Files
pytorch/torch/csrc/jit/runtime/graph_executor.cpp
PyTorch MergeBot 375dcb960f Revert "Avoid some dangling reference warnings (#132535)"
This reverts commit f3d7a02716d8725dcedff86094bd7e20f73155f1.

Reverted https://github.com/pytorch/pytorch/pull/132535 on behalf of https://github.com/clee2000 due to broke some internal builds D64479234 ([comment](https://github.com/pytorch/pytorch/pull/132535#issuecomment-2419983509))
2024-10-17 16:23:36 +00:00

1069 lines
36 KiB
C++

#include <torch/csrc/jit/runtime/graph_executor.h>
#include <ATen/core/ivalue.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/batch_mm.h>
#include <torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/inplace_check.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_grad_of.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/pass_manager.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/requires_grad_analysis.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/graph_executor_impl.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/profiling_graph_executor_impl.h>
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <torch/csrc/jit/runtime/simple_graph_executor_impl.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/jit/python/update_graph_executor_opt.h>
#include <torch/csrc/jit/runtime/logging.h>
#include <cstdint>
#include <iterator>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <utility>
#include <vector>
C10_DEFINE_bool(
torch_jit_execution_plan_reuse_code_graph,
false,
"Directly reuse the preprocessed graph in the CodeImpl to reduce the memory consumption. This is aggressive memory saving, and please be cautious!");
namespace torch::jit {
EnableProfilingGuard::EnableProfilingGuard() {
auto& executor_mode = getExecutorMode();
old_executor_mode = executor_mode;
executor_mode = true;
old_get_optimize = getGraphExecutorOptimize();
setGraphExecutorOptimize(true);
}
EnableProfilingGuard::~EnableProfilingGuard() {
getExecutorMode() = old_executor_mode;
setGraphExecutorOptimize(old_get_optimize);
}
namespace {
c10::AliasAnalysisKind aliasAnalysisInternalSpecialCase() {
return AliasAnalysisKind::INTERNAL_SPECIAL_CASE;
}
} // namespace
// for debugging it is helpful to be able to force autodiff subgraphs
// to be created, to check their correctness, even when the
// size of the of the subgraph is too small to be profitable.
thread_local bool autodiff_subgraph_inlining = true;
void debugSetAutodiffSubgraphInlining(bool state) {
autodiff_subgraph_inlining = state;
}
bool getAutodiffSubgraphInlining() {
return autodiff_subgraph_inlining;
}
// for debugging it is helpful to be able to force fusion groups
// to be created
static std::atomic<bool> fusion_group_inlining(true);
void debugSetFusionGroupInlining(bool state) {
fusion_group_inlining = state;
}
bool getFusionGroupInlining() {
return fusion_group_inlining;
}
thread_local std::weak_ptr<Graph> last_executed_optimized_graph;
std::shared_ptr<Graph> lastExecutedOptimizedGraph() {
return last_executed_optimized_graph.lock();
}
namespace {
using tensor_list = std::vector<at::Tensor>;
using Variable = autograd::Variable;
using autograd::variable_list;
struct CaptureList {
CaptureList(size_t capture_size) {
capture_types_.reserve(capture_size);
var_captures_.reserve(capture_size); // var_captures_.size() might be
// greater than capture_size
ivalue_captures_.reserve(capture_size);
}
void captureTensor(const at::Tensor& tensor, bool is_output) {
var_captures_.emplace_back(Variable(tensor), is_output);
}
void capture(const IValue& val, bool is_output) {
if (val.isTensor()) {
capture_types_.emplace_back(CAPTURE_TENSOR);
captureTensor(val.toTensor(), is_output);
} else if (val.isTensorList()) {
// For TensorList, we have to flatten it to Tensors during saving and
// unflatten it back to TensorList when using it in backward apply().
// This is to avoid any implicit mutation to TensorList happened
// between forward & backward.
capture_types_.emplace_back(CAPTURE_LIST);
auto tensors = val.toTensorList();
sizes_.push_back(tensors.size());
for (const auto& tensor : tensors) {
captureTensor(tensor, is_output);
}
} else {
capture_types_.emplace_back(CAPTURE_IVALUE);
ivalue_captures_.push_back(val);
}
}
size_t size() const {
return capture_types_.size();
}
void unpack(Stack& stack, const std::shared_ptr<autograd::Node>& saved_for) {
auto var_capture_it = var_captures_.begin();
auto ivalue_capture_it = ivalue_captures_.begin();
auto size_it = sizes_.begin();
for (Capture capture_type : capture_types_) {
switch (capture_type) {
case CAPTURE_TENSOR: {
stack.emplace_back(var_capture_it->unpack(saved_for));
++var_capture_it;
} break;
case CAPTURE_LIST: {
c10::List<at::Tensor> lst;
auto size = *size_it++;
for (const auto i : c10::irange(size)) {
(void)i;
lst.emplace_back(var_capture_it->unpack(saved_for));
var_capture_it++;
}
stack.emplace_back(std::move(lst));
} break;
case CAPTURE_IVALUE: {
stack.push_back(*ivalue_capture_it++);
} break;
}
}
}
void release_variables() {
for (auto& var_capture_ : var_captures_) {
var_capture_.reset_data();
}
}
private:
enum Capture : uint8_t {
CAPTURE_TENSOR,
CAPTURE_LIST,
CAPTURE_IVALUE,
};
std::vector<Capture> capture_types_;
std::vector<autograd::SavedVariable> var_captures_;
std::vector<IValue> ivalue_captures_;
std::vector<size_t> sizes_;
};
// how do we turn a flattened list of tensors back into the ivalues that
// the DifferentiableGraphBackward expects
struct UnpackInstructions {
UnpackInstructions(size_t num_inputs) {
insts_.reserve(num_inputs);
}
void pushTensor() {
insts_.emplace_back(PUSH_TENSOR);
}
void pushNone() {
insts_.emplace_back(PUSH_NONE);
}
void pushTensorList(size_t size) {
insts_.emplace_back(PUSH_LIST);
sizes_.push_back(size);
}
void unpack(variable_list&& inputs, Stack& stack) {
auto input_it = std::make_move_iterator(inputs.begin());
auto sizes_it = sizes_.begin();
for (Inst inst : insts_) {
switch (inst) {
case PUSH_TENSOR: {
at::Tensor t = *input_it++;
stack.emplace_back(std::move(t));
} break;
case PUSH_LIST: {
std::vector<at::Tensor> lst(input_it, input_it + *sizes_it++);
stack.emplace_back(lst);
} break;
case PUSH_NONE: {
stack.emplace_back();
}
}
}
}
private:
enum Inst : uint8_t {
PUSH_TENSOR,
PUSH_LIST, // consumes one size
PUSH_NONE,
};
std::vector<Inst> insts_;
std::vector<size_t> sizes_;
};
// unpack values packed by `packReturnValuesIntoTuple`
static void unpackReturnTuple(Stack& stack) {
auto tuple = pop(stack).toTuple();
stack.insert(stack.end(), tuple->elements().begin(), tuple->elements().end());
}
struct DifferentiableGraphBackward : public autograd::Node {
DifferentiableGraphBackward(
GraphExecutor executor,
size_t input_size,
size_t capture_size)
: executor(std::move(executor)),
captures_(capture_size),
input_instructions_(input_size) {}
variable_list apply(variable_list&& inputs) override {
Stack stack;
stack.reserve(captures_.size() + inputs.size());
input_instructions_.unpack(std::move(inputs), stack);
captures_.unpack(stack, shared_from_this());
GRAPH_DEBUG("Running DifferentiableGraphBackward for ", &executor);
executor.run(stack);
unpackReturnTuple(stack);
// NB: stack.size() == num_outputs() is not always true
// after we added TensorList support.
// Example: aten::stack(Tensor[] tensors, int) where
// tensors = [x, x]
// Here stack.size()[=1] with a TensorList IValue of
// backward graph output.
// num_outputs()[=2], however, is the number of outputs of
// grad_fn (an autograd::Node). grad_fn's outputs are
// grads with regard to Tensor/Variables `x`, but not
// graph input TensorList [x, x]. These two grads will
// be accumulated to x.grad later using autograd::InputBuffer.
variable_list outputs;
outputs.reserve(num_outputs());
size_t output_index = 0;
for (IValue& v : stack) {
if (v.isTensorList()) {
for (at::Tensor tensor : v.toTensorList()) {
produceOutput(output_index++, std::move(tensor), outputs);
}
} else if (v.isTensor()) {
if (!v.toTensor().defined()) {
// this undefined gradient actually corresponds to a tensor list
if (input_tensor_lists_.count(output_index) != 0) {
size_t list_size = input_tensor_lists_[output_index];
for (size_t i = 0; i < list_size; i++) {
produceOutput(output_index++, {}, outputs);
}
} else {
produceOutput(output_index++, {}, outputs);
}
} else {
produceOutput(output_index++, std::move(v).toTensor(), outputs);
}
} else {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(v.isNone());
output_index++;
// Input grad can also be None even if it requires grad
// Example: `other` in expand_as(self, other)
outputs.emplace_back();
}
}
TORCH_INTERNAL_ASSERT(
num_outputs() == outputs.size(),
"DifferentiableGraphBackward: expected ",
num_outputs(),
" outputs but found ",
outputs.size());
return outputs;
}
void capture(const IValue& val, bool is_output) {
captures_.capture(val, is_output);
}
void addOutputForTensor(const at::Tensor& tensor) {
auto v = Variable(tensor);
add_next_edge(
v.defined() ? torch::autograd::impl::gradient_edge(v)
: autograd::Edge{});
}
void addOutputForIValue(const IValue& value) {
if (value.isTensorList()) {
input_tensor_lists_.insert({index_, value.toTensorList().size()});
for (const at::Tensor& tensor : value.toTensorList()) {
addOutputForTensor(tensor);
index_++;
}
} else if (value.isTensor()) {
addOutputForTensor(value.toTensor());
index_++;
} else {
// We could have None passed here via `Optional[Tensor]`
add_next_edge(autograd::Edge{});
index_++;
}
}
void addInputVariable(Variable output) {
// NB: since our requires_grad setting is only a heuristic we might end
// up wanting to differentiate through integral tensors, which is
// generally a hard error in autograd.
if (at::isFloatingType(output.scalar_type()) ||
at::isComplexType(output.scalar_type())) {
autograd::create_gradient_edge(output, shared_from_this());
output.set_requires_grad(true);
} else {
add_input_metadata(autograd::Node::undefined_input{});
}
}
void addInputIValue(const IValue& v) {
if (v.isTensorList()) {
auto tensors = v.toTensorList();
input_instructions_.pushTensorList(tensors.size());
for (const at::Tensor& tensor : tensors) {
addInputVariable(tensor);
}
} else if (v.isTensor()) {
input_instructions_.pushTensor();
addInputVariable(v.toTensor());
} else if (v.isNone()) {
input_instructions_.pushNone();
addInputVariable(Variable{});
}
}
void release_variables() override {
captures_.release_variables();
}
private:
void produceOutput(size_t i, at::Tensor output, variable_list& outputs) {
if (task_should_compute_output(i)) {
const auto& edge = next_edge(i);
if (output.defined()) {
outputs.emplace_back(std::move(output));
} else if (edge.is_valid()) {
outputs.emplace_back(
edge.function->input_metadata(edge.input_nr).zeros_like());
} else {
outputs.emplace_back();
}
} else {
outputs.emplace_back();
}
}
friend struct ExecutionPlan;
GraphExecutor executor;
CaptureList captures_;
UnpackInstructions input_instructions_;
// we need to track input lists to fwd graph
// since in backward graphs these will become
// an undefined tensors if gradients are zeros
// we will need to convert an undefined tensor
// back to a list
// TODO: switch to using UnpackInstructions
size_t index_ = 0;
std::map<size_t, size_t> input_tensor_lists_;
};
// an optimized way of executing the subgraph computed directly on
// tensors rather than Variables.
// This will unwrap Variables, run the plan, and re-wrap them.
// It can optionally also have a gradient which is hooked up
// to the output Variables if present.
struct DifferentiableGraphOp {
DifferentiableGraphOp(Gradient grad)
: f_ptr(std::make_shared<GraphExecutor>(grad.f, "<forward op>")),
legacy_f(grad.f, "<forward op>"),
grad(std::move(grad)),
grad_executor(this->grad.df, "<backward op>"),
num_inputs(this->grad.f->inputs().size()),
num_outputs(this->grad.f->outputs().size()) {}
// XXX: keep in mind that stack can be larger than the inputs we need!
void operator()(Stack& stack) const {
auto grad_fn = std::make_shared<DifferentiableGraphBackward>(
grad_executor,
grad.df_input_vjps.size(),
grad.df_input_captured_inputs.size() +
grad.df_input_captured_outputs.size());
{
auto inputs = last(stack, num_inputs);
// hook up the outputs of df to the gradient functions of the inputs that
// require gradients
for (auto idx : grad.df_output_vjps) {
grad_fn->addOutputForIValue(inputs[idx]);
}
captureInputs(*grad_fn, inputs);
}
detachVariables(stack);
if (IsNewExecutorEnabled()) {
const ExecutionPlan& plan = f_ptr->getPlanFor(stack);
InterpreterState(plan.code).run(stack);
} else {
InterpreterState(legacy_f).run(stack);
}
{
auto outputs = last(stack, num_outputs);
// hookup the gradients for the output tensors that require gradients
// to the inputs to our gradient function df
// TODO - XXX - if any output is the same tensor multiple times, views
// have to be setup here. We need to refactor autograd until it is safe
// for tensors to be constructed without all the viewing infrastructure.
// this is currently intentionally not done here so we can get an idea of
// our perf before introducing overhead for correctness
for (auto idx : grad.df_input_vjps) {
grad_fn->addInputIValue(outputs[idx]);
}
captureOutputs(*grad_fn, outputs);
// drop the temporary outputs so that we return the same number of
// outputs as if we were not also calculating gradient
const size_t num_temporary_outputs = num_outputs - grad.f_real_outputs;
stack.erase(stack.end() - num_temporary_outputs, stack.end());
}
}
private:
friend GraphExecutor* detail::getGradExecutor(Operation& op);
friend GraphExecutor* detail::getDifferentiableGraphOpExecutor(Operation& op);
at::Tensor detach(at::Tensor t) const {
if (!t.defined()) {
return t;
}
return t.detach();
}
void detach(IValue& v) const {
if (v.isTensor()) {
v = IValue(detach(std::move(v).toTensor()));
} else if (v.isTensorList()) {
std::vector<at::Tensor> lst = v.toTensorVector();
for (auto& tensor : lst) {
tensor = detach(tensor);
}
v = std::move(lst);
}
}
void detachVariables(Stack& stack) const {
// It would be nice to use an ArrayRef here, but unfortunately those can
// only return const references, so we need to do a bunch of indexing
// ourselves.
const int64_t stack_size = stack.size();
const int64_t stack_offset = stack_size - num_inputs;
for (const auto i : c10::irange(stack_offset, stack_size)) {
detach(stack[i]);
}
}
// Capture (save) inputs that would be required to subsequently run backwards
void captureInputs(
DifferentiableGraphBackward& grad_fn,
at::ArrayRef<IValue> inputs) const {
for (size_t offset : grad.df_input_captured_inputs) {
grad_fn.capture(inputs[offset], /*is_output*/ false);
}
}
void captureOutputs(
DifferentiableGraphBackward& grad_fn,
at::ArrayRef<IValue> outputs) const {
for (size_t offset : grad.df_input_captured_outputs) {
grad_fn.capture(outputs[offset], /*is_output*/ true);
}
}
std::shared_ptr<GraphExecutor> f_ptr;
Code legacy_f;
Gradient grad;
GraphExecutor grad_executor;
const size_t num_inputs;
const size_t num_outputs;
};
Gradient getGradient(const Node* n) {
AT_ASSERT(n->kind() == prim::DifferentiableGraph);
Gradient grad;
grad.f = n->g(attr::Subgraph);
grad.df = n->g(attr::ReverseSubgraph);
grad.f_real_outputs = n->i(attr::f_real_outputs);
grad.df_input_vjps = fmap<size_t>(n->is(attr::df_input_vjps));
grad.df_input_captured_inputs =
fmap<size_t>(n->is(attr::df_input_captured_inputs));
grad.df_input_captured_outputs =
fmap<size_t>(n->is(attr::df_input_captured_outputs));
grad.df_output_vjps = fmap<size_t>(n->is(attr::df_output_vjps));
return grad;
}
} // anonymous namespace
RegisterOperators reg_graph_executor_ops({Operator(
prim::DifferentiableGraph,
[](const Node* n) -> Operation {
return DifferentiableGraphOp(getGradient(n));
},
aliasAnalysisInternalSpecialCase())});
namespace detail {
GraphExecutor* getGradExecutor(Operation& op) {
if (auto diff_op = op.target<DifferentiableGraphOp>()) {
return &diff_op->grad_executor;
}
return nullptr;
}
GraphExecutor* getDifferentiableGraphOpExecutor(Operation& op) {
TORCH_INTERNAL_ASSERT(
IsNewExecutorEnabled(),
__FUNCTION__,
" is only accessible under profiling executor\n");
if (auto diff_op = op.target<DifferentiableGraphOp>()) {
return diff_op->f_ptr.get();
}
return nullptr;
}
} // namespace detail
void GraphExecutorImplBase::run(Stack& stack) {
TORCH_CHECK(
stack.size() >= num_inputs,
"expected ",
num_inputs,
" inputs, but got only ",
stack.size());
C10_LOG_API_USAGE_ONCE("torch.graph_executor.run");
logging::getLogger()->addStatValue(
logging::runtime_counters::GRAPH_EXECUTOR_INVOCATIONS, 1.0);
const ExecutionPlan& plan = getPlanFor(stack);
InterpreterState(plan.code).run(stack);
last_executed_optimized_graph = plan.graph;
}
c10::intrusive_ptr<Future> GraphExecutorImplBase::runAsync(
Stack& stack,
TaskLauncher taskLauncher) {
TORCH_CHECK(
stack.size() >= num_inputs,
"expected ",
num_inputs,
" inputs, but got only ",
stack.size());
C10_LOG_API_USAGE_ONCE("torch.graph_executor.runAsync");
logging::getLogger()->addStatValue(
logging::runtime_counters::GRAPH_EXECUTOR_INVOCATIONS, 1.0);
struct Frame {
explicit Frame(ExecutionPlan eplan, TaskLauncher taskLauncher)
: plan(std::move(eplan)), state(plan.code, std::move(taskLauncher)) {}
ExecutionPlan plan;
InterpreterState state;
};
auto frame =
std::make_shared<Frame>(getPlanFor(stack), std::move(taskLauncher));
auto res = frame->state.runAsync(stack);
last_executed_optimized_graph = frame->plan.graph;
if (!res->completed()) {
// If not completed, persist the Frame until complete.
res->addCallback([frame](Future& /* unused */) {});
}
return res;
}
// a Graph can be created via tracing, or via a language-based frontend
// GraphExecutor runs it. It can run the same graph on many different sizes
// and different requires_grad states, and handles specializations for each
// situation. GraphExecutor is completely unaware of tracing or module
// parameters to keep the tracing concerns separated.
struct GraphExecutorImpl : public GraphExecutorImplBase {
GraphExecutorImpl(
const std::shared_ptr<Graph>& graph,
std::string function_name)
: GraphExecutorImplBase(graph, std::move(function_name)),
arg_spec_creator_(*graph) {
logging::getLogger()->addStatValue(
logging::runtime_counters::GRAPH_EXECUTORS_CONSTRUCTED, 1.0);
}
const ExecutionPlan& getPlanFor(
Stack& stack,
std::optional<size_t> remaining_bailout_depth) override {
return getGraphExecutorOptimize() ? getOrCompile(stack)
: getOrCompileFallback();
}
GraphExecutorState getDebugState() override {
GraphExecutorState state;
state.graph = graph.get();
if (fallback) {
state.fallback = fallback;
}
for (auto& entry : plan_cache) {
state.execution_plans.emplace(entry.first, entry.second);
}
return state;
}
protected:
friend struct GraphExecutor;
const ExecutionPlan& getOrCompileFallback() {
std::lock_guard<std::mutex> lock(compile_mutex);
if (!fallback) {
auto graph_ = graph->copy();
runRequiredPasses(graph_);
fallback = ExecutionPlan(graph_, function_name_);
}
return fallback;
}
const ExecutionPlan& getOrCompile(const Stack& stack) {
// outside lock guard, to minimize the time holding the lock on the fast
// path ArgumentSpec even computes its hashCode here.
ArgumentSpec spec =
arg_spec_creator_.create(autograd::GradMode::is_enabled(), stack);
{
std::lock_guard<std::mutex> lock(compile_mutex);
auto it = plan_cache.find(spec);
if (it != plan_cache.end()) {
logging::getLogger()->addStatValue(
logging::runtime_counters::EXECUTION_PLAN_CACHE_HIT, 1.0);
return it->second;
}
auto plan = compileSpec(spec);
auto r = plan_cache.emplace(std::move(spec), std::move(plan));
logging::getLogger()->addStatValue(
logging::runtime_counters::EXECUTION_PLAN_CACHE_MISS, 1.0);
return r.first->second;
}
}
ExecutionPlan compileSpec(const ArgumentSpec& spec) {
auto opt_graph = graph->copy();
GRAPH_DUMP("Optimizing the following function:", opt_graph);
arg_spec_creator_.specializeTypes(*opt_graph, spec);
// Phase 0. Inline functions, then clean up any artifacts that the inliner
// left in that may inhibit optimization
Inline(*opt_graph);
GRAPH_DEBUG("After Inline, before LowerGradOf\n", *opt_graph);
LowerGradOf(*opt_graph);
GRAPH_DEBUG(
"After LowerGradOf, before specializeAutogradZero\n", *opt_graph);
specializeAutogradZero(opt_graph);
GRAPH_DEBUG(
"After specializeAutogradZero, before LowerSimpleTuples\n", *opt_graph);
LowerSimpleTuples(opt_graph);
GRAPH_DEBUG(
"After LowerSimpleTuples, before ConstantPooling\n", *opt_graph);
ConstantPooling(opt_graph);
GRAPH_DEBUG(
"After ConstantPooling, before runRequiredPasses\n", *opt_graph);
// Phase 1. Specialize to input definedness (this is very important for
// gradient graphs), and run required passes to bring the graph
// to an executable form.
runRequiredPasses(opt_graph);
GRAPH_DEBUG(
"After runRequiredPasses, before ConstantPropagation\n", *opt_graph);
// Phase 2. Propagate detailed information about the spec through the
// graph (enabled more specializations in later passes).
// Shape propagation sometimes depends on certain arguments being
// constants, and constant propagation doesn't need shape
// information anyway, so it's better to run it first.
ConstantPropagation(opt_graph);
GRAPH_DEBUG(
"After ConstantPropagation, before PropagateInputShapes\n", *opt_graph);
PropagateInputShapes(opt_graph);
GRAPH_DEBUG(
"After PropagateInputShapes, before PropagateRequiresGrad\n",
*opt_graph);
PropagateRequiresGrad(opt_graph);
GRAPH_DEBUG(
"After PropagateRequiresGrad, before runOptimization\n", *opt_graph);
// Phase 3. Run differentiable optimizations (i.e. simple graph rewrites
// that we can still execute using autograd).
runOptimization(opt_graph);
// Phase 4. If this graph will be differentiated, we need to slice out the
// symbolically differentiable subgraphs for further optimizations.
// Phase 5. Apply non-differentiable optimizations to the graphs we've found
// (or the whole graph if we know we won't need its derivative).
if (needsGradient(opt_graph)) {
auto diff_nodes = CreateAutodiffSubgraphs(
opt_graph,
autodiff_subgraph_inlining ? autodiffSubgraphNodeThreshold : 1);
GRAPH_DEBUG("After CreateAutodiffSubgraphs\n", *opt_graph);
size_t idx = 0;
for (Node* dnode : diff_nodes) {
GRAPH_DEBUG("Optimizing diff node ", idx);
auto diff_graph = std::move(dnode->g(attr::Subgraph));
Gradient gradient = differentiate(diff_graph);
GRAPH_DEBUG("Forward graph:\n", *(gradient.f));
GRAPH_DEBUG("Backward graph:\n", *(gradient.df));
// Run post differentiation optimizations, Autodiff will replace some
// parts of graph with new graph, these new graphs usually consists of
// control flows and miss shape information on nodes, so we run shape
// prop and differentiable optimizations to ensure the graph is
// optimized
PropagateInputShapes(gradient.f);
GRAPH_DEBUG("After PropagateInputShapes\n", *(gradient.f));
runOptimization(gradient.f);
// run non diff optimization on the forward graph
runNondiffOptimization(gradient.f);
packGradient(gradient, dnode);
GRAPH_DEBUG("Finished optimizing diff node ", idx++);
}
InlineAutodiffSubgraphs(
opt_graph,
autodiff_subgraph_inlining ? autodiffSubgraphInlineThreshold : 1);
GRAPH_DEBUG("After InlineAutodiffSubgraphs\n", *opt_graph);
} else {
runNondiffOptimization(opt_graph);
}
// Make sure there are no leftovers from any passes.
EliminateDeadCode(opt_graph);
GRAPH_DUMP("After compileSpec optimizations:", opt_graph);
return ExecutionPlan(opt_graph, function_name_);
}
~GraphExecutorImpl() override = default;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ArgumentSpecCreator arg_spec_creator_;
// Populated only when optimize is false (and in that case plan_cache will be
// unused). The compiled version of graph.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ExecutionPlan fallback;
// Mapping from argument configurations to optimized versions of the graph
// that are specialized to the spec.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
std::unordered_map<ArgumentSpec, ExecutionPlan> plan_cache;
};
GraphExecutor::GraphExecutor(
const std::shared_ptr<Graph>& graph,
std::string function_name)
: pImpl(
IsNewExecutorEnabled()
? (getProfilingMode() ?
dynamic_cast<GraphExecutorImplBase*>(
new ProfilingGraphExecutorImpl(
graph,
std::move(function_name)))
: dynamic_cast<GraphExecutorImplBase*>(
new SimpleGraphExecutorImpl(
graph,
std::move(function_name))))
: dynamic_cast<GraphExecutorImplBase*>(
new GraphExecutorImpl(graph, std::move(function_name)))) {}
GraphExecutor::GraphExecutor(
const std::shared_ptr<Graph>& graph,
std::string function_name,
ExecutorExecutionMode executor_mode)
: pImpl(
executor_mode == ExecutorExecutionMode::SIMPLE
? dynamic_cast<GraphExecutorImplBase*>(
new SimpleGraphExecutorImpl(
graph,
std::move(function_name)))
: dynamic_cast<GraphExecutorImplBase*>(
new ProfilingGraphExecutorImpl(
graph,
std::move(function_name)))) {}
void GraphExecutor::run(Stack& inputs) {
return pImpl->run(inputs);
}
c10::intrusive_ptr<Future> GraphExecutor::runAsync(
Stack& stack,
TaskLauncher taskLauncher) {
return pImpl->runAsync(stack, std::move(taskLauncher));
}
const ExecutionPlan& GraphExecutor::getPlanFor(
Stack& inputs,
std::optional<size_t> remaining_bailout_depth) {
return pImpl->getPlanFor(inputs, remaining_bailout_depth);
}
GraphExecutorState GraphExecutor::getDebugState() {
return pImpl->getDebugState();
}
void GraphExecutor::debugFlushCompilationCache() {
if (auto ppImpl =
std::dynamic_pointer_cast<ProfilingGraphExecutorImpl>(pImpl)) {
ppImpl->debugFlushCompilationCache();
} else {
// we are deprecating legacy executor
TORCH_INTERNAL_ASSERT(false, "Not Implemented for Legacy Executor");
}
}
bool GraphExecutor::isOptimized() const {
return pImpl && pImpl->isOptimized();
}
TORCH_API bool IsNewExecutorEnabled() {
static const auto disable_new_executor =
std::getenv("TORCH_JIT_DISABLE_NEW_EXECUTOR");
return getExecutorMode() && FLAGS_torch_jit_enable_new_executor &&
!disable_new_executor;
}
void runRequiredPasses(const std::shared_ptr<Graph>& g) {
// implicit inserted expand nodes are not necessarily always valid
// when used inside script methods that might have unstable shapes
// we remove the implicitly created ones, and have shape analysis
// add valid expand nodes when the shapes are stable
RemoveExpands(g);
CanonicalizeOps(g);
EliminateDeadCode(g);
}
void packGradient(const Gradient& gradient, Node* dnode) {
AT_ASSERT(dnode->kind() == prim::DifferentiableGraph);
dnode->g_(attr::Subgraph, gradient.f)
->g_(attr::ReverseSubgraph, gradient.df)
->i_(attr::f_real_outputs, gradient.f_real_outputs)
->is_(attr::df_input_vjps, fmap<int64_t>(gradient.df_input_vjps))
->is_(
attr::df_input_captured_inputs,
fmap<int64_t>(gradient.df_input_captured_inputs))
->is_(
attr::df_input_captured_outputs,
fmap<int64_t>(gradient.df_input_captured_outputs))
->is_(attr::df_output_vjps, fmap<int64_t>(gradient.df_output_vjps));
}
static bool mayIntroduceGradient(const Block* b) {
for (const Node* n : b->nodes()) {
if (n->kind() == prim::PythonOp)
return true;
for (const Block* bb : n->blocks()) {
if (mayIntroduceGradient(bb))
return true;
}
}
return false;
}
bool needsGradient(const std::shared_ptr<const Graph>& graph) {
if (!autograd::GradMode::is_enabled()) {
return false;
}
if (mayIntroduceGradient(graph->block())) {
return true;
}
for (const Value* input : graph->inputs()) {
if (input->type()->requires_grad()) {
return true;
}
}
return false;
}
void runNondiffOptimization(
std::shared_ptr<Graph>& graph,
bool strict_fuser_check) {
GRAPH_DEBUG(
"Before customPrePasses (beginning of runNondiffOptimization)\n", *graph);
// Run custom passes that different backends can register.
for (const auto& passPair : getCustomPrePasses()) {
passPair.first(graph);
}
GRAPH_DEBUG("After customPrePasses\n", *graph);
// decomposition pass, decompose certain ops that will be used in the
// following passes (like batchmm and jit fusion)
DecomposeOps(graph);
GRAPH_DEBUG("After DecomposeOps\n", *graph);
// TupleConstruct / TupleUnpack pairs can still be present at this point
// and must be removed for fusion.
LowerSimpleTuples(graph);
GRAPH_DEBUG("After LowerSimpleTuples, before BatchMM\n", *graph);
// Rewrite subgraphs with many MMs into expressions that batch them.
BatchMM(graph);
GRAPH_DEBUG("After BatchMM, before Fusion\n", *graph);
if (getExecutorMode()) {
if (tensorExprFuserEnabled()) {
auto min_size = getFusionGroupInlining() ? 2 : 1;
auto dyn_shapes = tensorExprDynamicShapeFusionEnabled();
FuseTensorExprs(graph, min_size, /*composed_op*/ false, dyn_shapes);
}
} else {
FuseGraph(graph, strict_fuser_check);
}
GRAPH_DEBUG("After Fusion\n", *graph);
// Run custom post-fusion passes
for (const auto& passPair : getCustomPostPasses()) {
passPair.first(graph);
}
GRAPH_DEBUG(
"After customPostPasses (end of runNondiffOptimization)\n", *graph);
}
void runOptimization(
std::shared_ptr<Graph>& graph,
bool unroll_non_constant_loops,
bool const_prop_user_classes) {
// Basic graph preprocessing to eliminate noise.
GRAPH_DEBUG(
"Before EliminateDeadCode (beginning of runOptimization)\n", *graph);
EliminateDeadCode(graph);
GRAPH_DEBUG(
"After EliminateDeadCode, before EliminateCommonSubexpression\n", *graph);
EliminateCommonSubexpression(graph);
GRAPH_DEBUG(
"After EliminateCommonSubexpression , before PeepholeOptimize\n", *graph);
PeepholeOptimize(graph);
GRAPH_DEBUG("After PeepholeOptimize, before ConstantPropagation\n", *graph);
if (const_prop_user_classes) {
ConstantPropagation(graph);
} else {
ConstantPropagation(graph, true);
}
GRAPH_DEBUG("After ConstantPropagation, before ConstantPooling\n", *graph);
ConstantPooling(graph);
GRAPH_DEBUG("After ConstantPooling\n", *graph);
// Unroll small loops, and eliminate expressions that are the same at every
// iteration.
bool unroll_success = false;
if (unroll_non_constant_loops) {
unroll_success = UnrollLoops(graph);
GRAPH_DEBUG("After UnrollLoops, before RemoveListMutation\n", *graph);
} else {
unroll_success = UnrollConstantLoops(graph);
GRAPH_DEBUG(
"After UnrollConstantLoops, before RemoveListMutation\n", *graph);
}
if (unroll_success) {
// run again with unrolled loops
RemoveListMutation(graph);
GRAPH_DEBUG("After RemoveListMutation, before PeepholeOptimize\n", *graph);
PeepholeOptimize(graph);
GRAPH_DEBUG("After PeepholeOptimize, before ConstantPropagation\n", *graph);
ConstantPropagation(graph);
GRAPH_DEBUG("After ConstantPropagation\n", *graph);
}
EliminateCommonSubexpression(graph);
GRAPH_DEBUG(
"After EliminateCommonSubexpression, before CheckInplace\n", *graph);
CheckInplace(graph);
GRAPH_DEBUG("After CheckInplace (end of runOptimization)\n", *graph);
}
Node* replaceBlockWithFallbackGraph(Block* b, ArrayRef<Value*> inputs) {
auto graph = std::make_shared<Graph>();
// we are copying the block inside If or prim::Loop otherwise we are copying
// the whole graph we need to differentiate the two cases because cloneFrom
// automatically adds inputs if we are copying graph's block and we will
// need the inputs from a user otherwise
if (b->owningNode() != nullptr) {
std::unordered_map<Value*, Value*> input_mapping;
auto value_map = [&input_mapping](Value* v) { return input_mapping[v]; };
for (auto inp : inputs) {
input_mapping[inp] = graph->block()->addInput();
}
graph->block()->cloneFrom(b, value_map);
} else {
auto value_map = [](Value* v) { return v; };
graph->block()->cloneFrom(b, value_map);
}
auto fallback = b->owningGraph()->create(
prim::FallbackGraph, inputs, b->outputs().size());
fallback->g_(attr::Subgraph, graph);
b->prependNode(fallback);
for (const auto i : c10::irange(inputs.size())) {
graph->inputs()[i]->setType(inputs[i]->type());
graph->inputs()[i]->copyMetadata(inputs[i]);
}
for (const auto i : c10::irange(b->outputs().size())) {
fallback->output(i)->setType(b->outputs()[i]->type());
fallback->output(i)->copyMetadata(b->outputs()[i]);
b->replaceOutput(i, fallback->output(i));
}
ProfilingRecord::removeProfilingNodes(graph->block());
for (auto it = b->nodes().rbegin(); it != fallback->iterator(); it++) {
it.destroyCurrent();
}
return fallback;
}
} // namespace torch::jit