mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
### Introduction <!-- What did you change and why was it needed? --> Removing unnecessary weight gradient calculation is very important for applications that need high-order derivatives during training. However, this is not supported by the current Autograd engine. For more detail: The backward function of a `matmul` operator (e.g., `linear` `addmm` `mm`), has two matmuls, one for `input gradient` and another for `weight gradient`. For a typical neural network (nn) with a few linear layers and activation functions, if the user calls `torch.autograd.grad()` to calculate the derivative of the nn output `y` w.r.t the nn input `x`, only the `input gradient` of the `matmul` operator is needed, and the `weight gradient` is discarded. However, the current PyTorch autograd engine will always calculate the `weight gradient` if `weight` requires gradient (the calculation of the high-order derivative is performed during training). The figure attached shows the autograd graph of the following code snippet: ```py y = torch.nn.functional.linear(x, weight, bias) y = y.pow(2) # first order derivative y__x, = torch.autograd.grad(y, x, grad_outputs=grad_outputs, create_graph=True) # first order derivative y__x__x, = torch.autograd.grad(y__x, x, grad_outputs=grad_outputs, create_graph=True) ``` The path with ❌ is not needed when calculating derivatives. <img width="50%" alt="image" src="https://user-images.githubusercontent.com/9999318/182018117-719c5a23-bcc6-4a63-8e8d-1bca3ebda2e3.png"> ### Issue <!-- Link to Issue ticket or RFP --> Related issue: https://github.com/pytorch/pytorch/issues/56500 ### Method When calling `torch.autograd.grad`, `exec_info_` is created for each GraphTask, which allows filtering paths on the graph that are not needed. However, when the GraphTask calls into the node, the node still does not know whether the edges are needed or not. In the case of matmul, `weight.requires_grad is True` so the weight gradient is always calculated. Following https://github.com/pytorch/pytorch/issues/56500#issuecomment-825694656, this PR passes the graph task's thread_local `exec_info_` into the node, so it could trim unnecessary edges during `torch.autograd.grad` calls. ### Benchmark Benchmark script: https://gist.github.com/yueyericardo/24158433a2021c51eeef9c3e2722df99 Benchmark result: 6 hidden layers, batch size 10000, on A100 FP32 result | hessian benchmark | FP32 (before) | FP32 (After) | FP32 (Functorch v0.1.1) | | ----------------------------- | ------------- | ----------------- | ----------------------- | | Linear + ReLU (no backward) | 55.658 ms | 29.392 ms (1.90X) | 29.547 ms (1.90X) | | Linear + ReLU (with backward) | 81.173 ms | 54.917 ms (1.47X) | 68.988 ms (1.18X) | TF32 result | hessian benchmark | TF32 (before) | TF32 (after) | TF32 (Functorch v0.1.1) | | ----------------------------- | ------------- | ----------------- | ----------------------- | | Linear + ReLU (no backward) | 19.801 ms | 11.259 ms (1.76X) | 10.754 ms (1.84X) | | Linear + ReLU (with backward) | 29.167 ms | 20.466 ms (1.42X) | 22.784 ms (1.28X) | For FP32 result, we could get 1.9X speed up for hessian calculation, and 1.47X speed up during training, which is even faster than functorch `vmap(jacfwd(jacrev` implementation. (functorch has performance regression on v0.2.0, https://github.com/pytorch/functorch/issues/989, so we are using v0.1.1 for benchmark) @zou3519 does functorch also includes similar optimizations during hessian calculation? If not, what do we need to do so the functorch could also benefit from this PR? ### Testing <!-- How did you test your change? --> - [x] we need to figure out a way for unittest ### Thanks Thanks for the great blog: [How Computational Graphs are Executed in PyTorch | PyTorch](https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/) cc @zasdfgbnm @albanD Pull Request resolved: https://github.com/pytorch/pytorch/pull/82544 Approved by: https://github.com/soulitzer
1085 lines
35 KiB
C++
1085 lines
35 KiB
C++
#include <torch/csrc/jit/frontend/tracer.h>
|
|
|
|
#include <ATen/Backtrace.h>
|
|
#include <ATen/ScalarOps.h>
|
|
#include <ATen/TracerMode.h>
|
|
#include <ATen/core/Dict.h>
|
|
#include <ATen/core/functional.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/autograd/engine.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/ir/constants.h>
|
|
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/fixup_trace_scope_blocks.h>
|
|
#include <torch/csrc/jit/passes/inliner.h>
|
|
#include <torch/csrc/jit/passes/lower_tuples.h>
|
|
#include <torch/csrc/jit/passes/normalize_ops.h>
|
|
#include <torch/csrc/jit/passes/remove_expands.h>
|
|
#include <torch/csrc/utils/variadic.h>
|
|
#include <torch/custom_class.h>
|
|
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace tracer {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Recording the traces
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
namespace detail {
|
|
|
|
template <typename T>
|
|
void genericAddInput(Node* n, T value) {
|
|
Value* v = n->owningGraph()->insertConstant(value);
|
|
recordSourceLocation(v->node());
|
|
n->addInput(v);
|
|
}
|
|
|
|
template <typename T>
|
|
void genericAddOptionalInput(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<T>& value) {
|
|
if (value) {
|
|
jit::tracer::addInputs(n, name, *value);
|
|
} else {
|
|
Graph* g = n->owningGraph();
|
|
Value* none = g->insertNode(g->createNone())->output();
|
|
n->addInput(none);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void badArgType(const T& v) {
|
|
AT_ERROR(
|
|
"Found an unsupported argument type in the JIT tracer: ",
|
|
c10::demangle_type<T>(),
|
|
". File a bug report.");
|
|
}
|
|
|
|
thread_local std::shared_ptr<TracingState> tracing_state;
|
|
} // namespace detail
|
|
|
|
static std::atomic<bool> tracer_state_warn_mode{true};
|
|
|
|
std::atomic<bool>& getTracerStateWarnMode() {
|
|
return tracer_state_warn_mode;
|
|
}
|
|
|
|
std::function<void()> pauseTracing() {
|
|
// NOLINTNEXTLINE
|
|
std::shared_ptr<tracer::TracingState> state = getTracingState();
|
|
tracer::setTracingState(nullptr);
|
|
|
|
return [state]() { tracer::setTracingState(state); };
|
|
}
|
|
|
|
void delValueTrace(const IValue& var) {
|
|
getTracingState()->delValue(var);
|
|
}
|
|
void TracingState::delValue(const IValue& var) {
|
|
for (const auto i : c10::irange(env_stack.size())) {
|
|
auto& value_map = env_stack.at(env_stack.size() - 1 - i);
|
|
auto it = value_map.find(var);
|
|
if (it == value_map.end()) {
|
|
continue;
|
|
}
|
|
value_map.erase(it);
|
|
}
|
|
}
|
|
|
|
// Given a IValue 'var', return the 'node' which represents the instruction
|
|
// which computes the value of this variable in the IR.
|
|
// Here, we interpret untraced variables as constants that are just embedded
|
|
// in the graph. This is useful to handle code which does things like this
|
|
// (from torch.autograd.variable, now moved to C++):
|
|
//
|
|
// def mm(self, matrix):
|
|
// output = Variable(self.data.new(self.data.size(0), matrix.data.size(1)))
|
|
// return Addmm.apply(output, self, matrix, 0, 1, True)
|
|
//
|
|
// Here, mm fakes up a dummy variable with uninitialized data to do an inplace
|
|
// update on, but subsequently ignores it because the alpha scaling factor is
|
|
// zero. This is one of the cases where a Variable can be created inside of a
|
|
// trace, and if we treat it as a constant, everything will work out.
|
|
Value* getValueTrace(const IValue& var) {
|
|
return getTracingState()->getValue(var);
|
|
}
|
|
Value* getOptTensorValueTrace(const c10::optional<at::Tensor>& var) {
|
|
return getValueTrace(IValue(var));
|
|
}
|
|
Value* TracingState::getValue(const IValue& var) {
|
|
// allow tracing of tuples passed to List[Tensor] or Tuple[Tensor...]
|
|
// arguments
|
|
if (var.isTensorList()) {
|
|
return graph
|
|
->insertNode(graph->createList(
|
|
TensorType::get(),
|
|
fmap(
|
|
var.toTensorVector(),
|
|
[&](const IValue& val) { return getValue(val); })))
|
|
->output();
|
|
} else if (var.isTuple()) {
|
|
return graph
|
|
->insertNode(graph->createTuple(fmap(
|
|
var.toTupleRef().elements(),
|
|
[&](const IValue& val) { return getValue(val); })))
|
|
->output();
|
|
} else if (var.isGenericDict()) {
|
|
auto dict = var.toGenericDict();
|
|
TypePtr key_type = dict.keyType();
|
|
TypePtr value_type = dict.valueType();
|
|
std::vector<Value*> keys;
|
|
std::vector<Value*> values;
|
|
for (const auto& entry : dict) {
|
|
keys.emplace_back(getValue(entry.key()));
|
|
values.emplace_back(getValue(entry.value()));
|
|
}
|
|
auto dict_node = graph->createDict(key_type, value_type, keys, values);
|
|
return graph->insertNode(dict_node)->output();
|
|
}
|
|
if (var.isTensor()) {
|
|
auto& ten = var.toTensor();
|
|
if (!ten.defined()) {
|
|
Node* n = graph->createNone();
|
|
return graph->insertNode(n)->output();
|
|
}
|
|
for (const auto i : c10::irange(env_stack.size())) {
|
|
auto& value_map = env_stack.at(env_stack.size() - 1 - i);
|
|
auto it = value_map.find(var);
|
|
if (it == value_map.end()) {
|
|
continue;
|
|
}
|
|
if (!it->second->hasDebugName()) {
|
|
auto unique_name = getTracingState()->lookup_var_name_fn(ten);
|
|
if (!unique_name.empty()) {
|
|
it->second->setDebugName(unique_name);
|
|
}
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
// Didn't find it. Bake in a constant
|
|
if (ten.requires_grad()) {
|
|
pauseTracing();
|
|
std::ostringstream oss;
|
|
oss << "Cannot insert a Tensor that requires grad as a constant. "
|
|
<< "Consider making it a parameter or input, or detaching the gradient\n"
|
|
<< "Tensor:\n"
|
|
<< ten;
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
|
|
Value* constant = graph->insertConstant(ten);
|
|
recordSourceLocation(constant->node());
|
|
constant->inferTypeFrom(ten);
|
|
auto it = env_stack.back().emplace(var, constant);
|
|
return it.first->second;
|
|
} else if (var.isFuture() || var.isObject()) {
|
|
for (const auto i : c10::irange(env_stack.size())) {
|
|
auto& future_map = env_stack.at(env_stack.size() - 1 - i);
|
|
auto it = future_map.find(var);
|
|
if (it == future_map.end()) {
|
|
continue;
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
// Find torchbind classes
|
|
if (isCustomClass(var)) {
|
|
auto obj = Object(var.toObject());
|
|
auto qualname = obj.type()->name();
|
|
auto custom_class_type = getCustomClass(qualname->qualifiedName());
|
|
if (custom_class_type) {
|
|
auto capsule = var.toObject()->getAttr("capsule");
|
|
for (const auto i : c10::irange(env_stack.size())) {
|
|
auto& value_map = env_stack.at(env_stack.size() - 1 - i);
|
|
auto it = value_map.find(capsule);
|
|
if (it == value_map.end()) {
|
|
continue;
|
|
}
|
|
return it->second;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::ostringstream oss;
|
|
if (var.isFuture()) {
|
|
oss << "Tried to trace Future or Object that the tracer was not aware of.";
|
|
} else {
|
|
oss << "Tried to trace " << var
|
|
<< " but it is not part of the active trace. Modules that are called during a trace"
|
|
<< " must be registered as submodules of the thing being traced.";
|
|
}
|
|
throw std::runtime_error(oss.str());
|
|
} else {
|
|
// If the values are non-tensors, we try to create constants
|
|
// and bake those constants into the traced graph
|
|
auto constant = tryInsertConstant(*graph, var);
|
|
if (constant) {
|
|
recordSourceLocation(constant.value()->node());
|
|
return *constant;
|
|
}
|
|
std::ostringstream os;
|
|
os << "Tracer cannot get value trace for type " << var.tagKind() << ". "
|
|
<< "The below value could not be materialized as a constant:\n"
|
|
<< var;
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
}
|
|
bool TracingState::hasValue(const IValue& var) const {
|
|
for (const auto& frame : env_stack) {
|
|
if (frame.count(var)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Value* TracingState::getOutput(const IValue& iv, size_t i) {
|
|
bool tracing_mode_strict = getTracingState()->strict;
|
|
if (iv.isTensor()) {
|
|
const at::Tensor& var = iv.toTensor();
|
|
if (!var.defined()) {
|
|
Node* n = graph->createNone();
|
|
return graph->insertNode(n)->output();
|
|
}
|
|
|
|
auto& value_map = getTracingState()->env_stack.back();
|
|
auto it = value_map.find(iv);
|
|
if (it == value_map.end()) {
|
|
std::ostringstream os;
|
|
os << "output " << i << " (" << var
|
|
<< ") of traced region did not have observable "
|
|
<< "data dependence with trace inputs; this probably indicates your "
|
|
"program "
|
|
<< "cannot be understood by the tracer.";
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
return it->second;
|
|
} else if (iv.isTensorList()) {
|
|
if (tracing_mode_strict) {
|
|
tracer::warn(
|
|
"Encountering a list at the output of the tracer", STRICT_TRACER_MSG);
|
|
}
|
|
return graph
|
|
->insertNode(graph->createList(
|
|
TensorType::get(),
|
|
fmap(
|
|
iv.toTensorVector(),
|
|
[&](const IValue& ival) { return getOutput(ival, i); })))
|
|
->output();
|
|
} else if (iv.isTuple()) {
|
|
const auto& tuple = iv.toTupleRef().elements();
|
|
auto tuple_node = graph->createTuple(
|
|
fmap(tuple, [&](const IValue& ival) { return getOutput(ival, i); }));
|
|
graph->insertNode(tuple_node);
|
|
return tuple_node->output();
|
|
} else if (iv.isGenericDict()) {
|
|
if (tracing_mode_strict) {
|
|
throw std::runtime_error(
|
|
"Encountering a dict at the output of the tracer" +
|
|
std::string(STRICT_TRACER_MSG));
|
|
}
|
|
auto dict = iv.toGenericDict();
|
|
TypePtr key_type = dict.keyType();
|
|
TypePtr value_type = dict.valueType();
|
|
|
|
bool key_type_valid = key_type->isSubtypeOf(*StringType::get()) ||
|
|
key_type->isSubtypeOf(*TensorType::get());
|
|
bool value_type_valid = value_type->isSubtypeOf(*TensorType::get());
|
|
|
|
// Support tuple values that contain only tensors
|
|
if (value_type->isSubtypeOf(*AnyTupleType::get())) {
|
|
value_type_valid = true;
|
|
for (const auto& type : value_type->containedTypes()) {
|
|
if (!type->isSubtypeOf(*TensorType::get())) {
|
|
value_type_valid = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!key_type_valid || !value_type_valid) {
|
|
std::ostringstream os;
|
|
os << "output " << i << " (" << dict << ") of traced region "
|
|
<< "cannot be understood by the tracer, only outputs matching"
|
|
<< "dict[Union[str, Tensor], Union[Tensor, Tuple[Tensor, ...]]] "
|
|
<< "can be a dictionary output of a traced function";
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
std::vector<Value*> keys;
|
|
std::vector<Value*> values;
|
|
for (const auto& entry : dict) {
|
|
keys.emplace_back(getValue(entry.key()));
|
|
values.emplace_back(getOutput(entry.value(), i));
|
|
}
|
|
auto dict_node = graph->createDict(key_type, value_type, keys, values);
|
|
graph->insertNode(dict_node);
|
|
return dict_node->output();
|
|
} else {
|
|
AT_ERROR(
|
|
"Only tensors, lists, tuples of tensors, or dictionary of tensors can be output from traced functions");
|
|
}
|
|
}
|
|
|
|
Node* TracingState::createNode(c10::Symbol op_name, size_t num_outputs) {
|
|
return graph->create(op_name, num_outputs);
|
|
}
|
|
|
|
void TracingState::insertNode(Node* node) {
|
|
graph->insertNode(node);
|
|
}
|
|
|
|
// XXX: this function mutates input
|
|
static IValue addInput(
|
|
const std::shared_ptr<TracingState>& state,
|
|
const IValue& input,
|
|
const TypePtr& type,
|
|
Value* value) {
|
|
value->setType(type);
|
|
if (type->isSubtypeOf(*TensorType::get())) {
|
|
auto input_tensor = input.toTensor();
|
|
auto name = Variable(input_tensor).name();
|
|
if (state->hasValue(input)) {
|
|
input_tensor = input_tensor.view(input_tensor.sizes());
|
|
}
|
|
if (!value->hasDebugName()) {
|
|
value->setDebugName(name);
|
|
}
|
|
state->setValue(input_tensor, value);
|
|
return input_tensor;
|
|
} else if (auto tuple_type = type->cast<TupleType>()) {
|
|
auto unpack_node =
|
|
state->graph->insertNode(state->graph->createTupleUnpack(value));
|
|
auto elem_values = unpack_node->outputs();
|
|
auto elem_types = tuple_type->elements();
|
|
auto tuple = input.toTuple();
|
|
const auto& elems = tuple->elements();
|
|
size_t num_elems = elems.size();
|
|
AT_ASSERT(
|
|
elem_values.size() == num_elems && elem_types.size() == num_elems);
|
|
for (const auto i : c10::irange(num_elems)) {
|
|
tuple->unsafeSetElement(
|
|
i, addInput(state, elems.at(i), elem_types[i], elem_values[i]));
|
|
}
|
|
return tuple;
|
|
} else if (auto dict_type = type->cast<DictType>()) {
|
|
auto dict = input.toGenericDict();
|
|
|
|
// Unpack the list values statically
|
|
for (const auto& entry : dict) {
|
|
IValue key = entry.key();
|
|
auto static_key = state->graph->insertConstant(key);
|
|
auto static_value =
|
|
state->graph->insert(aten::__getitem__, {value, static_key});
|
|
recordSourceLocation(static_value->node());
|
|
dict.insert_or_assign(
|
|
entry.key(),
|
|
addInput(
|
|
state, entry.value(), dict_type->getValueType(), static_value));
|
|
}
|
|
|
|
return dict;
|
|
} else if (auto list_type = type->cast<ListType>()) {
|
|
size_t num_elems = input.isList() ? input.toListRef().size()
|
|
: input.toTensorVector().size();
|
|
auto list_unpack = state->graph->insertNode(
|
|
state->graph->createListUnpack(value, num_elems));
|
|
auto unpack_outputs = list_unpack->outputs();
|
|
|
|
if (input.isTensorList()) {
|
|
auto elems = input.toTensorList();
|
|
for (const auto i : c10::irange(num_elems)) {
|
|
elems[i] = addInput(
|
|
state,
|
|
elems.get(i),
|
|
list_type->getElementType(),
|
|
unpack_outputs[i])
|
|
.toTensor();
|
|
}
|
|
return elems;
|
|
} else {
|
|
auto elems = input.toList();
|
|
for (const auto i : c10::irange(num_elems)) {
|
|
elems[i] = addInput(
|
|
state,
|
|
elems.get(i),
|
|
list_type->getElementType(),
|
|
unpack_outputs[i]);
|
|
}
|
|
return elems;
|
|
}
|
|
} else {
|
|
AT_ERROR(
|
|
"Only tensors or (possibly nested) dict or tuples of tensors can be "
|
|
"inputs to traced functions. Got ",
|
|
type->repr_str());
|
|
}
|
|
}
|
|
|
|
static void gatherParametersAndBuffers(
|
|
const std::shared_ptr<TracingState>& state,
|
|
Value* self_value,
|
|
const Module& self,
|
|
const std::string& prefix) {
|
|
Graph& g = *self_value->owningGraph();
|
|
|
|
state->setValue(self._ivalue(), self_value);
|
|
|
|
auto self_ty = self.type();
|
|
for (const NameValue& s : self.named_attributes(/*recurse=*/false)) {
|
|
auto qualname = prefix + "." + s.name;
|
|
Value* trace_get_attr = g.insertNode(g.create(prim::TracedAttr))
|
|
->s_(attr::scope, qualname)
|
|
->output()
|
|
->setType(s.value.type());
|
|
if (s.value.type()->isSubtypeOf(*TensorType::get())) {
|
|
addInput(state, s.value, s.value.type(), trace_get_attr);
|
|
}
|
|
if (isCustomClass(s.value)) {
|
|
tracer::setValueTrace(s.value, trace_get_attr);
|
|
}
|
|
|
|
auto attr_type = self_ty->getAttribute(s.name);
|
|
// Skipping Parameters and Buffers that are behind an `InterfaceType`
|
|
// because it is illegal for InterfaceType to expose any attribute.
|
|
// And these attributes should never be used/exposed outside of
|
|
// InterfaceType'd module anyway.
|
|
if (attr_type->is_module() &&
|
|
attr_type->kind() != TypeKind::InterfaceType) {
|
|
gatherParametersAndBuffers(
|
|
state, trace_get_attr, Module(s.value.toObject()), qualname);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<std::shared_ptr<TracingState>, Stack> trace(
|
|
Stack inputs,
|
|
const std::function<Stack(Stack)>& traced_fn,
|
|
std::function<std::string(const Variable&)> var_name_lookup_fn,
|
|
bool strict,
|
|
bool force_outplace,
|
|
Module* self,
|
|
const std::vector<std::string>& argument_names) {
|
|
try {
|
|
// Start tracing, treating 'inputs' as inputs to the trace, which can be
|
|
// varied on subsequent invocations of the trace. Any other variables
|
|
// will be treated as constants.
|
|
if (isTracing()) {
|
|
AT_ERROR("Tracing can't be nested");
|
|
}
|
|
auto state = std::make_shared<TracingState>();
|
|
setTracingState(state);
|
|
|
|
// if we are a module, then make sure the modules parameters are in the map
|
|
// and mapped to accesses to the self object
|
|
if (self) {
|
|
Value* self_value = state->graph->insertInput(0, "self")->setType(
|
|
self->_ivalue()->type());
|
|
gatherParametersAndBuffers(state, self_value, *self, {"__module"});
|
|
}
|
|
|
|
// When enough argument name hints are provided, use them as debug names
|
|
// for traced function/modules.
|
|
// Here argument_names is allowed to have more names than needed because
|
|
// some arguments may have valid default values, therefore they don't need
|
|
// example inputs.
|
|
if (argument_names.size() >= inputs.size()) {
|
|
for (size_t i = 0, e = inputs.size(); i < e; ++i) {
|
|
IValue& input = inputs[i];
|
|
input = addInput(
|
|
state,
|
|
input,
|
|
input.type(),
|
|
state->graph->addInput(argument_names[i]));
|
|
}
|
|
} else {
|
|
for (IValue& input : inputs) {
|
|
input = addInput(state, input, input.type(), state->graph->addInput());
|
|
}
|
|
}
|
|
|
|
auto graph = state->graph;
|
|
|
|
getTracingState()->lookup_var_name_fn = std::move(var_name_lookup_fn);
|
|
getTracingState()->strict = strict;
|
|
getTracingState()->force_outplace = force_outplace;
|
|
|
|
// Invoke the traced function
|
|
auto out_stack = traced_fn(inputs);
|
|
|
|
// Exit a trace, treating 'out_stack' as the outputs of the trace. These
|
|
// are the variables whose values will be computed upon subsequent
|
|
// invocations of the trace.
|
|
size_t i = 0;
|
|
for (auto& output : out_stack) {
|
|
// NB: The stack is in "reverse" order, so when we pass the diagnostic
|
|
// number we need to flip it based on size.
|
|
state->graph->registerOutput(
|
|
state->getOutput(output, out_stack.size() - i));
|
|
i++;
|
|
}
|
|
setTracingState(nullptr);
|
|
|
|
if (getInlineEverythingMode()) {
|
|
Inline(*graph);
|
|
}
|
|
FixupTraceScopeBlocks(graph, self);
|
|
NormalizeOps(graph);
|
|
return {state, out_stack};
|
|
} catch (...) {
|
|
tracer::abandon();
|
|
throw;
|
|
}
|
|
}
|
|
|
|
// Abort tracing. Used to reset the state in case of errors.
|
|
void abandon() {
|
|
setTracingState(nullptr);
|
|
}
|
|
|
|
void setValueTrace(const IValue& v, Value* value) {
|
|
return getTracingState()->setValue(v, value);
|
|
}
|
|
void TracingState::setValue(const IValue& v, Value* value) {
|
|
if (v.isTensor()) {
|
|
auto& var = v.toTensor();
|
|
AT_ASSERT(var.defined());
|
|
env_stack.back()[v] = value;
|
|
} else if (v.isTensorList()) {
|
|
auto outputs = v.toTensorList();
|
|
Node* unpack_node =
|
|
graph->insertNode(graph->createListUnpack(value, outputs.size()));
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
setValue(outputs.get(i), unpack_node->outputs()[i]);
|
|
}
|
|
} else if (v.isTuple()) {
|
|
const auto& outputs = v.toTupleRef().elements();
|
|
Node* unpack_node = graph->insertNode(graph->createTupleUnpack(value));
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
setValue(outputs[i], unpack_node->outputs()[i]);
|
|
}
|
|
} else if (v.isList()) {
|
|
auto elements = v.toListRef();
|
|
Node* unpack_node =
|
|
graph->insertNode(graph->createListUnpack(value, elements.size()));
|
|
for (const auto i : c10::irange(elements.size())) {
|
|
setValue(elements[i], unpack_node->outputs()[i]);
|
|
}
|
|
} else if (isCustomClass(v)) {
|
|
auto capsule = v.toObject()->getAttr("capsule");
|
|
env_stack.back()[capsule] = value;
|
|
} else if (v.isFuture() || v.isObject()) {
|
|
env_stack.back()[v] = value;
|
|
} else if (v.isGenericDict()) {
|
|
auto dict = v.toGenericDict();
|
|
TypePtr key_type = dict.keyType();
|
|
TypePtr value_type = dict.valueType();
|
|
for (const auto& entry : dict) {
|
|
auto static_key = graph->insertConstant(entry.key());
|
|
auto static_value = graph->insert(aten::__getitem__, {value, static_key});
|
|
setValue(entry.value(), static_value);
|
|
}
|
|
} else {
|
|
std::ostringstream os;
|
|
os << "Tracer cannot set value trace for type " << v.tagKind() << ". "
|
|
<< "Supported types are tensor, tensor list, and tuple of tensors.";
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
}
|
|
|
|
void addInputs(Node* n, const char* name, int64_t value) {
|
|
using ArgumentStash = jit::tracer::ArgumentStash;
|
|
if (ArgumentStash::hasValue(name)) {
|
|
Value* v = ArgumentStash::popValue(name);
|
|
n->addInput(v);
|
|
} else {
|
|
detail::genericAddInput(n, value);
|
|
}
|
|
}
|
|
|
|
void addInputs(Node* n, const char* name, c10::SymInt value) {
|
|
addInputs(n, name, value.expect_int());
|
|
}
|
|
|
|
void addInputs(Node* n, const char* name, c10::optional<int64_t> value) {
|
|
using ArgumentStash = jit::tracer::ArgumentStash;
|
|
if (ArgumentStash::hasValue(name)) {
|
|
Value* v = ArgumentStash::popValue(name);
|
|
n->addInput(v);
|
|
} else if (value) {
|
|
detail::genericAddInput(n, *value);
|
|
} else {
|
|
Graph* g = n->owningGraph();
|
|
Value* none = g->insertNode(g->createNone())->output();
|
|
n->addInput(none);
|
|
}
|
|
}
|
|
void addInputs(Node* n, const char* name, bool value) {
|
|
detail::genericAddInput(n, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, const c10::optional<bool>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, double value) {
|
|
detail::genericAddInput(n, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, const c10::optional<double>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, const at::Scalar& value) {
|
|
using ArgumentStash = jit::tracer::ArgumentStash;
|
|
if (ArgumentStash::hasValue(name)) {
|
|
Value* v = ArgumentStash::popValue(name);
|
|
n->addInput(v);
|
|
} else {
|
|
detail::genericAddInput(n, value);
|
|
}
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::Scalar>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, const c10::string_view value) {
|
|
detail::genericAddInput(n, std::string(value));
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<c10::string_view>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, const at::Tensor& value) {
|
|
n->addInput(getValueTrace(value));
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::Tensor>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::Generator>& value) {
|
|
if (value.has_value() && value->defined()) {
|
|
detail::badArgType(*value);
|
|
}
|
|
Graph* g = n->owningGraph();
|
|
Value* undef_gen = g->insertNode(g->createNone())->output();
|
|
n->addInput(undef_gen);
|
|
}
|
|
void addInputs(Node* n, const char* name, at::Device value) {
|
|
detail::genericAddInput(n, value);
|
|
}
|
|
void addInputs(Node* n, const char* name, c10::Stream stream) {
|
|
detail::genericAddInput(n, static_cast<int64_t>(stream.pack()));
|
|
}
|
|
void addInputs(Node* n, const char* name, at::Layout value) {
|
|
detail::genericAddInput(n, static_cast<int64_t>(value));
|
|
}
|
|
void addInputs(Node* n, const char* name, at::ScalarType value) {
|
|
detail::genericAddInput(n, static_cast<int64_t>(value));
|
|
}
|
|
void addInputs(Node* n, const char* name, at::MemoryFormat value) {
|
|
detail::genericAddInput(n, static_cast<int64_t>(value));
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::MemoryFormat>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::Layout>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::Device>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
c10::optional<at::DimnameList> value) {
|
|
TORCH_CHECK(false, "NYI: Named tensors are not supported with the tracer");
|
|
}
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::ScalarType>& value) {
|
|
detail::genericAddOptionalInput(n, name, value);
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
at::TensorList value,
|
|
bool allow_undefined) {
|
|
Graph* g = n->owningGraph();
|
|
Node* list_node = nullptr;
|
|
if (allow_undefined) {
|
|
// if allow undefined, we create a list of optional tensors
|
|
list_node = g->insertNode(
|
|
g->createList(OptionalType::ofTensor(), fmap(value, getValueTrace)));
|
|
} else {
|
|
list_node = g->insertNode(
|
|
g->createList(TensorType::get(), fmap(value, getValueTrace)));
|
|
}
|
|
n->addInput(list_node->output());
|
|
}
|
|
TORCH_API void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const List<c10::optional<at::Tensor>>& value) {
|
|
Graph* g = n->owningGraph();
|
|
Node* list_node = nullptr;
|
|
list_node = g->insertNode(g->createList(
|
|
OptionalType::ofTensor(), fmap(value, getOptTensorValueTrace)));
|
|
n->addInput(list_node->output());
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
ArrayRef<c10::intrusive_ptr<c10::ivalue::Object>> value,
|
|
const ClassTypePtr& class_type) {
|
|
Graph* g = n->owningGraph();
|
|
Node* list_node =
|
|
g->insertNode(g->createList(class_type, fmap(value, getValueTrace)));
|
|
n->addInput(list_node->output());
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
c10::optional<caffe2::TypeMeta> opt_dtype) {
|
|
if (opt_dtype.has_value()) {
|
|
return addInputs(n, name, at::typeMetaToScalarType(*opt_dtype));
|
|
} else {
|
|
Graph* g = n->owningGraph();
|
|
Value* none = g->insertNode(g->createNone())->output();
|
|
n->addInput(none);
|
|
}
|
|
}
|
|
|
|
void addInputs(Node* n, const char* name, at::IntArrayRef value) {
|
|
using ArgumentStash = jit::tracer::ArgumentStash;
|
|
std::vector<Value*> info = ArgumentStash::hasIntArrayRef(name)
|
|
? ArgumentStash::popIntArrayRef(name)
|
|
: ArgumentStash::IntArrayRefTrace(value.size());
|
|
|
|
auto& g = getTracingState()->graph;
|
|
for (const auto i : c10::irange(info.size())) {
|
|
if (info[i] != nullptr)
|
|
continue;
|
|
info[i] = g->insertConstant(value[i]);
|
|
recordSourceLocation(info[i]->node());
|
|
}
|
|
for (jit::Value* v : info) {
|
|
if (*v->type() != *jit::IntType::get()) {
|
|
throw std::runtime_error(
|
|
"Type mismatch in setposattr for IntArrayRef. Check that your program "
|
|
"is valid without tracing, and please file a bug report if it is.");
|
|
}
|
|
}
|
|
n->addInput(
|
|
g->insertNode(g->createList(jit::IntType::get(), info))->output());
|
|
}
|
|
|
|
void addInputs(Node* n, const char* name, c10::SymIntArrayRef value) {
|
|
addInputs(n, name, asIntArrayRefSlow(value));
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<at::IntArrayRef>& opt_value) {
|
|
detail::genericAddOptionalInput(n, name, opt_value);
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const at::OptionalIntArrayRef& opt_value) {
|
|
if (opt_value.has_value()) {
|
|
jit::tracer::addInputs(n, name, *opt_value);
|
|
} else {
|
|
Graph* g = n->owningGraph();
|
|
Value* none = g->insertNode(g->createNone())->output();
|
|
n->addInput(none);
|
|
}
|
|
}
|
|
|
|
void addInputs(Node* n, const char* name, ArrayRef<double> value) {
|
|
std::vector<Value*> info;
|
|
auto& g = getTracingState()->graph;
|
|
for (double elt : value) {
|
|
info.push_back(g->insertConstant(elt));
|
|
recordSourceLocation(info.back()->node());
|
|
}
|
|
n->addInput(
|
|
g->insertNode(g->createList(jit::FloatType::get(), info))->output());
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::optional<c10::ArrayRef<double>>& opt_value) {
|
|
detail::genericAddOptionalInput(n, name, opt_value);
|
|
}
|
|
|
|
void addInputs(
|
|
Node* n,
|
|
const char* name,
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& obj) {
|
|
Value* v = getValueTrace(obj);
|
|
n->addInput(v);
|
|
}
|
|
|
|
void addOutput(Node* node, const at::Tensor& output) {
|
|
setOutput(node->addOutput(), output);
|
|
}
|
|
|
|
void setOutput(Value* value, const at::Tensor& output) {
|
|
if (output.defined()) {
|
|
value->inferTypeFrom(output);
|
|
setValueTrace(output, value);
|
|
}
|
|
}
|
|
|
|
void addOutput(Node* node, const std::vector<at::Tensor>& outputs) {
|
|
Value* value = node->addOutput()->setType(ListType::ofTensors());
|
|
Graph* graph = node->owningGraph();
|
|
Node* unpack_node = graph->insertNode(
|
|
graph->create(prim::ListUnpack, {value}, outputs.size()));
|
|
for (const auto i : c10::irange(outputs.size())) {
|
|
Value* output_val = unpack_node->outputs()[i];
|
|
output_val->inferTypeFrom(outputs[i]);
|
|
setValueTrace(outputs[i], output_val);
|
|
}
|
|
}
|
|
|
|
void addOutput(Node* node, const c10::List<at::Tensor>& outputs) {
|
|
return addOutput(node, outputs.vec());
|
|
}
|
|
|
|
void addOutput(
|
|
Node* node,
|
|
const c10::intrusive_ptr<c10::ivalue::Object>& output) {
|
|
Value* output_val = node->addOutput();
|
|
output_val->inferTypeFrom(output);
|
|
setValueTrace(output, output_val);
|
|
}
|
|
|
|
const std::shared_ptr<TracingState>& getTracingState() {
|
|
return detail::tracing_state;
|
|
}
|
|
|
|
void setTracingState(std::shared_ptr<TracingState> state) {
|
|
at::tracer::impl::set_dispatch_enabled(state != nullptr);
|
|
detail::tracing_state = std::move(state);
|
|
}
|
|
|
|
TracingState::TracingState() : graph(new Graph()), env_stack{Frame()} {}
|
|
|
|
TracingState::~TracingState() = default;
|
|
|
|
autograd::Variable getSizeOf(const autograd::Variable& var, int64_t dim) {
|
|
auto& tracing_state = getTracingState();
|
|
auto& graph = tracing_state->graph;
|
|
|
|
Variable size_var;
|
|
{
|
|
// Make sure this scalar to tensor isn't traced!
|
|
at::AutoDispatchBelowADInplaceOrView guard;
|
|
size_var = scalar_to_tensor(at::Scalar(var.size(dim)));
|
|
}
|
|
auto* value = getValueTrace(var);
|
|
auto dim_val = graph->insertConstant(dim);
|
|
recordSourceLocation(dim_val->node());
|
|
auto* node = graph->insertNode(graph->create(aten::size, {value, dim_val}));
|
|
recordSourceLocation(node);
|
|
node->output()->setType(jit::IntType::get());
|
|
|
|
auto ten =
|
|
graph->insertNode(graph->createNumToTensor(node->output()))->output();
|
|
setValueTrace(size_var, ten);
|
|
return size_var;
|
|
}
|
|
|
|
autograd::Variable getNumelOf(const autograd::Variable& var) {
|
|
auto& tracing_state = getTracingState();
|
|
auto& graph = tracing_state->graph;
|
|
|
|
Variable numel_var;
|
|
{
|
|
// Make sure this scalar to tensor isn't traced!
|
|
at::AutoDispatchBelowADInplaceOrView guard;
|
|
numel_var = scalar_to_tensor(at::Scalar(var.numel()));
|
|
}
|
|
auto* value = getValueTrace(var);
|
|
auto* node = graph->insertNode(graph->create(Symbol::aten("numel"), {value}));
|
|
recordSourceLocation(node);
|
|
node->output()->setType(jit::IntType::get());
|
|
|
|
auto ten =
|
|
graph->insertNode(graph->createNumToTensor(node->output()))->output();
|
|
setValueTrace(numel_var, ten);
|
|
return numel_var;
|
|
}
|
|
|
|
void ensureUniqueIfOutOfPlaced(const char* name, const at::Tensor& tensor) {
|
|
auto& state = getTracingState();
|
|
if (state && state->force_outplace == false) {
|
|
// If we're not converting in-place ops to out-of-place, this check is
|
|
// unnecessary
|
|
return;
|
|
}
|
|
auto aliases = tensor.storage().use_count();
|
|
if (isTracing() && aliases > 1) {
|
|
std::stringstream ss;
|
|
ss << "There are " << aliases
|
|
<< " live references to the data region being modified when tracing in-place operator "
|
|
<< name
|
|
<< ". This might cause the trace to be incorrect, because all other views "
|
|
<< "that also reference this data will not reflect this change in the trace! "
|
|
<< "On the other hand, if all other views use the same memory chunk, but are disjoint (e.g. "
|
|
<< "are outputs of torch.split), this might still be safe.";
|
|
warn(ss.str().c_str());
|
|
}
|
|
}
|
|
void ensureUniqueIfOutOfPlaced(
|
|
const char* name,
|
|
const c10::optional<at::Tensor>& tensor) {
|
|
ensureUniqueIfOutOfPlaced(name, tensor.has_value() ? *tensor : at::Tensor());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Argument stash
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
thread_local ArgumentStash ArgumentStash::stash;
|
|
|
|
void ArgumentStash::stashIntArrayRefElem(
|
|
const std::string& arg_name,
|
|
size_t size,
|
|
size_t idx,
|
|
const Variable& var) {
|
|
// TODO: check type?
|
|
if (!isTracing())
|
|
return;
|
|
auto& list_trace = stash.intlists.emplace(arg_name, size).first->second;
|
|
AT_ASSERT(size == list_trace.size());
|
|
AT_ASSERT(idx < list_trace.size());
|
|
AT_ASSERT(list_trace[idx] == nullptr);
|
|
|
|
Value* ten = getValueTrace(var);
|
|
auto& g = *ten->owningGraph();
|
|
WithInsertPoint guard(ten->node()->next());
|
|
auto prim = g.insert(aten::Int, {ten});
|
|
list_trace[idx] = prim;
|
|
}
|
|
|
|
void ArgumentStash::stashValue(
|
|
const std::string& arg_name,
|
|
size_t idx,
|
|
const Variable& var,
|
|
const TypePtr& type) {
|
|
if (!isTracing())
|
|
return;
|
|
|
|
Value* ten = getValueTrace(var);
|
|
WithInsertPoint guard(ten->node()->next());
|
|
auto& g = *ten->owningGraph();
|
|
|
|
if (type == IntType::get()) {
|
|
ten = g.insert(aten::Int, {ten});
|
|
} else if (type == FloatType::get()) {
|
|
ten = g.insert(aten::Float, {ten});
|
|
} else if (type == NumberType::get()) {
|
|
ten = g.insert(aten::ScalarImplicit, {ten});
|
|
}
|
|
|
|
stash.values.emplace(arg_name, ten);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Stack trace recording
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// no python present so we just do not record source information
|
|
void defaultRecordSourceLocation(Node* n) {}
|
|
std::atomic<decltype(&defaultRecordSourceLocation)> record_source_location(
|
|
defaultRecordSourceLocation);
|
|
void recordSourceLocation(Node* n) {
|
|
return record_source_location.load()(n);
|
|
}
|
|
void setRecordSourceLocation(void (*v)(Node*)) {
|
|
record_source_location.store(v);
|
|
}
|
|
|
|
std::vector<StackEntry> defaultPythonCallstack() {
|
|
return std::vector<StackEntry>();
|
|
}
|
|
std::atomic<decltype(&defaultPythonCallstack)> python_callstack_fn(
|
|
defaultPythonCallstack);
|
|
std::vector<StackEntry> pythonCallstack() {
|
|
return python_callstack_fn.load()();
|
|
}
|
|
void setPythonCallstack(std::vector<StackEntry> (*v)()) {
|
|
python_callstack_fn.store(v);
|
|
}
|
|
|
|
void defaultWarn(const std::string& str) {
|
|
TORCH_WARN(str);
|
|
}
|
|
std::atomic<warn_fn_type> warn_callback{defaultWarn};
|
|
|
|
const char* WARN_PYTHON_DATAFLOW =
|
|
" might cause the trace to be incorrect. We can't record the data flow of "
|
|
"Python values, so this value will be treated as a constant in the future. "
|
|
"This means that the trace might not generalize to other inputs!";
|
|
const char* WARN_CONSTRUCTOR =
|
|
" results are registered as constants in the trace. You can safely ignore this "
|
|
"warning if you use this function to create tensors out of constant variables "
|
|
"that would be the same every time you call this function. In any other case, "
|
|
"this might cause the trace to be incorrect.";
|
|
const char* WARN_RESIZE =
|
|
" can't be represented in the JIT at the moment, so we won't connect any uses of "
|
|
"this value with its current trace. If you happen to use it again, it will show "
|
|
"up as a constant in the graph.";
|
|
const char* STRICT_TRACER_MSG =
|
|
" might cause the trace to be incorrect, this is only valid if the container "
|
|
"structure does not change based on the module's inputs. Consider using a constant "
|
|
"container instead (e.g. for `list`, use a `tuple` instead. for `dict`, use a "
|
|
"`NamedTuple` instead). If you absolutely need this and know the side effects, pass "
|
|
"strict=False to trace() to allow this behavior.";
|
|
// XXX: _kind can be a nullptr
|
|
void _do_warn(const char* _reason, const char* _kind) {
|
|
std::string reason{_reason};
|
|
std::string kind{_kind ? _kind : ""};
|
|
std::ostringstream s;
|
|
s << reason << kind;
|
|
warn_callback.load()(s.str());
|
|
}
|
|
|
|
void setWarn(warn_fn_type fn) {
|
|
warn_callback.store(fn);
|
|
}
|
|
} // namespace tracer
|
|
} // namespace jit
|
|
} // namespace torch
|