|
// holding the GIL will wait for the other thread to finish static data
|
|
// initializating before going forward. Because the initialization can't
|
|
// proceed without GIL, there is a deadlock. We ask the calling thread to
|
|
// release GIL to avoid this situation.
|
|
TORCH_INTERNAL_ASSERT(!PyGILState_Check());
|
|
// Leaky singleton to avoid module destructor race.
|
|
static PythonRpcHandler* handler = new PythonRpcHandler();
|
|
return *handler;
|
|
}
|
|
|
|
std::shared_ptr<torch::jit::CompilationUnit> PythonRpcHandler::
|
|
jitCompilationUnit() {
|
|
return jitCompilationUnit_;
|
|
}
|
|
|
|
py::object PythonRpcHandler::runPythonUdf(py::object&& pythonUdf) {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
return pyRunFunction_(std::move(pythonUdf));
|
|
}
|
|
|
|
SerializedPyObj PythonRpcHandler::serialize(const py::object& obj) {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
py::tuple t = pySerialize_(obj);
|
|
return SerializedPyObj(
|
|
t[0].cast<std::string>(), t[1].cast<std::vector<torch::Tensor>>());
|
|
}
|
|
|
|
py::object PythonRpcHandler::deserialize(const SerializedPyObj& serializedObj) {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
// NB: pyDeserialize_ can return an AttributeError if the deserialize() Python
|
|
// function fails. Functions consuming the result needs to handle such error
|
|
// properly.
|
|
return pyDeserialize_(
|
|
py::bytes(serializedObj.payload_), serializedObj.tensors_);
|
|
}
|
|
|
|
void PythonRpcHandler::handleException(const py::object& obj) {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
pyHandleException_(obj);
|
|
}
|
|
|
|
void PythonRpcHandler::handleExceptionGILHeld(const py::object& obj) {
|
|
TORCH_CHECK(PyGILState_Check(), "GIL should be held");
|
|
pyHandleException_(obj);
|
|
}
|
|
|
|
c10::QualifiedName PythonRpcHandler::getQualifiedName(const py::object& obj) {
|
|
PROFILE_GIL_SCOPED_ACQUIRE;
|
|
return c10::QualifiedName(pyGetQualifiedName_(obj).cast<std::string>());
|
|
}
|
|
|
|
TypePtr PythonRpcHandler::parseTypeFromStr(const std::string& type_str) {
|
|
return typeParser_->parseType(type_str);
|
|
}
|
|
|
|
} // namespace rpc
|
|
} // namespace distributed
|
|
} // namespace torch
|